Beispiel #1
0
def evolutionary_algorithm(fitness_fn,
                           objective_fn,
                           logger,
                           pop_size=100,
                           cx_prob=0.8,
                           mut_prob=0.05,
                           mut_flip_prob=0.1,
                           generations=100):

    pop = create_population(pop_size)
    for G in range(generations):
        fit_obj = list(
            map(lambda pair: utils.FitObjPair(pair[0], pair[1]),
                zip(map(fitness_fn, pop), map(objective_fn, pop))))

        evals = G * pop_size
        logger.add_gen(fit_obj, evals)

        # log.append((G, max(fits), sum(fits)/100, G*POP_SIZE))
        #print(G, sum(fits), max(fits)) # prints fitness to console
        mating_pool = selection(pop, [f.fitness for f in fit_obj])
        offspring = operators(mating_pool, mut_prob, mut_flip_prob, cx_prob)
        #pop = offspring[:-1]+[max(pop, key=fitness)] #SGA + elitism
        pop = offspring[:]  #SGA

    logger.write_files()
    return pop


# for i in range():
#     random.seed(i)
#     pop,log = evolutionary_algorithm(fitness)
#     logs.append(log)
# fits = list(map(fitness, pop))
# # pprint.pprint(list(zip(fits, pop)))
# # print(sum(fits), max(fits))
# # pprint.pprint(log)
#
# # extract fitness evaluations and best fitnesses from logs
# evals = []
# best_fit = []
# for log in logs:
#     evals.append([l[3] for l in log])
#     best_fit.append([l[1] for l in log])
#
# evals = np.array(evals)
# best_fit = np.array(best_fit)
#
# # plot the converegence graph and quartiles
# import matplotlib.pyplot as plt
# _, ax = plt.subplots()
#
# ax.plot(evals[0,:], np.median(best_fit, axis=0), label = "median")
# ax.fill_between(evals[0,:], np.percentile(best_fit, q=25, axis=0),
#   np.percentile(best_fit, q=75, axis=0), alpha = 0.2, label = "Interquartile range")
#
# legend = ax.legend(loc="upper center", shadow = True, fontsize = 'large')
#
#
# plt.show()
def fitness(ind, cities):
    
    # quickly check that ind is a permutation
    num_cities = len(cities)
    assert len(ind) == num_cities
    assert sum(ind) == num_cities*(num_cities - 1)//2

    dist = 0
    for a, b in zip(ind, ind[1:]):
        dist += distance(cities[a], cities[b])

    dist += distance(cities[ind[-1]], cities[ind[0]])

    return utils.FitObjPair(fitness=-dist, 
                            objective=dist)
def fitness(ind, weights):
    bw = bin_weights(weights, ind)
    return utils.FitObjPair(fitness=1 / (max(bw) - min(bw) + 1),
                            objective=max(bw) - min(bw))
Beispiel #4
0
def fitness(ind, train_data, test_data):
    return utils.FitObjPair(fitness=accuracy(ind, train_data),
                            objective=1 - accuracy(ind, test_data))
Beispiel #5
0
def fitness(ind, weights):
    bw = bin_weights(weights, ind)
    for i in range(len(bw)):
        return utils.FitObjPair(fitness=1 / (average(bw) - min(bw)),
                                objective=(average(bw) - min(bw)))
Beispiel #6
0
def best_fitness(ind, weights):
    bw = bin_weights(weights, ind)
    M = sum(bw) / len(bw)
    S = sum(map(lambda w: abs(w - M), bw))
    F = 0.99**S
    return utils.FitObjPair(fitness=F, objective=S)
Beispiel #7
0
def better_fitness(ind, weights):
    bw = bin_weights(weights, ind)
    M = sum(bw) / len(bw)
    S = sum(map(lambda w: (w - M)**2, bw))**(1 / len(bw))
    return utils.FitObjPair(fitness=1 / (S + 1), objective=max(bw) - min(bw))