Beispiel #1
0
            # ('probability_results/raw_normalized_smoothed_dataset_cnn_wrapper_2d_tune', ReshapeTransform()),
            ('probability_results/raw_normalized_smoothed_dataset_cnn_wrapper_window_slicing_size1000',
             ReshapeTransform()),
            # ('probability_results/detrend_gaussian10_dataset_edited_nn_pca_xgb_tune', ReshapeTransform()),
            ('probability_results/fft_smoothed10_dataset_xgb_tune',
             ReshapeTransform()),
            ('probability_results/fft_smoothed10_dataset_edited_nn_pca_xgb_tune',
             ReshapeTransform()),
            ('probability_results/fft_smoothed10_dataset_cnn_wrapper_1d_half',
             ReshapeTransform()),
            # ('probability_results/fft_normalized_dataset_onesided_pca_xgb_tune', ReshapeTransform()),
            # ('probability_results/fft_smoothed10_dataset_lle_xgb_tune', ReshapeTransform()),
        ],
        'target': ('labels', SimpleTransform())
    }
    generate_dataset(struct, 'ensemble_dataset_dummy', test=args.test)

    struct = {
        'features':
        [('probs/fft_smoothed10_ar100_dataset_edited_nn_xgb_fft10ar100',
          ReshapeTransform()),
         ('probs/fft_smoothed10_ar100_dataset_rfecv_xgb', ReshapeTransform()),
         ('probs/fft_smoothed10_dataset_cnn_wrapper_1d_half_no_rolling_fft10',
          ReshapeTransform()),
         ('probs/fft_smoothed10_dataset_cnn_wrapper_fft', ReshapeTransform()),
         ('probs/fft_smoothed10_dataset_edited_nn_pca_xgb_fft10',
          ReshapeTransform()),
         ('probs/fft_smoothed10_dataset_xgb_fft10', ReshapeTransform()),
         ('probs/raw_normalized_gaussian50_dataset_cnn_wrapper_2d_rng50',
          ReshapeTransform()),
         ('probs/raw_normalized_gaussian50_dataset_cnn_wrapper_2d_window_slicing_2500_rng50',
import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--test',
                        help="'train' or 'test' data",
                        action='store_true')
    args = parser.parse_args()

    struct = {
        'features': [
            ('raw_mean_std_normalized', SimpleTransform()),
        ],
        'target': ('labels', SimpleTransform())
    }
    generate_dataset(struct, 'raw_normalized_dataset', args.test)

    struct = {
        'features': [
            ('raw_mean_std_normalized', SimpleTransform()),
            ('raw_mean_std_normalized_smoothed_uniform200', SimpleTransform()),
        ],
        'target': ('labels', SimpleTransform())
    }
    generate_dataset(struct, 'raw_normalized_smoothed_dataset', args.test)

    # Raw data with gaussian smoothing 50
    struct = {
        'features': [
            ('raw_mean_std_normalized', SimpleTransform()),
            ('raw_mean_std_normalized_smoothed_gaussian50', SimpleTransform()),
Beispiel #3
0
import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--test',
                        help="'train' or 'test' data",
                        action='store_true')
    args = parser.parse_args()

    struct = {
        'features': [
            ('fft_smoothed_sigma10', SimpleTransform()),
        ],
        'target': ('labels', SimpleTransform())
    }
    generate_dataset(struct, 'fft_smoothed10_dataset', args.test)

    struct = {
        'features': [
            ('fft_smoothed_sigma20', SimpleTransform()),
            # ('fft_half_normalized', SimpleTransform()),
            # ('fft_normalized', SimpleTransform()),
        ],
        'target': ('labels', SimpleTransform())
    }

    generate_dataset(struct, 'fft_smoothed20_dataset', args.test)

    struct = {
        'features': [
            ('fft_smoothed_median81', SimpleTransform()),
Beispiel #4
0
from preprocessing_features import generate_fft_features
from utils.processing_helper import SimpleTransform, generate_dataset

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--test',
                        help="'train' or 'test' data",
                        action='store_true')
    args = parser.parse_args()

    struct = {
        'features': [('tsfeats/raw_ar_coeff100', SimpleTransform())],
        'target': ('labels', SimpleTransform())
    }
    generate_dataset(struct, 'raw_ar_coeff100_dataset', test=args.test)

    struct = {
        'features': [('tsfeats/raw_ar_coeff100', SimpleTransform()),
                     ('raw_arima_5_5_1', SimpleTransform())],
        'target': ('labels', SimpleTransform())
    }
    generate_dataset(struct, 'raw_ar_coeff100_arima_dataset', test=args.test)

    struct = {
        'features': [('tsfeats/raw_ar_coeff500', SimpleTransform())],
        'target': ('labels', SimpleTransform())
    }
    generate_dataset(struct, 'raw_ar_coeff500_dataset', test=args.test)

    struct = {
Beispiel #5
0
from utils.processing_helper import SimpleTransform, generate_dataset
import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--test', help="'train' or 'test' data", action='store_true')
    args = parser.parse_args()

    struct = {
        'features': [
            ('wavelet_db2_a', SimpleTransform()),
        ],
        'target': ('labels', SimpleTransform())
    }
    generate_dataset(struct, 'wavelet_db2_a_dataset', args.test)

    struct = {
        'features': [
            ('wavelet_db2_b', SimpleTransform()),
        ],
        'target': ('labels', SimpleTransform())
    }
    generate_dataset(struct, 'wavelet_db2_b_dataset', args.test)

    struct = {
        'features': [
            ('cwt_features_scale2_real', SimpleTransform()),
        ],
        'target': ('labels', SimpleTransform())
    }
    generate_dataset(struct, 'cwt_features_scale2_real_dataset', args.test)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--test',
                        help="'train' or 'test' data",
                        action='store_true')
    args = parser.parse_args()

    struct = {
        'features': [
            # ('probability_results/wavelet_db2_b_dataset_xgb', ReshapeTransform()),
            ('probability_results/raw_normalized_gaussian50_dataset_cnn_wrapper_2d_tune',
             ReshapeTransform()),
            # ('probability_results/raw_normalized_smoothed_dataset_cnn_wrapper_2d_tune', ReshapeTransform()),
            ('probability_results/raw_normalized_smoothed_dataset_cnn_wrapper_window_slicing_size1000',
             ReshapeTransform()),
            # ('probability_results/detrend_gaussian10_dataset_edited_nn_pca_xgb_tune', ReshapeTransform()),
            ('probability_results/fft_smoothed10_dataset_xgb_tune',
             ReshapeTransform()),
            ('probability_results/fft_smoothed10_dataset_edited_nn_pca_xgb_tune',
             ReshapeTransform()),
            ('probability_results/fft_smoothed10_dataset_cnn_wrapper_1d_half',
             ReshapeTransform()),
            # ('probability_results/fft_normalized_dataset_onesided_pca_xgb_tune', ReshapeTransform()),
            # ('probability_results/fft_smoothed10_dataset_lle_xgb_tune', ReshapeTransform()),
        ],
        'target': ('labels', SimpleTransform())
    }
    generate_dataset(struct, 'ensemble_dataset_dummy', test=args.test)