Beispiel #1
0
    def _optimize(self, obs, acts, advs, est_rs):

        self.optim.zero_grad()

        obs = Tensor(obs)
        acts = Tensor(acts)
        advs = Tensor(advs).unsqueeze(1)
        est_rs = Tensor(est_rs).unsqueeze(1)

        if self.continuous:
            mean, std, values = self.model(obs)

            dis = Normal(mean, std)

            log_prob = dis.log_prob(acts).sum(-1, keepdim=True)

            ent = dis.entropy().sum(-1, keepdim=True)

        else:

            probs, values = self.model(obs)

            dis = F.softmax(probs, dim=1)

            acts = acts.long()

            dis = Categorical(probs)

            log_prob = dis.log_prob(acts).unsqueeze(1)

            ent = dis.entropy()

        # Normalize the advantage
        advs = (advs - advs.mean()) / (advs.std() + 1e-8)

        policy_loss = -log_prob * advs
        policy_loss = policy_loss.mean() - self.entropy_para * ent.mean()

        criterion = nn.MSELoss()
        critic_loss = criterion(values, est_rs)

        self.writer.add_scalar("Training/Critic_Loss", critic_loss.item(),
                               self.step_count)
        loss = policy_loss + self.value_loss_coeff * critic_loss

        loss.backward()

        self.optim.step()

        self.step_count += 1
    def _optimize(self, obs, acts, rews):

        self.optim.zero_grad()

        obs = Tensor(obs)
        acts = Tensor(acts)
        rews = Tensor(rews).unsqueeze(1)

        if self.continuous:
            mean, std = self.model(obs)

            dis = Normal(mean, std)

            log_prob = dis.log_prob(acts).sum(-1, keepdim=True)

            ent = dis.entropy().sum(-1, keepdim=True)

        else:

            probs = self.model(obs)

            dis = F.softmax(probs, dim=1)
            dis = Categorical(dis)

            acts = acts.long()

            log_prob = dis.log_prob(acts)
            ent = dis.entropy()

        rews = (rews - rews.mean()) / (rews.std() + 1e-8)

        actor_loss = -log_prob * rews

        actor_loss = actor_loss.mean() - self.entropy_para * ent.mean()

        actor_loss.backward()

        self.optim.step()
class TRPOAgent(A2CAgent):
    # def __init__(self,args,env_wrapper, continuous):
    def __init__(self, args, model, optim, env, data_generator, memory,
                 continuous):
        """
        Instantiate a TRPO agent
        """
        super(TRPOAgent, self).__init__(args, model, optim, env,
                                        data_generator, memory, continuous)

        self.max_kl = args.max_kl
        self.cg_damping = args.cg_damping
        self.cg_iters = args.cg_iters
        self.residual_tol = args.residual_tol

        self.algo = "trpo"

    def mean_kl_divergence(self, model):
        """
        Returns an estimate of the average KL divergence between a given model and self.policy_model
        """

        # actprob = model(self.observations).detach() + 1e-8
        # old_actprob = self.model(self.observations)

        def normal_distribution_kl_divergence(mean_old, std_old, mean_new,
                                              std_new):
            return torch.mean(torch.sum((torch.log(std_new) - torch.log(std_old) \
                                        + (std_old * std_old + (mean_old - mean_new) * (mean_old - mean_new)) \
                                        / (2.0 * std_new * std_new) \
                                        - 0.5), 1))

        if self.continuous:
            mean_new, std_new, _ = model(self.obs)
            mean_old, std_old, _ = self.model(self.obs)

            mean_new = mean_new.detach()
            std_new = std_new.detach()

            kl = normal_distribution_kl_divergence(mean_old, std_old, mean_new,
                                                   std_new)

        else:

            probs_new, _ = model(self.obs)
            probs_old, _ = self.model(self.obs)

            probs_new = probs_new.detach()

            probs_new = F.softmax(probs_new, dim=1)
            probs_old = F.softmax(probs_old, dim=1)

            kl = torch.sum(
                probs_old * torch.log(probs_old / (probs_new + 1e-8)),
                1).mean()

        return kl

    def hessian_vector_product(self, vector):
        """
        Returns the product of the Hessian of the KL divergence and the given vector
        """
        self.model.zero_grad()
        mean_kl_div = self.mean_kl_divergence(self.model)

        # mean_kl_div.backward( retain_graph=True, create_graph=True )
        kl_grad_vector = torch.autograd.grad(mean_kl_div,
                                             self.model.policy_parameters(),
                                             create_graph=True)

        kl_grad_vector = torch.cat([grad.view(-1) for grad in kl_grad_vector])
        grad_vector_product = torch.sum(kl_grad_vector * vector)

        second_order_grad = torch.autograd.grad(grad_vector_product,
                                                self.model.policy_parameters())

        fisher_vector_product = torch.cat(
            [grad.contiguous().view(-1) for grad in second_order_grad])

        return fisher_vector_product + self.cg_damping * vector.detach()

    def conjugate_gradient(self, b):
        """
        Returns F^(-1) b where F is the Hessian of the KL divergence
        """
        p = b.clone()
        r = b.clone()
        x = Tensor_zeros_like(p)
        rdotr = r.double().dot(r.double())

        for _ in range(self.cg_iters):
            z = self.hessian_vector_product(p).squeeze(0)
            v = (rdotr / p.double().dot(z.double())).float()

            x += v * p
            r -= v * z

            newrdotr = r.double().dot(r.double())
            mu = newrdotr / rdotr

            p = r + mu.float() * p
            rdotr = newrdotr
            if rdotr < self.residual_tol:
                break
        return x

    def surrogate_loss(self, theta):
        """
        Returns the surrogate loss w.r.t. the given parameter vector theta
        """
        theta = theta.detach()
        new_model = copy.deepcopy(self.model)
        # for param in new_model.parameters():
        #     print(param)
        vector_to_parameters(theta, new_model.policy_parameters())

        if self.continuous:
            mean_new, std_new, _ = new_model(self.obs)
            mean_old, std_old, _ = self.model(self.obs)

            dis_new = Normal(mean_new, std_new)
            dis_old = Normal(mean_old, std_old)

            log_prob_new = dis_new.log_prob(self.acts).sum(-1, keepdim=True)
            log_prob_old = dis_old.log_prob(self.acts).sum(-1, keepdim=True)

            ratio = torch.exp(log_prob_new - log_prob_old).detach()
        else:

            probs_new, _ = new_model(self.obs)
            probs_old, _ = self.model(self.obs)

            dis_new = F.softmax(probs_new, dim=1)
            dis_old = F.softmax(probs_old, dim=1)

            probs_new = dis_new.gather(1, self.acts).detach()
            probs_old = dis_old.gather(1, self.acts).detach() + 1e-8

            ratio = probs_new / probs_old

        return -torch.mean(ratio * self.advs)

    def linesearch(self, x, fullstep, expected_improve_rate):
        """
        Returns the parameter vector given by a linesearch
        """
        accept_ratio = .1
        max_backtracks = 10
        fval = self.surrogate_loss(x)
        for (_n_backtracks,
             stepfrac) in enumerate(.5**np.arange(max_backtracks)):
            print("Search number {}...".format(_n_backtracks + 1))
            stepfrac = float(stepfrac)
            xnew = x + stepfrac * fullstep
            newfval = self.surrogate_loss(xnew)
            actual_improve = fval - newfval

            expected_improve = expected_improve_rate * stepfrac

            ratio = actual_improve / expected_improve

            if ratio > accept_ratio and actual_improve > 0:
                return xnew
        return x.detach()

    def _optimize(self, obs, acts, advs, est_rs):

        self.obs, self.acts, self.advs, self.est_rs = obs, acts, advs, est_rs

        self.obs = Tensor(self.obs)
        self.acts = Tensor(self.acts)
        self.advs = Tensor(self.advs).unsqueeze(1)
        self.est_rs = Tensor(self.est_rs).unsqueeze(1)

        # Calculate Advantage & Normalize it
        self.advs = (self.advs - self.advs.mean()) / (self.advs.std() + 1e-8)

        # Surrogate loss with Entropy

        if self.continuous:
            mean, std, values = self.model(self.obs)

            dis = Normal(mean, std)

            log_prob = dis.log_prob(self.acts).sum(-1, keepdim=True)

            ent = dis.entropy().sum(-1, keepdim=True)

            probs_new = torch.exp(log_prob)
            probs_old = probs_new.detach() + 1e-8

        else:

            probs, values = self.model(self.obs)

            dis = F.softmax(probs, dim=1)

            self.acts = self.acts.long()

            probs_new = dis.gather(1, self.acts)
            probs_old = probs_new + 1e-8

            ent = -(dis.log() * dis).sum(-1)

        ratio = probs_new / probs_old

        surrogate_loss = -torch.mean(
            ratio * self.advs) - self.entropy_para * ent.mean()

        # criterion = torch.nn.MSELoss()
        # empty_value_loss = criterion( values, values.detach() )

        # Calculate the gradient of the surrogate loss
        self.model.zero_grad()
        surrogate_loss.backward()
        policy_gradient = parameters_to_vector([
            p.grad for p in self.model.policy_parameters()
        ]).squeeze(0).detach()

        # ensure gradient is not zero
        if policy_gradient.nonzero().size()[0]:
            # Use Conjugate gradient to calculate step direction
            step_direction = self.conjugate_gradient(-policy_gradient)
            # line search for step
            shs = .5 * step_direction.dot(
                self.hessian_vector_product(step_direction))

            lm = torch.sqrt(shs / self.max_kl)
            fullstep = step_direction / lm

            gdotstepdir = -policy_gradient.dot(step_direction)
            theta = self.linesearch(
                parameters_to_vector(self.model.policy_parameters()).detach(),
                fullstep, gdotstepdir / lm)
            # Update parameters of policy model
            old_model = copy.deepcopy(self.model)
            old_model.load_state_dict(self.model.state_dict())

            if any(np.isnan(theta.cpu().detach().numpy())):
                print("NaN detected. Skipping update...")
            else:
                # for param in self.model.policy_parameters():
                #     print(param)
                vector_to_parameters(theta, self.model.policy_parameters())

            kl_old_new = self.mean_kl_divergence(old_model)
            print('KL:{:10} , Entropy:{:10}'.format(kl_old_new.item(),
                                                    ent.mean().item()))

        else:
            print("Policy gradient is 0. Skipping update...")
            print(policy_gradient.shape)

        self.model.zero_grad()

        if self.continuous:
            _, _, values = self.model(self.obs)
        else:
            _, values = self.model(self.obs)

        criterion = torch.nn.MSELoss()
        critic_loss = self.value_loss_coeff * criterion(values, self.est_rs)
        critic_loss.backward()
        self.optim.step()
        print("MSELoss for Value Net:{}".format(critic_loss.item()))
Beispiel #4
0
    def _optimize(self, obs, acts, advs, est_rs):

        self.optim.zero_grad()
        
        obs  = Tensor( obs )
        acts = Tensor( acts )
        advs = Tensor( advs ).unsqueeze(1)
        est_rs = Tensor( est_rs ).unsqueeze(1)

        if self.continuous:
            mean, std, values = self.model( obs )
            with torch.no_grad():
                mean_old, std_old, _ = self.model_old( obs )

            dis = Normal(mean, std)
            dis_old = Normal(mean_old, std_old)
            
            log_prob     = dis.log_prob( acts ).sum( -1, keepdim=True )
            log_prob_old = dis_old.log_prob( acts ).sum( -1, keepdim=True )

            ent = dis.entropy().sum( -1, keepdim=True )

            ratio = torch.exp(log_prob - log_prob_old)            

        else:

            probs, values = self.model(obs)
            with torch.no_grad():
                probs_old, _ = self.model_old(obs)

            dis = F.softmax( probs, dim = 1 )
            dis_old = F.softmax(probs_old, dim = 1 )

            acts = acts.long()

            probs = dis.gather( 1, acts )
            probs_old = dis_old.gather( 1, acts )

            # dis = Categorical( probs )
            # dis_old = Categorical( probs_old )
            ratio = probs / ( probs_old + 1e-8 )            

            # log_prob     = dis.log_prob( acts ).unsqueeze(1)
            # log_prob_old = dis_old.log_prob( acts ).unsqueeze(1)

            ent = -( dis.log() * dis ).sum(-1)


        # Normalize the advantage
        advs = (advs - advs.mean()) / (advs.std() + 1e-8)
        surrogate_loss_pre_clip = ratio * advs
        surrogate_loss_clip = torch.clamp(ratio, 
                        1.0 - self.clip_para,
                        1.0 + self.clip_para) * advs

        # print("ratio min:{} max:{}".format(ratio.detach().min().item(), ratio.detach().max().item()))

        surrogate_loss = -torch.mean(torch.min(surrogate_loss_clip, surrogate_loss_pre_clip))

        policy_loss = surrogate_loss - self.entropy_para * ent.mean()

        criterion = nn.MSELoss()
        critic_loss = criterion( values, est_rs )
        # print("Critic Loss:{}".format(critic_loss.item()))

        self.writer.add_scalar( "Training/Critic_Loss", critic_loss.item(), self.step_count )
        loss = policy_loss + self.value_loss_coeff * critic_loss

        loss.backward()

        self.optim.step()

        self.step_count += 1