def measure(self, generated, vessels, masks, num_data, iter_time, phase,
                total_time):
        # masking
        vessels_in_mask, generated_in_mask = utils.pixel_values_in_mask(
            vessels, generated, masks)

        # averaging processing time
        avg_pt = (total_time / num_data) * 1000  # average processing tiem

        # evaluate Area Under the Curve of ROC and Precision-Recall
        auc_roc = utils.AUC_ROC(vessels_in_mask, generated_in_mask)
        auc_pr = utils.AUC_PR(vessels_in_mask, generated_in_mask)

        # binarize to calculate Dice Coeffient
        binarys_in_mask = utils.threshold_by_otsu(generated, masks)
        dice_coeff = utils.dice_coefficient_in_train(vessels_in_mask,
                                                     binarys_in_mask)
        acc, sensitivity, specificity = utils.misc_measures(
            vessels_in_mask, binarys_in_mask)
        score = auc_pr + auc_roc + dice_coeff + acc + sensitivity + specificity

        # # auc_sum for saving best model in training
        # auc_sum = auc_roc + auc_pr
        # if self.flags.stage == 2:
        #     #auc_sum = auc_roc + auc_pr
        #     auc_sum = auc_roc + auc_pr
        # else:
        #     auc_sum = auc_roc + auc_pr

        auc_sum = dice_coeff + acc + auc_pr

        # print information
        ord_output = collections.OrderedDict([('auc_pr', auc_pr),
                                              ('auc_roc', auc_roc),
                                              ('dice_coeff', dice_coeff),
                                              ('acc', acc),
                                              ('sensitivity', sensitivity),
                                              ('specificity', specificity),
                                              ('score', score),
                                              ('auc_sum', auc_sum),
                                              ('best_auc_sum',
                                               self.best_auc_sum),
                                              ('avg_pt', avg_pt)])
        utils.print_metrics(iter_time, ord_output)

        # write in tensorboard when in train mode only
        if phase == 'train':
            self.model.measure_assign(auc_pr, auc_roc, dice_coeff, acc,
                                      sensitivity, specificity, score,
                                      iter_time)
        elif phase == 'test':
            # write in npy format for evaluation
            utils.save_obj(vessels_in_mask, generated_in_mask,
                           os.path.join(self.auc_out_dir, "auc_roc.npy"),
                           os.path.join(self.auc_out_dir, "auc_pr.npy"))

        return auc_sum
Beispiel #2
0
    def measure(self, generated, vessels, masks, num_data, iter_time, phase,
                total_time):
        vessels_in_mask, generated_in_mask = utils.pixel_values_in_mask(
            vessels, generated, masks)
        avg_pt = (total_time / num_data) * 1000  # average processing tiem

        # evaluation
        auc_roc = utils.AUC_ROC(vessels_in_mask, generated_in_mask)
        auc_pr = utils.AUC_PR(vessels_in_mask, generated_in_mask)

        binarys_in_mask = utils.threshold_by_otsu(generated, masks)
        dice_coeff = utils.dice_coefficient_in_train(vessels_in_mask,
                                                     binarys_in_mask)
        acc, sensitivity, specificity = utils.misc_measures(
            vessels_in_mask, binarys_in_mask)
        score = auc_pr + auc_roc + dice_coeff + acc + sensitivity + specificity

        # print information
        ord_output = collections.OrderedDict([('auc_pr', auc_pr),
                                              ('auc_roc', auc_roc),
                                              ('dice_coeff', dice_coeff),
                                              ('acc', acc),
                                              ('sensitivity', sensitivity),
                                              ('specificity', specificity),
                                              ('score', score),
                                              ('best_dice_coeff',
                                               self.best_dice_coeff),
                                              ('avg_pt', avg_pt)])

        utils.print_metrics(iter_time, ord_output)

        # write in tensorboard
        if phase == 'train':
            self.model.measure_assign(auc_pr, auc_roc, dice_coeff, acc,
                                      sensitivity, specificity, score,
                                      iter_time)

        if phase == 'test':
            # write in npy format for evaluation
            utils.save_obj(vessels_in_mask, generated_in_mask,
                           os.path.join(self.auc_out_dir, "auc_roc.npy"),
                           os.path.join(self.auc_out_dir, "auc_pr.npy"))

        return dice_coeff
            if check_validation_batch:
                utils.check_input(imgs, segs, train_img_check_dir)
                check_validation_batch = False
            pred = network.predict(imgs, batch_size=batch_size, verbose=0)
            loss = network.evaluate(imgs, segs, batch_size=batch_size, verbose=0)
            losses += [loss] * imgs.shape[0]
            pred_masks.append(pred)
            gt_masks.append(segs)
            fundus_imgs.append(imgs)
        
        pred_masks = np.concatenate(pred_masks, axis=0)
        gt_masks = np.concatenate(gt_masks, axis=0)
        fundus_imgs = np.concatenate(fundus_imgs, axis=0)
        
        # evaluate results
        auroc = utils.AUC_ROC(gt_masks, pred_masks)
        aupr = utils.AUC_PR(gt_masks, pred_masks)
        utils.print_metrics(epoch + 1, auroc=auroc, aupr=aupr, validation_losses=np.mean(losses))
    
        # save the weight
        if aupr > best_aupr:
            network.save_weights(os.path.join(model_out_dir, "network_{}.h5".format(epoch + 1)))
            best_aupr = aupr
        
        # save validation results
        for index in range(pred_masks.shape[0]):
            Image.fromarray((pred_masks[index, ..., 0] * 255).astype(np.uint8)).save(os.path.join(img_out_dir, str(epoch + 1) + "_{:02}_segmented.png".format(index + 1)))
            Image.fromarray((gt_masks[index, ..., 0] * 255).astype(np.uint8)).save(os.path.join(img_out_dir, str(epoch + 1) + "_{:02}_gt.png".format(index + 1)))
            Image.fromarray((fundus_imgs[index, ...] * 255).astype(np.uint8)).save(os.path.join(img_out_dir, str(epoch + 1) + "_{:02}_fundus_patch.png".format(index + 1)))
    sys.stdout.flush()
Beispiel #4
0
        # G
        gan_x_test, gan_y_test=utils.input2gan(val_imgs, val_vessels, d_out_shape)
        loss,acc=gan.evaluate(gan_x_test,gan_y_test, batch_size=batch_size, verbose=0)
        utils.print_metrics(n_round+1, acc=acc, loss=loss, type='GAN')
        
        # save the weights
        g.save_weights(os.path.join(model_out_dir,"g_{}_{}_{}.h5".format(n_round,FLAGS.discriminator,FLAGS.ratio_gan2seg)))
       
    # update step sizes, learning rates
    scheduler.update_steps(n_round)
    K.set_value(d.optimizer.lr, scheduler.get_lr())    
    K.set_value(gan.optimizer.lr, scheduler.get_lr())    
    
    # evaluate on test images
    if n_round in rounds_for_evaluation:    
        generated=g.predict(test_imgs,batch_size=batch_size)
        generated=np.squeeze(generated, axis=3)
        vessels_in_mask, generated_in_mask = utils.pixel_values_in_mask(test_vessels, generated , test_masks)
        auc_roc=utils.AUC_ROC(vessels_in_mask,generated_in_mask,os.path.join(auc_out_dir,"auc_roc_{}.npy".format(n_round)))
        auc_pr=utils.AUC_PR(vessels_in_mask, generated_in_mask,os.path.join(auc_out_dir,"auc_pr_{}.npy".format(n_round)))
        binarys_in_mask=utils.threshold_by_otsu(generated,test_masks)
        dice_coeff=utils.dice_coefficient_in_train(vessels_in_mask, binarys_in_mask)
        acc, sensitivity, specificity=utils.misc_measures(vessels_in_mask, binarys_in_mask)
        utils.print_metrics(n_round+1, auc_pr=auc_pr, auc_roc=auc_roc, dice_coeff=dice_coeff, 
                            acc=acc, senstivity=sensitivity, specificity=specificity, type='TESTING')
         
        # print test images
        segmented_vessel=utils.remain_in_mask(generated, test_masks)
        for index in range(segmented_vessel.shape[0]):
            Image.fromarray((segmented_vessel[index,:,:]*255).astype(np.uint8)).save(os.path.join(img_out_dir,str(n_round)+"_{:02}_segmented.png".format(index+1)))
Beispiel #5
0
        for index_pred in range(len(pred_filenames)):
            # build array of gt
            if index_gt < len(gt_filenames) and os.path.basename(
                    pred_filenames[index_pred]).replace(
                        ".jpg", "") in os.path.basename(
                            gt_filenames[index_gt]):
                gt = utils.imagefiles2arrs(
                    gt_filenames[index_gt:index_gt + 1]).astype(np.uint8)[0,
                                                                          ...]
                gt_all[index_pred, ...] = gt
                index_gt += 1

        # compute sensitivity and specificity
        aupr_all, best_f1_all, best_f1_thresh_all, sen_all, ppv_all = utils.pr_metric(
            gt_all, pred_all)
        auroc_all = utils.AUC_ROC(gt_all, pred_all)
        aupr_training, best_f1_training, best_f1_thresh_training, sen_training, ppv_training = utils.pr_metric(
            gt_all[training_indices], pred_all[training_indices])
        auroc_training = utils.AUC_ROC(gt_all[training_indices],
                                       pred_all[training_indices])
        aupr_val, best_f1_val, best_f1_thresh_val, sen_val, ppv_val = utils.pr_metric(
            gt_all[val_indices], pred_all[val_indices])
        auroc_val = utils.AUC_ROC(gt_all[val_indices], pred_all[val_indices])

        # print results and store to lists
        sens = [sen_all, sen_training, sen_val]
        ppvs = [ppv_all, ppv_training, ppv_val]
        auprs = [aupr_all, aupr_training, aupr_val]
        aurocs = [auroc_all, auroc_training, auroc_val]
        best_f1s = [best_f1_all, best_f1_training, best_f1_val]
        best_f1_threshs = [
            check_train_batch = False
        total_loss, loss_all, loss_vessel = network.train_on_batch(
            [imgs, vessels], [segs, segs[:, ::32, ::32, :]])
        losses_all += [loss_all] * len(filenames)
        losses_vessel += [loss_vessel] * len(filenames)
    print "loss_all: {}, loss_vessel: {}".format(np.mean(losses_all),
                                                 np.mean(losses_vessel))

    # evaluate on validation set
    if check_validation_batch:
        utils.check_input(val_imgs, val_masks, val_img_check_dir)
        #         utils.check_input(val_vessels, val_masks, val_img_check_dir)
        check_test_batch = False
    val_generated_masks_f_v, val_generate_masks_v = network.predict(
        [val_imgs, val_vessels], batch_size=batch_size, verbose=0)
    auroc = utils.AUC_ROC(val_masks, val_generated_masks_f_v)
    aupr = utils.AUC_PR(val_masks, val_generated_masks_f_v)
    val_generated_masks_f_v = np.round(val_generated_masks_f_v)
    cm, spe, sen, dice_val, jaccard_val = utils.seg_metrics(
        val_masks, val_generated_masks_f_v)
    utils.print_metrics(epoch + 1,
                        jaccard_val=jaccard_val,
                        dice_val=dice_val,
                        sen=sen,
                        auroc=auroc,
                        aupr=aupr)

    # save the weight
    network.save_weights(
        os.path.join(model_out_dir, "network_{}.h5".format(epoch)))