Beispiel #1
0
 def attitude_limit(self):
     """
     limit attitude
     :return:
     """
     att_overlimit = False
     euler = quat2euler(self.state[6:10])
     r = euler[0]
     p = euler[1]
     y = euler[2]
     if np.abs(r) >= deg2rad(85):
         attitude_limited = euler2quat(
             np.array([np.sign(r) * deg2rad(85), p, y]))
         att_overlimit = True
     if np.abs(p) >= deg2rad(85):
         attitude_limited = euler2quat(
             np.array([r, np.sign(p) * deg2rad(85), y]))
         att_overlimit = True
     if np.abs(y) >= deg2rad(175):
         attitude_limited = euler2quat(
             np.array([r, p, np.sign(y) * deg2rad(175)]))
         att_overlimit = True
     if np.abs(r) <= deg2rad(85) and np.abs(p) <= deg2rad(85) and np.abs(
             y) <= deg2rad(175):
         attitude_limited = self.state[6:10]
         att_overlimit = False
     return att_overlimit, attitude_limited
Beispiel #2
0
    def hover_controller(self, state_des, state_now):
        acc_des = np.zeros(3)
        e_pos = state_des[0:3] - state_now[0:3]
        e_vel = state_des[3:6] - state_now[3:6]
        acc_des[0] = self.kp_x * e_pos[0] + self.kd_x * e_vel[0]
        acc_des[1] = self.kp_y * e_pos[1] + self.kd_y * e_vel[1]
        acc_des[2] = self.kp_z * e_pos[2] + self.kd_z * e_vel[2]

        F = self.mass * self.g + self.mass * acc_des[2]

        # att_des =rot2euler(quat2rot(state_des[6:10]))
        att_des = quat2euler(state_des[6:10])
        psi_des = att_des[2]

        phi_des = (acc_des[0] * np.sin(psi_des) -
                   acc_des[1] * np.cos(psi_des)) / self.g
        theta_des = (acc_des[0] * np.cos(psi_des) +
                     acc_des[1] * np.sin(psi_des)) / self.g

        roll_rate_des = 0
        pitch_rate_des = 0

        att_des[0] = phi_des
        att_des[1] = theta_des
        att_des[2] = psi_des

        state_des[6:10] = euler2quat(att_des)
        state_des[10] = roll_rate_des
        state_des[11] = pitch_rate_des

        return F, state_des
Beispiel #3
0
    def __init__(self):
        self.drone = Drone()

        self.state = np.zeros(13)

        self.steps_beyond_done = None

        self.pos_threshold = 1
        self.vel_threshold = 0.1

        ini_pos = np.array([0.0, 0.0, 5.0]) + np.random.uniform(-1, 1, (3, ))
        ini_att = euler2quat(
            np.array([deg2rad(0), deg2rad(0), 0]) +
            np.random.uniform(-0.2, 0.2, (3, )))
        ini_angular_rate = np.array([0, deg2rad(0), 0])
        self.ini_state = np.zeros(13)
        self.ini_state[0:3] = ini_pos
        self.ini_state[6:10] = ini_att
        self.ini_state[10:] = ini_angular_rate

        pos_des = np.array([0.0, 0.0, 5.0])  # [x, y, z]
        att_des = euler2quat(np.array([deg2rad(0), deg2rad(0), deg2rad(0)]))
        self.state_des = np.zeros(13)
        self.state_des[0:3] = pos_des
        self.state_des[6:10] = att_des

        low = self.drone.state_lim_low
        high = self.drone.state_lim_high

        self.action_space = spaces.Box(low=np.array([0.0, 0.0, 0.0, 0.0]),
                                       high=np.array([1.0, 1.0, 1.0, 1.0]))
        self.observation_space = spaces.Box(low=low, high=high)
        self.action_max = np.array([1.0, 1.0, 1.0, 1.0
                                    ]) * self.drone.mass * self.drone.gravity

        self.seed()
Beispiel #4
0
    def vel_controller(self, state_des, state_now, state_last):
        acc_des = np.zeros(3)
        # e_pos = state_des[0:3] - state_now[0:3]
        e_vel = state_des[3:6] - state_now[3:6]
        e_dv = state_now[3:6] - state_last[3:6]

        acc_des[0] = self.kp_vx * e_vel[0] + self.kd_vx * e_dv[0]
        acc_des[1] = self.kp_vy * e_vel[1] + self.kd_vy * e_dv[1]
        acc_des[2] = self.kp_vz * e_vel[2] + self.kd_vz * e_dv[2]

        F = self.mass * self.g + self.mass * acc_des[2]

        # att_des =rot2euler(quat2rot(state_des[6:10]))
        att_des = quat2euler(state_des[6:10])
        psi_des = att_des[2]

        phi_des = (acc_des[0] * np.sin(psi_des) -
                   acc_des[1] * np.cos(psi_des)) / self.g
        theta_des = (acc_des[0] * np.cos(psi_des) +
                     acc_des[1] * np.sin(psi_des)) / self.g

        roll_rate_des = 0
        pitch_rate_des = 0

        att_des[0] = phi_des
        att_des[1] = theta_des
        att_des[2] = psi_des

        state_des[6:10] = euler2quat(att_des)
        state_des[10] = roll_rate_des
        state_des[11] = pitch_rate_des

        M = self.attitude_controller(state_des, state_now)
        output = np.zeros(4)
        output[0] = F
        output[1:] = M

        return output
    def __init__(self):

        self.chaser = Drone()
        self.target = Drone()
        self.target_controller = controller(self.target.get_arm_length(), self.target.get_mass())

        self.state_chaser = np.zeros(13)
        self.state_target = np.zeros(13)
        self.rel_state = np.zeros(12)
        self.t = 0

        self.done = False
        self.reward = 0.0
        self.shaping = 0.0
        self.last_shaping = 0.0

        # self.steps_beyond_done = None

        # Chaser Initial State
        chaser_ini_pos = np.array([8, -50, 5]) + np.random.uniform(-0.3, 0.3, (3,))
        chaser_ini_vel = np.array([0, 0, 0])# + np.random.uniform(-0.1, 0.1, (3,))
        chaser_ini_att = euler2quat(np.array([0.0, 0.0, 0.0]))# + np.random.uniform(-0.2, 0.2, (3,)))
        chaser_ini_angular_rate = np.array([0.0, 0.0, 0.0]) #+ np.random.uniform(-0.1, 0.1, (3,))
        self.chaser_dock_port = np.array([0.1, 0.0, 0.0])
        self.chaser_ini_state = np.zeros(13)
        self.chaser_ini_state[0:3] = chaser_ini_pos
        self.chaser_ini_state[3:6] = chaser_ini_vel
        self.chaser_ini_state[6:10] = chaser_ini_att
        self.chaser_ini_state[10:] = chaser_ini_angular_rate
        self.state_chaser = self.chaser.reset(self.chaser_ini_state, self.chaser_dock_port)

        # Target Initial State
        target_ini_pos = np.array([10, -50, 5])
        target_ini_vel = np.array([0.0, 0.0, 0.0])
        target_ini_att = euler2quat(np.array([0.0, 0.0, 0.0]))
        target_ini_angular_rate = np.array([0.0, 0.0, 0.0])
        self.target_dock_port = np.array([-0.1, 0, 0])
        self.target_ini_state = np.zeros(13)
        self.target_ini_state[0:3] = target_ini_pos
        self.target_ini_state[3:6] = target_ini_vel
        self.target_ini_state[6:10] = target_ini_att
        self.target_ini_state[10:] = target_ini_angular_rate
        self.state_target = self.target.reset(self.target_ini_state, self.target_dock_port)

        # Target Final State
        target_pos_des = np.array([10, -50, 5])  # [x, y, z]
        target_att_des = euler2quat(np.array([0.0, 0.0, 0.0]))
        self.target_state_des = np.zeros(13)
        self.target_state_des[0:3] = target_pos_des
        self.target_state_des[6:10] = target_att_des

        # Final Relative Error
        self.rel_pos_threshold = 1
        self.rel_vel_threshold = 0.1
        self.rel_att_threshold = np.array([deg2rad(0), deg2rad(0), deg2rad(0)])
        self.rel_att_rate_threshold = np.array([deg2rad(0), deg2rad(0), deg2rad(0)])

        # chaser_dp = self.chaser.get_dock_port_state()  # drone A
        # target_dp = self.target.get_dock_port_state()  # drone B
        self.rel_state = state2rel(self.state_chaser, self.state_target, self.chaser.get_dock_port_state(),
                                   self.target.get_dock_port_state())

        # State Limitation
        chaser_low = self.chaser.state_lim_low
        chaser_high = self.chaser.state_lim_high

        target_low = self.target.state_lim_low
        target_high = self.target.state_lim_high

        # obs rel info: 12x1 [rel_pos, rel_vel, rel_rpy, rel_rpy_rate]
        self.obs_low = np.array(
            [-np.inf, -np.inf, -np.inf, -100, -100, -100, -np.pi, -np.pi / 2, -np.pi, -10 * np.pi, -10 * np.pi,
             -10 * np.pi])
        self.obs_high = np.array(
            [np.inf, np.inf, np.inf, 100, 100, 100, np.pi, np.pi / 2, np.pi, 10 * np.pi, 10 * np.pi, 10 * np.pi])

        # rel_low = np.array([60, 0, 100, 10, 10, 10, 1, 1, 1, 1, 10 * 2 * np.pi, 10 * 2 * np.pi, 10 * 2 * np.pi])

        self.action_space = spaces.Box(low=np.array([-1.0, -1.0, -1.0, -1.0]), high=np.array([1.0, 1.0, 1.0, 1.0]),
                                       dtype=np.float32)
        self.observation_space = spaces.Box(low=self.obs_low, high=self.obs_high, dtype=np.float32)

        # self.action_max = np.array([1.0, 1.0, 1.0, 1.0]) * self.chaser.mass * self.chaser.gravity
        self.action_mean = np.array([1.0, 1.0, 1.0, 1.0]) * self.chaser.mass * self.chaser.gravity / 2.0
        self.action_std = np.array([1.0, 1.0, 1.0, 1.0]) * self.chaser.mass * self.chaser.gravity / 2.0

        self.seed()
Beispiel #6
0
from dynamics.quadrotor import Drone
from controller.PIDController import controller
from utils.transform import quat2rot, rot2euler, euler2rot, rot2quat, rad2deg, deg2rad, quat2euler, euler2quat
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# print(rot2quat(euler2rot(np.array([0, 0, 0]))))
ini_pos = np.array([8, -50, 5])
ini_vel = np.array([0, 0, 0])
ini_att = euler2quat(np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)]))
ini_angular_rate = np.array([0, 0, 0])
ini_state = np.zeros(13)
ini_state[0:3] = ini_pos
ini_state[3:6] = ini_vel
ini_state[6:10] = ini_att
ini_state[10:] = ini_angular_rate

pos_des = np.array([10, -50, 5])  # [x, y, z]
vel_des = np.array([0, 0, 0])
att_des = euler2quat(np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)]))
state_des = np.zeros(13)
state_des[0:3] = pos_des
state_des[3:6] = vel_des
state_des[6:10] = att_des

# Initial a drone and set its initial state
quad1 = Drone()
quad1.reset(ini_state)

control = controller(quad1.get_arm_length(), quad1.get_mass())
Beispiel #7
0
from dynamics.quadrotor import Drone
from controller.PIDController import controller
from utils.transform import quat2rot, rot2euler, euler2rot, rot2quat, rad2deg, deg2rad, quat2euler, euler2quat
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from controller.JoystickController import RCInput
import threading

# print(rot2quat(euler2rot(np.array([0, 0, 0]))))
ini_pos = np.array([0, 0, 0])
ini_att = euler2quat(np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)]))
ini_angular_rate = np.array([0, 0, deg2rad(0)])
ini_state = np.zeros(13)
ini_state[0:3] = ini_pos
ini_state[6:10] = ini_att
ini_state[10:] = ini_angular_rate

pos_des = np.array([0, 0, 0])  # [x, y, z]
att_des = np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)])
angular_rate_des = np.array([0, 0, deg2rad(0)])
state_des = np.zeros(13)
state_des[0:3] = pos_des
state_des[6:10] = euler2quat(att_des)
state_des[10:] = angular_rate_des

# Initial a drone and set its initial state
quad1 = Drone()
quad1.reset(ini_state)

control = controller(quad1.get_arm_length(), quad1.get_mass())
Beispiel #8
0
import gym
from gym import wrappers, logger
import numpy as np
from controller.PIDController import controller
from utils.transform import quat2rot, rot2euler, euler2rot, rot2quat, rad2deg, deg2rad, euler2quat

att_des = euler2quat(np.array([deg2rad(0), deg2rad(0), deg2rad(0)]))
pos_des = np.array([0, 0, 1])  # [x, y, z]
state_des = np.zeros(13)
state_des[0:3] = pos_des
state_des[6:10] = att_des
control = controller(0.086, 0.18)

env = gym.make('gym_docking:hovering-v0')

obs = env.reset()
for i in range(1000):
    env.seed(0)
    action = control.PID(state_des, obs)
    obs, reward, dones, info = env.step(action)
    # print('obs: ', obs)
    print('reward: ', reward)
    print('dones: ', dones)