def get_history_sum_embedded(self): # TODO: add mask info for this operation his_days =['one', 'two', 'three', 'four','five','six','seven','eight','nine', 'ten','eleven','twelve','thirteen','fourteen'] for fir in his_days: key = "history_" + fir + "_chap_ph" embed_key = "history_" + fir + "_chap_embedded" setattr(self, embed_key,get_mask_zero_embedded(self.chapters_embeddings_var, getattr(self, key))) for fir in his_days: key = "history_" + fir + "_sec_ph" embed_key = "history_" + fir + "_sec_embedded" setattr(self, embed_key,get_mask_zero_embedded(self.sections_embeddings_var, getattr(self, key))) chap = tf.reduce_mean(self.history_one_chap_embedded, axis=-2) #b*x*128 b*128 b*(128*14) sec = tf.reduce_mean(self.history_one_sec_embedded, axis=-2) for fir in his_days[:0:-1]: key_c = "history_" + fir + "_chap_embedded" chap = tf.concat([chap, tf.reduce_mean(getattr(self, key_c), axis=-2)], axis=-1) key_s = "history_" + fir + "_sec_embedded" sec = tf.concat([sec, tf.reduce_mean(getattr(self, key_s), axis=-2)], axis=-1) history_chap_emb = tf.reshape(chap, [-1, HIS_DAYS, EMBEDDING_DIM]) history_sec_emb = tf.reshape(sec, [-1, HIS_DAYS, EMBEDDING_DIM]) chap_mean = tf.reduce_mean(history_chap_emb, axis=-2) sec_mean = tf.reduce_mean(history_sec_emb, axis=-2) return chap_mean, sec_mean
def get_history_din_embedded(self): # TODO: add mask info for this operation his_days = [ 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten', 'eleven', 'twelve', 'thirteen', 'fourteen' ] for fir in his_days: key = "history_" + fir + "_chap_ph" embed_key = "history_" + fir + "_chap_embedded" setattr( self, embed_key, get_mask_zero_embedded(self.chapters_embeddings_var, getattr(self, key))) for fir in his_days: key = "history_" + fir + "_sec_ph" embed_key = "history_" + fir + "_sec_embedded" setattr( self, embed_key, get_mask_zero_embedded(self.sections_embeddings_var, getattr(self, key))) history_cha_embedded = [] history_sec_embedded = [] for fir in his_days[::-1]: key_c = "history_" + fir + "_chap_embedded" key_s = "history_" + fir + "_sec_embedded" history_cha_embedded.append(get_rnn_sum(getattr(self, key_c), "rnncha")) history_sec_embedded.append(get_rnn_sum(getattr(self, key_s), "rnnsec")) #self.history_all_embedded = tf.reshape(, [None,len(history_all_embedded),EMBEDDING_DIM]) # T*B*N -。 B*T*N history_cha_emb = tf.transpose(history_cha_embedded, [1, 0, 2]) history_sec_emb = tf.transpose(history_sec_embedded, [1, 0, 2]) attention_cha_output = din_attention( tf.concat([ get_rnn_sum(self.today_chapters_embedded, "rnncha"), get_rnn_sum(self.today_sections_embedded, "rnnsec") ], axis=-1), tf.concat([history_cha_emb, history_sec_emb], axis=-1), ATTENTION_SIZE, self.history_mask_cha_ph, stag="cha") att_fea1 = tf.reduce_sum(attention_cha_output, -2) #atte_out = tf.concat([att_fea1,att_fea2],axis=-1) return att_fea1
def get_rnn_sum(input_seq, name='cha'): #with tf.name_scope("GRU"): num_layers = 2 HIDDEN_DIM = 128 KEEP_PROB = 0.8 with tf.name_scope('cell'), tf.variable_scope("cell", reuse=tf.AUTO_REUSE): def build_cell(n, m): cell = tf.nn.rnn_cell.GRUCell(n) cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=m) return cell num_units = [HIDDEN_DIM // 2, HIDDEN_DIM // 2] cell_fw = [build_cell(n, KEEP_PROB) for n in num_units] cell_bw = [build_cell(n, KEEP_PROB) for n in num_units] with tf.name_scope('gru'), tf.variable_scope("gru", reuse=tf.AUTO_REUSE): biout, output_fw, output_bw = tf.contrib.rnn.stack_bidirectional_dynamic_rnn( cell_fw, cell_bw, inputs=input_seq, dtype=tf.float32, scope=name) rnnoutput = tf.reduce_sum(tf.concat([biout, input_seq], axis=-1), axis=-2) return rnnoutput
def __call__(self, i_to_s, state, scope="DiagonalBiLSTMCell"): c_prev = tf.slice(state, [0, 0], [-1, self._num_units]) h_prev = tf.slice(state, [0, self._num_units], [-1, self._num_units]) with tf.compat.v1.variable_scope(scope): conv1d_inputs = tf.reshape( h_prev, [-1, self._height, 1, self._hidden_dims], name='conv1d_inputs') conv_s_to_s = conv1d(conv1d_inputs, 4 * self._hidden_dims, 2, scope='s_to_s') s_to_s = tf.reshape(conv_s_to_s, [-1, self._height * self._hidden_dims * 4]) lstm_matrix = tf.sigmoid(s_to_s + i_to_s) i, g, f, o = tf.split(lstm_matrix, 4, 1) c = f * c_prev + i * g h = tf.multiply(o, tf.tanh(c), name='hid') new_state = tf.concat([c, h], 1) return h, new_state
def get_history_sum_embedded(self): # TODO: add mask info for this operation his_days =['one', 'two', 'three', 'four','five','six','seven','eight','nine', 'ten','eleven','twelve','thirteen','fourteen'] for fir in his_days: key_c = "history_" + fir + "_chap_ph" embed_key_c = "history_" + fir + "_chap_embedded" setattr(self, embed_key_c,get_mask_zero_embedded(self.chapters_embeddings_var, getattr(self, key_c))) key_s = "history_" + fir + "_sec_ph" embed_key_s = "history_" + fir + "_sec_embedded" setattr(self, embed_key_s,get_mask_zero_embedded(self.sections_embeddings_var, getattr(self, key_s))) key_st = "style_" + fir + "_ph" embed_key_st = "history_" + fir + "_sty_embedded" setattr(self, embed_key_st,tf.nn.embedding_lookup(self.style_embeddings_var, getattr(self, key_st))) chap = get_rnn_sum(self.history_one_chap_embedded,"rnncha") #b*x*128 b*128 b*(128*14) sec = get_rnn_sum(self.history_one_sec_embedded, "rnnsec") sty = self.history_one_sty_embedded for fir in his_days[:0:-1]: key_c = "history_" + fir + "_chap_embedded" chap = tf.concat([chap, get_rnn_sum(getattr(self, key_c), "rnncha")], axis=-1) key_s = "history_" + fir + "_sec_embedded" sec = tf.concat([sec, get_rnn_sum(getattr(self, key_s), "rnnsec")], axis=-1) key_st = "history_" + fir + "_sty_embedded" sty = tf.concat([sty, getattr(self, key_st)], axis=-1) history_chap_emb = tf.reshape(chap, [-1, HIS_DAYS, EMBEDDING_DIM]) history_sec_emb = tf.reshape(sec, [-1, HIS_DAYS, EMBEDDING_DIM]) history_sty_emb = tf.reshape(sty, [-1, HIS_DAYS, EMBEDDING_DIM]) chap_mean = tf.reduce_mean(history_chap_emb, axis=-2) sec_mean = tf.reduce_mean(history_sec_emb, axis=-2) sty_mean = tf.reduce_mean(history_sty_emb, axis=-2) #return chap_mean, sec_mean return tf.concat([chap_mean, sec_mean,sty_mean], axis=-1)
def get_mask_zero_embedded(var_em, var_ph): mask = tf.equal(var_ph, 0) mask2 = tf.concat( [tf.expand_dims(~mask, -1) for i in range(EMBEDDING_DIM)], -1) rst = tf.where( mask2, tf.nn.embedding_lookup(var_em, var_ph), tf.zeros([tf.shape(var_ph)[0], tf.shape(var_ph)[1], EMBEDDING_DIM])) return rst
def unskew(inputs, width=None, scope="unskew"): with tf.compat.v1.name_scope(scope): batch, height, skewed_width, channel = inputs.get_shape().as_list() width = width if width else height new_rows = [] rows = tf.split(inputs, height, 1) for idx, row in enumerate(rows): new_rows.append(tf.slice(row, [0, 0, idx, 0], [-1, -1, width, -1])) outputs = tf.concat(new_rows, 1, name="output") return outputs
def build_fcn_net(self, inp, use_dice=False): with self.graph.as_default(): self.saver = tf.train.Saver(max_to_keep=1) with tf.name_scope("Out"): bn1 = tf.layers.batch_normalization(inputs=inp, name='bn1') dnn1 = tf.layers.dense(bn1, 200, activation=None, name='f1') if use_dice: dnn1 = dice(dnn1, name='dice_1') else: dnn1 = prelu(dnn1, 'prelu1') dnn2 = tf.layers.dense(dnn1, 80, activation=None, name='f2') if use_dice: dnn2 = dice(dnn2, name='dice_2') else: dnn2 = prelu(dnn2, 'prelu2') dnn3 = tf.layers.dense(dnn2, 2, activation=None, name='f3') self.y_hat = tf.nn.softmax(dnn3) + 0.00000001 with tf.name_scope('Metrics'): # Cross-entropy loss and optimizer initialization coe = tf.constant([1.2, 1.2]) coe_mask = tf.equal(self.core_type_ph, 1) coe_mask2 = tf.concat( [tf.expand_dims(coe_mask, -1) for i in range(2)], -1) self.target_ph_coe = tf.where(coe_mask2, self.target_ph * coe, self.target_ph) ctr_loss = -tf.reduce_mean(tf.log(self.y_hat) * self.target_ph) self.loss = ctr_loss # tf.summary.scalar('loss', self.loss) self.optimizer = tf.train.AdamOptimizer( learning_rate=self.lr_ph).minimize(self.loss) # self.optimizer = tf.train.GradientDescentOptimizer(learning_rate=self.lr_ph).minimize(self.loss) # Accuracy metric self.accuracy = tf.reduce_mean( tf.cast(tf.equal(tf.round(self.y_hat), self.target_ph), tf.float32)) # tf.summary.scalar('accuracy', self.accuracy) self.merged = tf.summary.merge_all()
def diagonal_bilstm(inputs, scope='diagonal_bilstm'): with tf.compat.v1.variable_scope(scope): def reverse(inputs): return tf.reverse(inputs, [2]) output_state_fw = diagonal_lstm(inputs, scope='output_state_fw') output_state_bw = reverse( diagonal_lstm(reverse(inputs), scope='output_state_bw')) batch, height, width, channel = output_state_bw.get_shape().as_list() output_state_bw_except_last = tf.slice(output_state_bw, [0, 0, 0, 0], [-1, height - 1, -1, -1]) output_state_bw_only_last = tf.slice(output_state_bw, [0, height - 1, 0, 0], [-1, 1, -1, -1]) dummy_zeros = tf.zeros_like(output_state_bw_only_last) output_state_bw_with_last_zeros = tf.concat( [output_state_bw_except_last, dummy_zeros], 1) return output_state_fw + output_state_bw_with_last_zeros
def __init__(self, *, use_dice=False): super().__init__(use_dice=use_dice) self.other_inputs() teacher = [ #self.teacher_id_embedded, self.province_id_embedded, self.city_id_embedded, self.core_type_embedded, self.student_count_embedded, ] # 0-4 clazz = [ #self.class_id_embedded, self.edition_id_embedded, self.grade_id_embedded, self.class_student_embedded, self.cap_avg_embedded, self.cap_max_embedded, self.cap_min_embedded, ] # 5-11 study = [ self.study_vector_embedded, self.gap_days_embedded, ] # 12-13 submit = [self.month_submit_rate_embedded, ] # 14 capacity = [self.region_capacity_embedded, ] # 15 prefer = [self.prefer_assign_time_avg_embedded, self.prefer_assign_time_var_embedded, self.prefer_assign_rank_avg_embedded, self.prefer_assign_rank_var_embedded, ] # 16-19 register = [self.register_diff_embedded, ] # 20 homeworkcount = [self.homework_count_embedded, ] # 21 weekcount = [self.week_count_embedded, ] # 22 lastday = [self.lastday_count_embedded, ] # 23 study_analysis = [self.analysis_avg_times_embedded, self.analysis_avg_exp_score_embedded, self.analysis_avg_rate_embedded, self.analysis_avg_exp_level_embedded ] o = teacher + clazz + study + submit + \ capacity + prefer + register + homeworkcount + weekcount + lastday+study_analysis # here, we do like this, not tf.concat(o,axis=-1), # because, issue:https://github.com/tensorflow/tensorflow/issues/24816 # ps: style,homework,reflect don't need to do like this, proved. others = o[0] for i in o[1:]: others = tf.concat([others, i], axis=-1) others = [others] # style = [] # for fir in ["1", "2", "3", "4"]: # for sec in ["100", "010", "001", "110", "101", "011", "111"]: # embed_key = "style_" + fir + "0" + sec + "_embedded" # style.append(getattr(self, embed_key)) homework = [] homework.append(self.today_style_embedded) homework.append(tf.concat([self.today_cha_rnn,self.today_sec_rnn],axis=-1)) homework.append(self.history_chap_embedded) homework.append(self.history_chap_embedded *tf.concat([self.today_cha_rnn,self.today_sec_rnn,self.today_style_embedded],axis=-1)) reflect = [] reflect.append(self.ref_rnn ) with self.graph.as_default(): with tf.name_scope("Concat"): inps = tf.concat(others + homework + reflect, -1) self.build_fcn_net(inps, self.use_dice)
def get_history_bgru_embedded(self): # TODO: add mask info for this operation his_days = [ 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten', 'eleven', 'twelve', 'thirteen', 'fourteen' ] for fir in his_days: key = "history_" + fir + "_chap_ph" embed_key = "history_" + fir + "_chap_embedded" setattr( self, embed_key, get_mask_zero_embedded(self.chapters_embeddings_var, getattr(self, key))) for fir in his_days: key = "history_" + fir + "_sec_ph" embed_key = "history_" + fir + "_sec_embedded" setattr( self, embed_key, get_mask_zero_embedded(self.sections_embeddings_var, getattr(self, key))) history_cha_embedded = [] history_sec_embedded = [] for fir in his_days[::-1]: key_c = "history_" + fir + "_chap_embedded" key_s = "history_" + fir + "_sec_embedded" # B 3 128 B 128 14 B 128 B 14 128 history_cha_embedded.append(get_rnn_sum(getattr(self, key_c), "rnncha")) history_sec_embedded.append(get_rnn_sum(getattr(self, key_s), "rnnsec")) history_cha_emb = tf.transpose(history_cha_embedded, [1, 0, 2]) history_sec_emb = tf.transpose(history_sec_embedded, [1, 0, 2]) with tf.name_scope("GRU"): num_layers = 2 HIDDEN_DIM = 128 KEEP_PROB = 0.8 with tf.name_scope('cell'): def build_cell(n, m): cell = tf.nn.rnn_cell.GRUCell(n) cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=m) return cell num_units = [HIDDEN_DIM // 2, HIDDEN_DIM] cell_fw = [build_cell(n, KEEP_PROB) for n in num_units] cell_bw = [build_cell(n, KEEP_PROB) for n in num_units] with tf.name_scope('gru'): biout, output_fw, output_bw = tf.contrib.rnn.stack_bidirectional_dynamic_rnn( cell_fw, cell_bw, inputs=tf.concat([history_cha_emb, history_sec_emb], axis=-1), dtype=tf.float32, scope='cha') rnnoutput = tf.reduce_sum(biout, axis=-2) return rnnoutput
def get_history_din_embedded(self): # TODO: add mask info for this operation his_days = [ 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten', 'eleven', 'twelve', 'thirteen', 'fourteen' ] for fir in his_days: key = "history_" + fir + "_chap_ph" embed_key = "history_" + fir + "_chap_embedded" setattr( self, embed_key, get_mask_zero_embedded(self.chapters_embeddings_var, getattr(self, key))) for fir in his_days: key = "history_" + fir + "_sec_ph" embed_key = "history_" + fir + "_sec_embedded" setattr( self, embed_key, get_mask_zero_embedded(self.sections_embeddings_var, getattr(self, key))) history_cha_embedded = [] history_sec_embedded = [] for fir in his_days[::-1]: key_c = "history_" + fir + "_chap_embedded" key_s = "history_" + fir + "_sec_embedded" history_cha_embedded.append(get_rnn_sum(getattr(self, key_c), "rnncha")) history_sec_embedded.append(get_rnn_sum(getattr(self, key_s), "rnnsec")) #self.history_all_embedded = tf.reshape(, [None,len(history_all_embedded),EMBEDDING_DIM]) # T*B*N -。 B*T*N history_cha_emb = tf.transpose(history_cha_embedded, [1, 0, 2]) history_sec_emb = tf.transpose(history_sec_embedded, [1, 0, 2]) #dien with tf.name_scope('rnn_1'): rnn_outputs, _ = dynamic_rnn(GRUCell(HIDDEN_SIZE * 2), inputs=tf.concat( [history_cha_emb, history_sec_emb], axis=-1), sequence_length=self.history_len_ph, dtype=tf.float32, scope="gru1") with tf.name_scope('Attention_layer_1'): att_outputs, alphas = din_fcn_attention(tf.concat([ get_rnn_sum(self.today_chapters_embedded, "rnncha"), get_rnn_sum(self.today_sections_embedded, "rnnsec") ], axis=-1), rnn_outputs, ATTENTION_SIZE, self.history_mask_cha_ph, scope="1_1", softmax_stag=1, stag='1_1', mode='LIST', return_alphas=True) with tf.name_scope('rnn_2'): rnn_outputs2, final_state2 = dynamic_rnn( VecAttGRUCell(HIDDEN_SIZE * 2), inputs=rnn_outputs, att_scores=tf.expand_dims(alphas, -1), sequence_length=self.history_len_ph, dtype=tf.float32, scope="gru2") return final_state2