Beispiel #1
0
def train(Model):
    # load external LM
    with tf.device("/cpu:0"):
        dataset_dev = ASR_align_DataSet(
            file=[args.dirs.dev.data],
            args=args,
            _shuffle=False,
            transform=True)
        tfdata_train = TFData(dataset=None,
                        dataAttr=['feature', 'label', 'align'],
                        dir_save=args.dirs.train.tfdata,
                        args=args).read(_shuffle=False)
        tfdata_dev = TFData(dataset=None,
                        dataAttr=['feature', 'label', 'align'],
                        dir_save=args.dirs.dev.tfdata,
                        args=args).read(_shuffle=False)

        x_0, y_0, aligns_0 = next(iter(tfdata_train.take(args.num_supervised).\
            padded_batch(args.num_supervised, ([None, args.dim_input], [None], [None]))))
        iter_train = iter(tfdata_train.cache().repeat().shuffle(3000).\
            padded_batch(args.batch_size, ([None, args.dim_input], [None], [None])).prefetch(buffer_size=3))
        tfdata_dev = tfdata_dev.padded_batch(args.batch_size, ([None, args.dim_input], [None], [None]))

    # get dataset ngram
    ngram_py, total_num = read_ngram(args.data.k, args.dirs.ngram, args.token2idx, type='list')
    kernel, py = ngram2kernel(ngram_py, args)

    # create model paremeters
    model = Model(args)
    compute_p_ngram = P_Ngram(kernel, args)
    model.summary()
    compute_p_ngram.summary()

    # build optimizer
    if args.opti.type == 'adam':
        optimizer = tf.keras.optimizers.Adam(args.opti.lr, beta_1=0.5, beta_2=0.9)
        # optimizer = tf.keras.optimizers.Adam(args.opti.lr*0.1, beta_1=0.5, beta_2=0.9)
    elif args.opti.type == 'sgd':
        optimizer = tf.keras.optimizers.SGD(lr=args.opti.lr, momentum=0.9, decay=0.98)

    writer = tf.summary.create_file_writer(str(args.dir_log))
    ckpt = tf.train.Checkpoint(model=model, optimizer = optimizer)
    ckpt_manager = tf.train.CheckpointManager(ckpt, args.dir_checkpoint, max_to_keep=5)
    step = 0

    # if a checkpoint exists, restore the latest checkpoint.
    if args.dirs.checkpoint:
        _ckpt_manager = tf.train.CheckpointManager(ckpt, args.dirs.checkpoint, max_to_keep=1)
        ckpt.restore(_ckpt_manager.latest_checkpoint)
        print ('checkpoint {} restored!!'.format(_ckpt_manager.latest_checkpoint))
        step = int(_ckpt_manager.latest_checkpoint.split('-')[-1])

    start_time = datetime.now()
    num_processed = 0
    progress = 0

    # step = 1600
    while step < 99999999:
        start = time()

        x, _, aligns = next(iter_train)
        loss_EODM, loss_fs = train_step(x, aligns, py, model, compute_p_ngram, optimizer, args.lambda_fs)
        loss_supervise = train_G_supervised(x_0, y_0, model, optimizer, args.dim_output)

        num_processed += len(x)
        progress = num_processed / args.data.train_size
        if step % 10 == 0:
            print('EODM loss: {:.2f}\tloss_fs: {:.3f} * {}\tloss_supervise: {:.3f} * {}\tbatch: {} time: {:.2f} s {:.3f}% step: {}'.format(
                   loss_EODM, loss_fs, args.lambda_fs, loss_supervise, args.lambda_supervision, x.shape, time()-start, progress*100.0, step))
            with writer.as_default():
                tf.summary.scalar("costs/loss_EODM", loss_EODM, step=step)
                tf.summary.scalar("costs/loss_fs", loss_fs, step=step)
                tf.summary.scalar("costs/loss_supervise", loss_supervise, step=step)

        if step % args.dev_step == 0:
            fer, cer = evaluation(tfdata_dev, args.data.dev_size, model)
            with writer.as_default():
                tf.summary.scalar("performance/fer", fer, step=step)
                tf.summary.scalar("performance/cer", cer, step=step)
        if step % args.decode_step == 0:
            decode(dataset_dev[0], model)
        if step % args.save_step == 0:
            save_path = ckpt_manager.save(step)
            print('save model {}'.format(save_path))

        step += 1

    print('training duration: {:.2f}h'.format((datetime.now()-start_time).total_seconds()/3600))
Beispiel #2
0
def train():
    with tf.device("/cpu:0"):
        dataset_train = ASR_align_DataSet(
            trans_file=args.dirs.train.trans,
            align_file=args.dirs.train.align,
            uttid2wav=args.dirs.train.wav_scp,
            feat_len_file=args.dirs.train.feat_len,
            args=args,
            _shuffle=True,
            transform=True)
        dataset_dev = ASR_align_DataSet(trans_file=args.dirs.dev.trans,
                                        align_file=args.dirs.dev.align,
                                        uttid2wav=args.dirs.dev.wav_scp,
                                        feat_len_file=args.dirs.dev.feat_len,
                                        args=args,
                                        _shuffle=False,
                                        transform=True)
        dataset_train_supervise = ASR_align_DataSet(
            trans_file=args.dirs.train_supervise.trans,
            align_file=args.dirs.train_supervise.align,
            uttid2wav=args.dirs.train_supervise.wav_scp,
            feat_len_file=args.dirs.train_supervise.feat_len,
            args=args,
            _shuffle=False,
            transform=True)
        feature_train_supervise = TFData(
            dataset=dataset_train_supervise,
            dir_save=args.dirs.train_supervise.tfdata,
            args=args).read()
        feature_train = TFData(dataset=dataset_train,
                               dir_save=args.dirs.train.tfdata,
                               args=args).read()
        feature_dev = TFData(dataset=dataset_dev,
                             dir_save=args.dirs.dev.tfdata,
                             args=args).read()
        supervise_uttids, supervise_x = next(iter(feature_train_supervise.take(args.num_supervised).\
            padded_batch(args.num_supervised, ((), [None, args.dim_input]))))
        supervise_aligns = dataset_train_supervise.get_attrs(
            'align', supervise_uttids.numpy())
        supervise_bounds = dataset_train_supervise.get_attrs(
            'bounds', supervise_uttids.numpy())

        iter_feature_train = iter(
            feature_train.cache().repeat().shuffle(500).padded_batch(
                args.batch_size,
                ((), [None, args.dim_input])).prefetch(buffer_size=5))
        feature_dev = feature_dev.padded_batch(args.batch_size,
                                               ((), [None, args.dim_input]))

        dataset_text = TextDataSet(list_files=[args.dirs.lm.data],
                                   args=args,
                                   _shuffle=True)
        tfdata_train = tf.data.Dataset.from_generator(dataset_text, (tf.int32),
                                                      (tf.TensorShape([None])))
        iter_text = iter(tfdata_train.cache().repeat().shuffle(1000).map(
            lambda x: x[:args.model.D.max_label_len]).padded_batch(
                args.batch_size,
                ([args.model.D.max_label_len])).prefetch(buffer_size=5))

    # create model paremeters
    G = PhoneClassifier(args)
    D = PhoneDiscriminator3(args)
    G.summary()
    D.summary()

    optimizer_G = tf.keras.optimizers.Adam(args.opti.G.lr,
                                           beta_1=0.5,
                                           beta_2=0.9)
    optimizer_D = tf.keras.optimizers.Adam(args.opti.D.lr,
                                           beta_1=0.5,
                                           beta_2=0.9)

    writer = tf.summary.create_file_writer(str(args.dir_log))
    ckpt = tf.train.Checkpoint(G=G, optimizer_G=optimizer_G)
    ckpt_manager = tf.train.CheckpointManager(ckpt,
                                              args.dir_checkpoint,
                                              max_to_keep=20)
    step = 0

    # if a checkpoint exists, restore the latest checkpoint.
    if args.dirs.checkpoint:
        _ckpt_manager = tf.train.CheckpointManager(ckpt,
                                                   args.dirs.checkpoint,
                                                   max_to_keep=1)
        ckpt.restore(_ckpt_manager.latest_checkpoint)
        print('checkpoint {} restored!!'.format(
            _ckpt_manager.latest_checkpoint))
        step = int(_ckpt_manager.latest_checkpoint.split('-')[-1])

    start_time = datetime.now()
    num_processed = 0
    progress = 0

    while step < 99999999:
        start = time()

        for _ in range(args.opti.D_G_rate):
            uttids, x = next(iter_feature_train)
            stamps = dataset_train.get_attrs('stamps', uttids.numpy())
            text = next(iter_text)
            P_Real = tf.one_hot(text, args.dim_output)
            cost_D, gp = train_D(x, stamps, P_Real, text > 0, G, D,
                                 optimizer_D, args.lambda_gp,
                                 args.model.D.max_label_len)
            # cost_D, gp = train_D(x, P_Real, text>0, G, D, optimizer_D,
            #                      args.lambda_gp, args.model.G.len_seq, args.model.D.max_label_len)

        uttids, x = next(iter_feature_train)
        stamps = dataset_train.get_attrs('stamps', uttids.numpy())
        cost_G, fs = train_G(x, stamps, G, D, optimizer_G, args.lambda_fs)
        # cost_G, fs = train_G(x, G, D, optimizer_G,
        #                      args.lambda_fs, args.model.G.len_seq, args.model.D.max_label_len)

        loss_supervise = train_G_supervised(supervise_x, supervise_aligns, G,
                                            optimizer_G, args.dim_output,
                                            args.lambda_supervision)
        # loss_supervise, bounds_loss = train_G_bounds_supervised(
        #     supervise_x, supervise_bounds, supervise_aligns, G, optimizer_G, args.dim_output)

        num_processed += len(x)
        progress = num_processed / args.data.train_size
        if step % 10 == 0:
            print(
                'cost_G: {:.3f}|{:.3f}\tcost_D: {:.3f}|{:.3f}\tloss_supervise: {:.3f}\tbatch: {}|{}\tused: {:.3f}\t {:.3f}% iter: {}'
                .format(cost_G, fs, cost_D, gp, loss_supervise, x.shape,
                        text.shape,
                        time() - start, progress * 100.0, step))
            with writer.as_default():
                tf.summary.scalar("costs/cost_G", cost_G, step=step)
                tf.summary.scalar("costs/cost_D", cost_D, step=step)
                tf.summary.scalar("costs/gp", gp, step=step)
                tf.summary.scalar("costs/fs", fs, step=step)
                tf.summary.scalar("costs/loss_supervise",
                                  loss_supervise,
                                  step=step)
        if step % args.dev_step == 0:
            # fer, cer = evaluate(feature_dev, dataset_dev, args.data.dev_size, G)
            fer, cer_0 = evaluate(feature_dev,
                                  dataset_dev,
                                  args.data.dev_size,
                                  G,
                                  beam_size=0,
                                  with_stamp=True)
            fer, cer = evaluate(feature_dev,
                                dataset_dev,
                                args.data.dev_size,
                                G,
                                beam_size=0,
                                with_stamp=False)
            with writer.as_default():
                tf.summary.scalar("performance/fer", fer, step=step)
                tf.summary.scalar("performance/cer_0", cer_0, step=step)
                tf.summary.scalar("performance/cer", cer, step=step)
        if step % args.decode_step == 0:
            monitor(dataset_dev[0], G)
        if step % args.save_step == 0:
            save_path = ckpt_manager.save(step)
            print('save model {}'.format(save_path))

        step += 1

    print('training duration: {:.2f}h'.format(
        (datetime.now() - start_time).total_seconds() / 3600))
Beispiel #3
0
def train():
    # load external LM
    with tf.device("/cpu:0"):
        dataset_train = ASR_align_DataSet(
            trans_file=args.dirs.train.trans,
            align_file=args.dirs.train.align,
            uttid2wav=args.dirs.train.wav_scp,
            feat_len_file=args.dirs.train.feat_len,
            args=args,
            _shuffle=True,
            transform=True)
        dataset_dev = ASR_align_DataSet(
            trans_file=args.dirs.dev.trans,
            align_file=args.dirs.dev.align,
            uttid2wav=args.dirs.dev.wav_scp,
            feat_len_file=args.dirs.dev.feat_len,
            args=args,
            _shuffle=False,
            transform=True)
        dataset_train_supervise = ASR_align_DataSet(
            trans_file=args.dirs.train_supervise.trans,
            align_file=args.dirs.train_supervise.align,
            uttid2wav=args.dirs.train.wav_scp,
            feat_len_file=args.dirs.train.feat_len,
            args=args,
            _shuffle=False,
            transform=True)
        feature_train = TFData(dataset=dataset_train,
                        dir_save=args.dirs.train.tfdata,
                        args=args).read()
        feature_dev = TFData(dataset=dataset_dev,
                        dir_save=args.dirs.dev.tfdata,
                        args=args).read()
        supervise_uttids, supervise_x = next(iter(feature_train.take(args.num_supervised).\
            padded_batch(args.num_supervised, ((), [None, args.dim_input]))))
        supervise_aligns = dataset_train_supervise.get_attrs('align', supervise_uttids.numpy())

        iter_feature_train = iter(feature_train.cache().repeat().shuffle(500).padded_batch(args.batch_size,
                ((), [None, args.dim_input])).prefetch(buffer_size=5))
        feature_dev = feature_dev.padded_batch(args.batch_size, ((), [None, args.dim_input]))

    # get dataset ngram
    ngram_py, total_num = read_ngram(args.data.k, args.dirs.ngram, args.token2idx, type='list')
    kernel, py = ngram2kernel(ngram_py, args)

    # create model paremeters
    G = PhoneClassifier(args)
    compute_p_ngram = P_Ngram(kernel, args)
    G.summary()
    compute_p_ngram.summary()

    # build optimizer
    if args.opti.type == 'adam':
        optimizer = tf.keras.optimizers.Adam(args.opti.lr, beta_1=0.5, beta_2=0.9)
    elif args.opti.type == 'sgd':
        optimizer = tf.keras.optimizers.SGD(lr=args.opti.lr, momentum=0.9, decay=0.98)

    writer = tf.summary.create_file_writer(str(args.dir_log))
    ckpt = tf.train.Checkpoint(G=G, optimizer=optimizer)
    ckpt_manager = tf.train.CheckpointManager(ckpt, args.dir_checkpoint, max_to_keep=5)
    step = 0

    # if a checkpoint exists, restore the latest checkpoint.
    if args.dirs.checkpoint:
        _ckpt_manager = tf.train.CheckpointManager(ckpt, args.dirs.checkpoint, max_to_keep=1)
        ckpt.restore(_ckpt_manager.latest_checkpoint)
        print('checkpoint {} restored!!'.format(_ckpt_manager.latest_checkpoint))
        step = int(_ckpt_manager.latest_checkpoint.split('-')[-1])

    start_time = datetime.now()
    num_processed = 0
    progress = 0

    while step < 99999999:
        start = time()

        uttids, x = next(iter_feature_train)
        stamps = dataset_train.get_attrs('stamps', uttids.numpy())

        loss_EODM, loss_fs = train_step(x, stamps, py, G, compute_p_ngram, optimizer, args.lambda_fs)
        # loss_EODM = loss_fs = 0
        loss_supervise = train_G_supervised(supervise_x, supervise_aligns, G, optimizer, args.dim_output, args.lambda_supervision)

        num_processed += len(x)
        progress = num_processed / args.data.train_size
        if step % 10 == 0:
            print('EODM loss: {:.2f}\tloss_fs: {:.3f} * {}\tloss_supervise: {:.3f} * {}\tbatch: {} time: {:.2f} s {:.3f}% step: {}'.format(
                   loss_EODM, loss_fs, args.lambda_fs, loss_supervise, args.lambda_supervision, x.shape, time()-start, progress*100.0, step))
            with writer.as_default():
                tf.summary.scalar("costs/loss_EODM", loss_EODM, step=step)
                tf.summary.scalar("costs/loss_fs", loss_fs, step=step)
                tf.summary.scalar("costs/loss_supervise", loss_supervise, step=step)

        if step % args.dev_step == 0:
            fer, cer = evaluate(feature_dev, dataset_dev, args.data.dev_size, G)
            with writer.as_default():
                tf.summary.scalar("performance/fer", fer, step=step)
                tf.summary.scalar("performance/cer", cer, step=step)
        if step % args.decode_step == 0:
            monitor(dataset_dev[0], G)
        if step % args.save_step == 0:
            save_path = ckpt_manager.save(step)
            print('save model {}'.format(save_path))

        step += 1

    print('training duration: {:.2f}h'.format((datetime.now()-start_time).total_seconds()/3600))
Beispiel #4
0
def train():
    dataset_dev = ASR_align_DataSet(
        file=[args.dirs.dev.data],
        args=args,
        _shuffle=False,
        transform=True)
    with tf.device("/cpu:0"):
        # wav data
        tfdata_train = TFData(dataset=None,
                        dataAttr=['feature', 'label', 'align'],
                        dir_save=args.dirs.train.tfdata,
                        args=args).read(_shuffle=False)
        tfdata_dev = TFData(dataset=None,
                        dataAttr=['feature', 'label', 'align'],
                        dir_save=args.dirs.dev.tfdata,
                        args=args).read(_shuffle=False)

        x_0, y_0, _ = next(iter(tfdata_train.take(args.num_supervised).map(lambda x, y, z: (x, y, z[:args.max_seq_len])).\
            padded_batch(args.num_supervised, ([None, args.dim_input], [None], [None]))))
        iter_train = iter(tfdata_train.cache().repeat().shuffle(3000).map(lambda x, y, z: (x, y, z[:args.max_seq_len])).\
            padded_batch(args.batch_size, ([None, args.dim_input], [None], [args.max_seq_len])).prefetch(buffer_size=3))
        tfdata_dev = tfdata_dev.padded_batch(args.batch_size, ([None, args.dim_input], [None], [None]))

        # text data
        dataset_text = TextDataSet(
            list_files=[args.dirs.lm.data],
            args=args,
            _shuffle=True)

        tfdata_train_text = tf.data.Dataset.from_generator(
            dataset_text, (tf.int32), (tf.TensorShape([None])))
        iter_text = iter(tfdata_train_text.cache().repeat().shuffle(100).map(lambda x: x[:args.max_seq_len]).padded_batch(args.batch_size,
            ([args.max_seq_len])).prefetch(buffer_size=5))

    # create model paremeters
    G = PhoneClassifier(args)
    D = PhoneDiscriminator2(args)
    G.summary()
    D.summary()
    optimizer_G = tf.keras.optimizers.Adam(args.opti.G.lr, beta_1=0.5, beta_2=0.9)
    optimizer_D = tf.keras.optimizers.Adam(args.opti.D.lr, beta_1=0.5, beta_2=0.9)
    optimizer = tf.keras.optimizers.Adam(args.opti.G.lr, beta_1=0.5, beta_2=0.9)

    writer = tf.summary.create_file_writer(str(args.dir_log))
    ckpt = tf.train.Checkpoint(G=G, optimizer_G = optimizer_G)
    ckpt_manager = tf.train.CheckpointManager(ckpt, args.dir_checkpoint, max_to_keep=5)
    step = 0

    # if a checkpoint exists, restore the latest checkpoint.
    if args.dirs.checkpoint:
        _ckpt_manager = tf.train.CheckpointManager(ckpt, args.dirs.checkpoint, max_to_keep=1)
        ckpt.restore(_ckpt_manager.latest_checkpoint)
        print('checkpoint {} restored!!'.format(_ckpt_manager.latest_checkpoint))
        step = int(_ckpt_manager.latest_checkpoint.split('-')[-1])

    start_time = datetime.now()
    num_processed = 0
    progress = 0

    while step < 99999999:
        start = time()

        for _ in range(args.opti.D_G_rate):
            x, _, aligns = next(iter_train)
            text = next(iter_text)
            P_Real = tf.one_hot(text, args.dim_output)
            cost_D, gp = train_D(x, aligns, P_Real, text>0, G, D, optimizer_D, args.lambda_gp)

        x, _, aligns = next(iter_train)
        cost_G, fs = train_G(x, aligns, G, D, optimizer_G, args.lambda_fs)
        loss_supervise = train_G_supervised(x_0, y_0, G, optimizer_G, args.dim_output)

        num_processed += len(x)
        if step % 10 == 0:
            print('cost_G: {:.3f}|{:.3f}\tcost_D: {:.3f}|{:.3f}\tloss_supervise: {:.3f}\tbatch: {}|{}\tused: {:.3f}\t {:.3f}% iter: {}'.format(
                   cost_G, fs, cost_D, gp, loss_supervise, x.shape, text.shape, time()-start, progress*100.0, step))
            with writer.as_default():
                tf.summary.scalar("costs/cost_G", cost_G, step=step)
                tf.summary.scalar("costs/cost_D", cost_D, step=step)
                tf.summary.scalar("costs/gp", gp, step=step)
                tf.summary.scalar("costs/fs", fs, step=step)
                tf.summary.scalar("costs/loss_supervise", loss_supervise, step=step)
        if step % args.dev_step == 0:
            fer, cer = evaluation(tfdata_dev, args.data.dev_size, G)
            with writer.as_default():
                tf.summary.scalar("performance/fer", fer, step=step)
                tf.summary.scalar("performance/cer", cer, step=step)
        if step % args.decode_step == 0:
            decode(dataset_dev[0], G)
        if step % args.save_step == 0:
            save_path = ckpt_manager.save(step)
            print('save model {}'.format(save_path))

        step += 1

    print('training duration: {:.2f}h'.format((datetime.now()-start_time).total_seconds()/3600))
def Train():
    dataset_train = ASR_align_DataSet(trans_file=args.dirs.train.trans,
                                      align_file=args.dirs.train.align,
                                      uttid2wav=args.dirs.train.wav_scp,
                                      feat_len_file=args.dirs.train.feat_len,
                                      args=args,
                                      _shuffle=True,
                                      transform=True)
    dataset_dev = ASR_align_DataSet(trans_file=args.dirs.dev.trans,
                                    align_file=args.dirs.dev.align,
                                    uttid2wav=args.dirs.dev.wav_scp,
                                    feat_len_file=args.dirs.dev.feat_len,
                                    args=args,
                                    _shuffle=False,
                                    transform=True)
    with tf.device("/cpu:0"):
        # wav data
        feature_train = TFData(dataset=dataset_train,
                               dir_save=args.dirs.train.tfdata,
                               args=args).read()
        feature_dev = TFData(dataset=dataset_dev,
                             dir_save=args.dirs.dev.tfdata,
                             args=args).read()
        if args.num_supervised:
            dataset_train_supervise = ASR_align_DataSet(
                trans_file=args.dirs.train_supervise.trans,
                align_file=args.dirs.train_supervise.align,
                uttid2wav=args.dirs.train_supervise.wav_scp,
                feat_len_file=args.dirs.train_supervise.feat_len,
                args=args,
                _shuffle=False,
                transform=True)
            feature_train_supervise = TFData(
                dataset=dataset_train_supervise,
                dir_save=args.dirs.train_supervise.tfdata,
                args=args).read()
            supervise_uttids, supervise_x = next(iter(feature_train_supervise.take(args.num_supervised).\
                padded_batch(args.num_supervised, ((), [None, args.dim_input]))))
            supervise_aligns = dataset_train_supervise.get_attrs(
                'align', supervise_uttids.numpy())
            # supervise_bounds = dataset_train_supervise.get_attrs('bounds', supervise_uttids.numpy())

        iter_feature_train = iter(
            feature_train.repeat().shuffle(500).padded_batch(
                args.batch_size,
                ((), [None, args.dim_input])).prefetch(buffer_size=5))
        feature_dev = feature_dev.padded_batch(args.batch_size,
                                               ((), [None, args.dim_input]))

    # create model paremeters
    model = PhoneClassifier(args)
    model.summary()
    optimizer_G = tf.keras.optimizers.Adam(args.opti.lr,
                                           beta_1=0.5,
                                           beta_2=0.9)

    writer = tf.summary.create_file_writer(str(args.dir_log))
    ckpt = tf.train.Checkpoint(model=model, optimizer_G=optimizer_G)
    ckpt_manager = tf.train.CheckpointManager(ckpt,
                                              args.dir_checkpoint,
                                              max_to_keep=20)
    step = 0

    # if a checkpoint exists, restore the latest checkpoint.
    if args.dirs.checkpoint:
        _ckpt_manager = tf.train.CheckpointManager(ckpt,
                                                   args.dirs.checkpoint,
                                                   max_to_keep=1)
        ckpt.restore(_ckpt_manager.latest_checkpoint)
        print('checkpoint {} restored!!'.format(
            _ckpt_manager.latest_checkpoint))
        step = int(_ckpt_manager.latest_checkpoint.split('-')[-1])

    start_time = datetime.now()

    while step < 99999999:
        start = time()

        if args.num_supervised:
            x = supervise_x
            loss_supervise = train_G_supervised(supervise_x, supervise_aligns,
                                                model, optimizer_G,
                                                args.dim_output)
            # loss_supervise, bounds_loss = train_G_bounds_supervised(
            #     x, supervise_bounds, supervise_aligns, model, optimizer_G, args.dim_output)
        else:
            uttids, x = next(iter_feature_train)
            aligns = dataset_train.get_attrs('align', uttids.numpy())
            # trans = dataset_train.get_attrs('trans', uttids.numpy())
            loss_supervise = train_G_supervised(x, aligns, model, optimizer_G,
                                                args.dim_output)
            # loss_supervise = train_G_TBTT_supervised(x, aligns, model, optimizer_G, args.dim_output)
            # bounds = dataset_train.get_attrs('bounds', uttids.numpy())
            # loss_supervise, bounds_loss = train_G_bounds_supervised(x, bounds, aligns, model, optimizer_G, args.dim_output)
            # loss_supervise = train_G_CTC_supervised(x, trans, model, optimizer_G)

        if step % 10 == 0:
            print('loss_supervise: {:.3f}\tbatch: {}\tused: {:.3f}\tstep: {}'.
                  format(loss_supervise, x.shape,
                         time() - start, step))
            # print('loss_supervise: {:.3f}\tloss_bounds: {:.3f}\tbatch: {}\tused: {:.3f}\tstep: {}'.format(
            #        loss_supervise, bounds_loss, x.shape, time()-start, step))
            with writer.as_default():
                tf.summary.scalar("costs/loss_supervise",
                                  loss_supervise,
                                  step=step)
        if step % args.dev_step == 0:
            fer, cer_0 = evaluate(feature_dev,
                                  dataset_dev,
                                  args.data.dev_size,
                                  model,
                                  beam_size=0,
                                  with_stamp=True)
            fer, cer = evaluate(feature_dev,
                                dataset_dev,
                                args.data.dev_size,
                                model,
                                beam_size=0,
                                with_stamp=False)
            with writer.as_default():
                tf.summary.scalar("performance/fer", fer, step=step)
                tf.summary.scalar("performance/cer_0", cer_0, step=step)
                tf.summary.scalar("performance/cer", cer, step=step)
        if step % args.decode_step == 0:
            monitor(dataset_dev[0], model)
        if step % args.save_step == 0:
            save_path = ckpt_manager.save(step)
            print('save model {}'.format(save_path))

        step += 1

    print('training duration: {:.2f}h'.format(
        (datetime.now() - start_time).total_seconds() / 3600))