Beispiel #1
0
def main(args, configs):
    print("Prepare training ...")

    preprocess_config, model_config, train_config = configs

    # Get dataset
    dataset = Dataset("train.txt",
                      preprocess_config,
                      train_config,
                      sort=True,
                      drop_last=True)
    batch_size = train_config["optimizer"]["batch_size"]
    group_size = 4  # Set this larger than 1 to enable sorting in Dataset
    assert batch_size * group_size < len(dataset)
    loader = DataLoader(
        dataset,
        batch_size=batch_size * group_size,
        shuffle=True,
        collate_fn=dataset.collate_fn,
    )
    with open(
            os.path.join(preprocess_config["path"]["preprocessed_path"],
                         "stats.json")) as f:
        stats = json.load(f)
        mel_stats = stats["mel"]

    # Prepare model
    model, optimizer = get_model(args, configs, device, train=True)
    model = nn.DataParallel(model)
    num_param = get_param_num(model)
    Loss = ParallelTacotron2Loss(model_config, train_config).to(device)
    print("Number of Parallel Tacotron 2 Parameters:", num_param)

    # Load vocoder
    vocoder = get_vocoder(model_config, device)

    # Init logger
    for p in train_config["path"].values():
        os.makedirs(p, exist_ok=True)
    train_log_path = os.path.join(train_config["path"]["log_path"], "train")
    val_log_path = os.path.join(train_config["path"]["log_path"], "val")
    os.makedirs(train_log_path, exist_ok=True)
    os.makedirs(val_log_path, exist_ok=True)
    train_logger = SummaryWriter(train_log_path)
    val_logger = SummaryWriter(val_log_path)

    # Training
    step = args.restore_step + 1
    epoch = 1
    grad_acc_step = train_config["optimizer"]["grad_acc_step"]
    grad_clip_thresh = train_config["optimizer"]["grad_clip_thresh"]
    total_step = train_config["step"]["total_step"]
    log_step = train_config["step"]["log_step"]
    save_step = train_config["step"]["save_step"]
    synth_step = train_config["step"]["synth_step"]
    val_step = train_config["step"]["val_step"]

    outer_bar = tqdm(total=total_step, desc="Training", position=0)
    outer_bar.n = args.restore_step
    outer_bar.update()

    # with torch.autograd.detect_anomaly():
    while True:
        inner_bar = tqdm(total=len(loader),
                         desc="Epoch {}".format(epoch),
                         position=1)
        for batchs in loader:
            for batch in batchs:
                batch = to_device(batch, device, mel_stats)

                # Forward
                output = model(*(batch[2:]))
                # Cal Loss
                losses = Loss(batch, output, step)
                total_loss = losses[0]

                # Backward
                total_loss = total_loss / grad_acc_step
                total_loss.backward()
                if step % grad_acc_step == 0:
                    # Clipping gradients to avoid gradient explosion
                    nn.utils.clip_grad_norm_(model.parameters(),
                                             grad_clip_thresh)

                    # Update weights
                    optimizer.step_and_update_lr()
                    optimizer.zero_grad()

                if step % log_step == 0:
                    losses = [l.item() for l in losses]
                    message1 = "Step {}/{}, ".format(step, total_step)
                    message2 = "Total Loss: {:.4f}, Mel Loss: {:.4f}, Duration Loss: {:.4f}, KL Loss: {:.4f}".format(
                        *losses)

                    with open(os.path.join(train_log_path, "log.txt"),
                              "a") as f:
                        f.write(message1 + message2 + "\n")

                    outer_bar.write(message1 + message2)

                    log(train_logger, step, losses=losses)

                if step % synth_step == 0:
                    fig, wav_reconstruction, wav_prediction, tag = synth_one_sample(
                        batch,
                        output,
                        vocoder,
                        model_config,
                        preprocess_config,
                        mel_stats,
                    )
                    log(
                        train_logger,
                        fig=fig,
                        tag="Training/step_{}_{}".format(step, tag),
                    )
                    sampling_rate = preprocess_config["preprocessing"][
                        "audio"]["sampling_rate"]
                    log(
                        train_logger,
                        audio=wav_reconstruction,
                        sampling_rate=sampling_rate,
                        tag="Training/step_{}_{}_reconstructed".format(
                            step, tag),
                    )
                    log(
                        train_logger,
                        audio=wav_prediction,
                        sampling_rate=sampling_rate,
                        tag="Training/step_{}_{}_synthesized".format(
                            step, tag),
                    )

                if step % val_step == 0:
                    model.eval()
                    message = evaluate(model, step, configs, val_logger,
                                       vocoder, len(losses), mel_stats)
                    with open(os.path.join(val_log_path, "log.txt"), "a") as f:
                        f.write(message + "\n")
                    outer_bar.write(message)

                    model.train()

                if step % save_step == 0:
                    torch.save(
                        {
                            "model": model.module.state_dict(),
                            "optimizer": optimizer._optimizer.state_dict(),
                        },
                        os.path.join(
                            train_config["path"]["ckpt_path"],
                            "{}.pth.tar".format(step),
                        ),
                    )

                if step == total_step:
                    quit()
                step += 1
                outer_bar.update(1)

            inner_bar.update(1)
        epoch += 1
Beispiel #2
0
def evaluate(model, step, configs, logger=None, vocoder=None):
    preprocess_config, model_config, train_config = configs

    # Get dataset
    dataset = Dataset(
        "val.txt", preprocess_config, train_config, sort=False, drop_last=False
    )
    batch_size = train_config["optimizer"]["batch_size"]
    loader = DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=False,
        collate_fn=dataset.collate_fn,
    )

    # Get loss function
    Loss = ParallelTacotron2Loss(model_config, train_config).to(device)

    # Evaluation
    loss_sums = [0 for _ in range(6)]
    for batchs in loader:
        for batch in batchs:
            batch = to_device(batch, device)
            with torch.no_grad():
                # Forward
                output = model(*(batch[2:]))

                # Cal Loss
                losses = Loss(batch, output, step)

                for i in range(len(losses)):
                    loss_sums[i] += losses[i].item() * len(batch[0])

    loss_means = [loss_sum / len(dataset) for loss_sum in loss_sums]

    message = "Validation Step {}, Total Loss: {:.4f}, Mel Loss: {:.4f}, Duration Loss: {:.4f}, KL Loss: {:.4f}, Attention Loss: {:.4f}".format(
        *([step] + [l for l in loss_means])
    )

    if logger is not None:
        fig, wav_reconstruction, wav_prediction, tag = synth_one_sample(
            batch,
            output,
            vocoder,
            model_config,
            preprocess_config,
        )

        log(logger, step, losses=loss_means)
        log(
            logger,
            fig=fig,
            tag="Validation/step_{}_{}".format(step, tag),
        )
        sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
        log(
            logger,
            audio=wav_reconstruction,
            sampling_rate=sampling_rate,
            tag="Validation/step_{}_{}_reconstructed".format(step, tag),
        )
        log(
            logger,
            audio=wav_prediction,
            sampling_rate=sampling_rate,
            tag="Validation/step_{}_{}_synthesized".format(step, tag),
        )

    return message
Beispiel #3
0
def main(args, configs):
    print("Prepare training ...")

    preprocess_config, model_config, train_config = configs

    # Get dataset
    dataset = Dataset("train.txt",
                      preprocess_config,
                      train_config,
                      model_config,
                      sort=True,
                      drop_last=True)
    batch_size = train_config["optimizer"]["batch_size"]
    group_size = 4  # Set this larger than 1 to enable sorting in Dataset
    assert batch_size * group_size < len(dataset)
    loader = DataLoader(
        dataset,
        batch_size=batch_size * group_size,
        shuffle=True,
        collate_fn=dataset.collate_fn,
    )

    # Prepare model
    model, optimizer = get_model(args, configs, device, train=True)
    model = nn.DataParallel(model)
    num_param = get_param_num(model)
    Loss = FastSpeech2Loss(preprocess_config, model_config).to(device)
    print("Number of FastSpeech2 Parameters:", num_param)

    # Load checkpoint if exists
    if args.restore_path is not None and os.path.isfile(args.restore_path):
        checkpoint = torch.load(args.restore_path)
        pretrained_dict = checkpoint['model']
        if not any(key.startswith('module.') for key in pretrained_dict):
            pretrained_dict = {
                'module.' + k: v
                for k, v in pretrained_dict.items()
            }

        dem1 = 0
        dem2 = 0
        model_dict = model.state_dict()
        for k, v in pretrained_dict.items():
            if k in model_dict and v.size() == model_dict[k].size():
                # print('Load weight in ', k)
                dem1 += 1
            else:
                print(f'Module {k} is not same size')
                dem2 += 1
        dem2 += dem1
        print(f'### Load {dem1}/{dem2} modules')
        # 1. filter out unnecessary keys
        pretrained_dict = {
            k: v
            for k, v in pretrained_dict.items()
            if k in model_dict and v.size() == model_dict[k].size()
        }
        # 2. overwrite entries in the existing state dict
        model_dict.update(pretrained_dict)
        # 3. load the new state dict
        model.load_state_dict(model_dict)
        # model.load_state_dict(checkpoint['model'])
        # optimizer.load_state_dict(checkpoint['optimizer'])
        print("\n---Model Restored at Step {}---\n".format(args.restore_step))

    # Load vocoder
    vocoder = get_vocoder(model_config, device)

    # Init logger
    for p in train_config["path"].values():
        os.makedirs(p, exist_ok=True)
    train_log_path = os.path.join(train_config["path"]["log_path"], "train")
    val_log_path = os.path.join(train_config["path"]["log_path"], "val")
    os.makedirs(train_log_path, exist_ok=True)
    os.makedirs(val_log_path, exist_ok=True)
    train_logger = SummaryWriter(train_log_path)
    val_logger = SummaryWriter(val_log_path)

    # Training
    step = args.restore_step + 1
    epoch = 1
    grad_acc_step = train_config["optimizer"]["grad_acc_step"]
    grad_clip_thresh = train_config["optimizer"]["grad_clip_thresh"]
    total_step = train_config["step"]["total_step"]
    log_step = train_config["step"]["log_step"]
    save_step = train_config["step"]["save_step"]
    synth_step = train_config["step"]["synth_step"]
    val_step = train_config["step"]["val_step"]

    outer_bar = tqdm(total=total_step, desc="Training", position=0)
    outer_bar.n = args.restore_step
    outer_bar.update()

    while True:
        inner_bar = tqdm(total=len(loader),
                         desc="Epoch {}".format(epoch),
                         position=1)
        for batchs in loader:
            for batch in batchs:
                batch = to_device(batch, device)

                # Forward
                output = model(*(batch[2:]))

                # Cal Loss
                losses = Loss(batch, output)
                total_loss = losses[0]

                # Backward
                total_loss = total_loss / grad_acc_step
                total_loss.backward()
                if step % grad_acc_step == 0:
                    # Clipping gradients to avoid gradient explosion
                    nn.utils.clip_grad_norm_(model.parameters(),
                                             grad_clip_thresh)

                    # Update weights
                    optimizer.step_and_update_lr()
                    optimizer.zero_grad()

                if step % log_step == 0:
                    losses = [l.item() for l in losses]
                    message1 = "Step {}/{}|".format(step, total_step)
                    message2 = "|Total Loss: {:.4f}|Mel Loss: {:.4f}|Mel PostNet Loss: {:.4f}|Pitch Loss: {:.4f}|Energy Loss: {:.4f}|Duration Loss: {:.4f}|".format(
                        *losses)

                    # with open(os.path.join(train_log_path, "log.txt"), "a") as f:
                    #     f.write(message1 + message2 + "\n")

                    outer_bar.write(message1 + message2)

                    log(train_logger, step, losses=losses)

                if step % synth_step == 0:
                    output_preidiction = model(*(batch[2:6]))
                    fig, wav_reconstruction, wav_prediction, tag = synth_one_sample(
                        batch,
                        output_preidiction,
                        vocoder,
                        model_config,
                        preprocess_config,
                    )
                    log(
                        train_logger,
                        fig=fig,
                        tag="Training/step_{}_{}".format(step, tag),
                    )
                    sampling_rate = preprocess_config["preprocessing"][
                        "audio"]["sampling_rate"]
                    log(
                        train_logger,
                        audio=wav_reconstruction,
                        sampling_rate=sampling_rate,
                        tag="Training/step_{}_{}_reconstructed".format(
                            step, tag),
                    )
                    log(
                        train_logger,
                        audio=wav_prediction,
                        sampling_rate=sampling_rate,
                        tag="Training/step_{}_{}_synthesized".format(
                            step, tag),
                    )

                if step % val_step == 0:
                    model.eval()
                    message = evaluate(model, step, configs, val_logger,
                                       vocoder)
                    # with open(os.path.join(val_log_path, "log.txt"), "a") as f:
                    #     f.write(message + "\n")
                    outer_bar.write(message)

                    model.train()

                if step % save_step == 0:
                    torch.save(
                        {
                            "model": model.module.state_dict(),
                            "optimizer": optimizer._optimizer.state_dict(),
                        },
                        os.path.join(
                            train_config["path"]["ckpt_path"],
                            "{}.pth.tar".format(step),
                        ),
                    )

                if step == total_step:
                    quit()
                step += 1
                outer_bar.update(1)

            inner_bar.update(1)
        epoch += 1