Beispiel #1
0
    def __init__(self, num_classes: int = 16):
        super().__init__()
        self.num_classes = num_classes

        inchannel = 6  # with normals
        self.msg1 = _BasePointnetMSGModule(npoint=512,
                                           radius=[0.1, 0.2, 0.4],
                                           nsamples=[32, 64, 128],
                                           mlps=[[inchannel, 32, 32, 64],
                                                 [inchannel, 64, 64, 128],
                                                 [inchannel, 64, 96, 128]])

        inchannel = 64 + 128 + 128 + 3
        self.msg2 = _BasePointnetMSGModule(npoint=128,
                                           radius=[0.4, 0.8],
                                           nsamples=[64, 128],
                                           mlps=[[inchannel, 128, 128, 256],
                                                 [inchannel, 128, 196, 256]])

        inchannel = 256 + 256 + 3
        self.SA = pt_utils.SharedMLP([inchannel, 256, 512, 1024], bn=True)

        inchannel = 1024 + 256 + 256
        self.fp1 = PointnetFPModule(mlp=[inchannel, 256, 256])

        inchannel = 256 + 64 + 128 + 128
        self.fp2 = PointnetFPModule(mlp=[inchannel, 256, 128])

        inchannel = 128 + 6 + num_classes
        self.fp3 = PointnetFPModule(mlp=[inchannel, 128, 128])
Beispiel #2
0
    def __init__(self, withnor=True):
        super().__init__()
        # this model is without one_hot_model
        self.norm_channel = 3 if withnor else 0

        inchannel = 3 + self.norm_channel  # with normals
        self.ssg1 = _BasePointnetSSGModule(npoint=512,
                                           radiu=0.2,
                                           nsample=64,
                                           mlp=[inchannel, 64, 64, 128])

        inchannel = 128 + 3
        self.ssg2 = _BasePointnetSSGModule(npoint=128,
                                           radiu=0.4,
                                           nsample=64,
                                           mlp=[inchannel, 128, 128, 256])

        inchannel = 256 + 3
        self.ssg3 = pt_utils.SharedMLP([inchannel, 256, 512, 1024], bn=True)

        inchannel = 1024 + 256
        self.fp1 = PointnetFPModule([inchannel, 256, 256])

        inchannel = 256 + 128
        self.fp2 = PointnetFPModule([inchannel, 256, 128])

        inchannel = 128 + 3 + self.norm_channel  # if withnor, inchannel is 128+6
        self.fp3 = PointnetFPModule([inchannel, 128, 128, 128])
    def __init__(self):
        super().__init__()

        inchannel = 3
        self.ssg1 = _BasePointnetSSGModule(512, 0.2, 32, [inchannel, 64, 64, 128])

        inchannel = 128 + 3
        self.ssg2 = _BasePointnetSSGModule(128, 0.4, 64, [inchannel, 128, 128, 256])

        inchannel = 256 + 3
        self.SA = pt_utils.SharedMLP([inchannel, 256, 512], bn=True)

        self.last_layer = pt_utils.Conv2d(512, 1024, bn=True)
    def __init__(self, npoint: int, radius: list, nsamples: list, mlps: list):
        '''
        npoint : point number for fps sampling
        nsamples : sample point numbers for each radius
        '''
        super().__init__()
        assert len(radius) == len(nsamples) == len(mlps)
        self.npoint = npoint
        self.nsamples = nsamples
        self.radius = radius
        self.mlps = mlps

        self.fps = FarthestPointSample(npoint)
        self.mlp_layers = nn.ModuleList()
        self.query_ball_point = nn.ModuleList()
        for mlp, radiu, nsample in zip(mlps, radius, nsamples):
            self.mlp_layers.append(pt_utils.SharedMLP(mlp, bn=True))
            self.query_ball_point.append(QueryBallPoint(radiu, nsample))
    def __init__(self):
        super().__init__()
        inchannel = 3
        self.msg1 = _BasePointnetMSGModule(
            npoint=512,
            radius=[0.1, 0.2, 0.4],
            nsamples=[16, 32, 128],
            mlps=[[inchannel, 32, 32, 64], [inchannel, 64, 64, 128], [inchannel, 64, 96, 128]]
        )

        inchannel = 64 + 128 + 128 + 3
        self.msg2 = _BasePointnetMSGModule(
            npoint=128,
            radius=[0.2, 0.4, 0.8],
            nsamples=[32, 64, 128],
            mlps=[[inchannel, 64, 64, 128], [inchannel, 128, 128, 256], [inchannel, 128, 128, 256]]
        )

        inchannel = 128 + 256 + 256 + 3

        self.SA = pt_utils.SharedMLP([inchannel, 256, 512], bn=True)
        self.last_layer = pt_utils.Conv2d(512, 1024, bn=True)
 def __init__(self, *, mlp: List[int], bn: bool = True):
     super().__init__()
     self.mlp = pt_utils.SharedMLP(mlp, bn=bn)
 def __init__(self, mlp: list):
     super().__init__()
     self.mlp = pt_utils.SharedMLP(mlp, bn=True)
Beispiel #8
0
    def __init__(self, K, D, P, C_in, C_out, C_delta, depth_multiplier, sampling='random', with_global=False):
        super().__init__()

        '''
        in the first layer, C_in set to be 0, and the nn_fts_input will only be the delta feature 
        pts(points) : origin points -> B x 3 x N
        fts(features) : origin features -> B x C x N
        qrs(querys) : query points -> B x 3 x P
        nn_pts_local : # B x 3 x P x K
        nn_fts_input : B x C_in+C_delta x P x K

        return : sample point and features
        '''
        self.with_global = with_global
        self.sampling = sampling
        if sampling=='random':
            self.sample = random_indices(P) 
        elif sampling == 'fps':
            self.sample = FarthestPointSample(P)
        else :
            pass
        self.K = K
        self.D = D  
        self.P = P
        self.depth_multiplier = depth_multiplier

        #the input tot mlp_delta is nn_pts_local(B x 3 x P x K)
        self.mlp_delta = pt_utils.SharedMLP(
            [3, C_delta, C_delta],
            bn=True, activation=nn.ELU(inplace=True),
            act_before_bn=True
            )# B x C_delta x P x K


        # the input to X_transform is nn_pts_local(B x 3 x P x K)
        self.X_transform0 = pt_utils.Conv2d(
            3,
            K*K,
            kernel_size=(1, K),
            bn=True,
            bias=False,
            activation=nn.ELU(inplace=True),
            act_before_bn=True
            ) # B x K*K x P x 1
        
        self.X_transform1 = nn.Sequential(
            nn.Conv2d(K, K*K, kernel_size=(1, K), groups=K, bias=False),
            nn.ELU(inplace=True),
            nn.BatchNorm2d(K*K)
        ) # B x K*K x P x 1
        nn.init.xavier_uniform_(self.X_transform1[0].weight)

        self.X_transform2 = nn.Sequential(
            nn.Conv2d(K, K*K, kernel_size=(1, K), groups=K, bias=False),
            nn.BatchNorm2d(K*K)
        ) # B x K*K x P x 1
        nn.init.xavier_uniform_(self.X_transform2[0].weight)

        # depth_multiplier = torch.ceil(float(C_out)/(C_in + C_delta))
       

        self.conv = nn.Sequential(
            nn.Conv2d(C_in+C_delta, (C_in+C_delta)*depth_multiplier, kernel_size=(1, K), groups=(C_in+C_delta)),
            # nn.ELU(inplace=True),
            # nn.BatchNorm2d((C_in+C_delta)*depth_multiplier),
            nn.Conv2d((C_in+C_delta)*depth_multiplier, C_out, kernel_size=1, bias=False),
            nn.ELU(True),
            nn.BatchNorm2d(C_out)
        ) # equal to tf.layers.seperable_conv2d
        nn.init.xavier_uniform_(self.conv[0].weight)
        nn.init.xavier_uniform_(self.conv[1].weight)

        if self.with_global:
            self.conv_global = pt_utils.SharedMLP(
                [3, C_out // 4, C_out //4],
                bn=True,
                activation=nn.ELU(inplace=True),
                act_before_bn=True
            )