Beispiel #1
0
def main(argv):
    del argv  # unused arg

    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    steps_per_epoch = APPROX_IMAGENET_TRAIN_IMAGES // batch_size
    steps_per_eval = IMAGENET_VALIDATION_IMAGES // batch_size

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)

    imagenet_train = utils.ImageNetInput(is_training=True,
                                         data_dir=FLAGS.data_dir,
                                         batch_size=FLAGS.per_core_batch_size,
                                         use_bfloat16=FLAGS.use_bfloat16)
    imagenet_eval = utils.ImageNetInput(is_training=False,
                                        data_dir=FLAGS.data_dir,
                                        batch_size=FLAGS.per_core_batch_size,
                                        use_bfloat16=FLAGS.use_bfloat16)
    test_datasets = {
        'clean':
        strategy.experimental_distribute_datasets_from_function(
            imagenet_eval.input_fn)
    }
    if FLAGS.corruptions_interval > 0:
        corruption_types, max_intensity = utils.load_corrupted_test_info()
        for name in corruption_types:
            for intensity in range(1, max_intensity + 1):
                dataset_name = '{0}_{1}'.format(name, intensity)
                corrupt_input_fn = utils.corrupt_test_input_fn(
                    batch_size=FLAGS.per_core_batch_size,
                    corruption_name=name,
                    corruption_intensity=intensity,
                    use_bfloat16=FLAGS.use_bfloat16)
                test_datasets[dataset_name] = (
                    strategy.experimental_distribute_datasets_from_function(
                        corrupt_input_fn))

    train_dataset = strategy.experimental_distribute_datasets_from_function(
        imagenet_train.input_fn)

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    with strategy.scope():
        logging.info('Building Keras ResNet-50 model')
        model = ub.models.resnet50_sngp(
            input_shape=(224, 224, 3),
            batch_size=None,
            num_classes=NUM_CLASSES,
            use_mc_dropout=FLAGS.use_mc_dropout,
            dropout_rate=FLAGS.dropout_rate,
            filterwise_dropout=FLAGS.filterwise_dropout,
            use_gp_layer=FLAGS.use_gp_layer,
            gp_hidden_dim=FLAGS.gp_hidden_dim,
            gp_scale=FLAGS.gp_scale,
            gp_bias=FLAGS.gp_bias,
            gp_input_normalization=FLAGS.gp_input_normalization,
            gp_cov_discount_factor=FLAGS.gp_cov_discount_factor,
            gp_cov_ridge_penalty=FLAGS.gp_cov_ridge_penalty,
            gp_output_imagenet_initializer=FLAGS.
            gp_output_imagenet_initializer,
            use_spec_norm=FLAGS.use_spec_norm,
            spec_norm_iteration=FLAGS.spec_norm_iteration,
            spec_norm_bound=FLAGS.spec_norm_bound)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Scale learning rate and decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 256
        learning_rate = utils.LearningRateSchedule(steps_per_epoch, base_lr,
                                                   FLAGS.train_epochs,
                                                   _LR_SCHEDULE)
        optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/stddev': tf.keras.metrics.Mean(),
        }
        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))
                    corrupt_metrics['test/stddev_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())

        logging.info('Finished building Keras ResNet-50 model')

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            with tf.GradientTape() as tape:
                logits = model(images, training=True)

                if isinstance(logits, tuple):
                    # If model returns a tuple of (logits, covmat), extract logits
                    logits, _ = logits
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)

                negative_log_likelihood = tf.reduce_mean(
                    tf.keras.losses.sparse_categorical_crossentropy(
                        labels, logits, from_logits=True))
                filtered_variables = []
                for var in model.trainable_variables:
                    # Apply l2 on the weights. This excludes BN parameters and biases, but
                    # pay caution to their naming scheme.
                    if 'kernel' in var.name or 'bias' in var.name:
                        filtered_variables.append(tf.reshape(var, (-1, )))

                l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss(
                    tf.concat(filtered_variables, axis=0))
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                loss = negative_log_likelihood + l2_loss
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            probs = tf.nn.softmax(logits)
            metrics['train/ece'].update_state(labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs

            logits_list = []
            stddev_list = []
            for _ in range(FLAGS.num_dropout_samples):
                logits = model(images, training=False)

                if isinstance(logits, tuple):
                    # If model returns a tuple of (logits, covmat), extract both
                    logits, covmat = logits
                else:
                    covmat = tf.eye(FLAGS.per_core_batch_size)

                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)

                logits = ed.layers.utils.mean_field_logits(
                    logits,
                    covmat,
                    mean_field_factor=FLAGS.gp_mean_field_factor)
                stddev = tf.sqrt(tf.linalg.diag_part(covmat))

                stddev_list.append(stddev)
                logits_list.append(logits)

            # Logits dimension is (num_samples, batch_size, num_classes).
            logits_list = tf.stack(logits_list, axis=0)
            stddev_list = tf.stack(stddev_list, axis=0)

            stddev = tf.reduce_mean(stddev_list, axis=0)
            probs_list = tf.nn.softmax(logits_list)
            probs = tf.reduce_mean(probs_list, axis=0)

            labels_broadcasted = tf.broadcast_to(
                labels, [FLAGS.num_dropout_samples, labels.shape[0]])
            log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy(
                labels_broadcasted, logits_list, from_logits=True)
            negative_log_likelihood = tf.reduce_mean(
                -tf.reduce_logsumexp(log_likelihoods, axis=[0]) +
                tf.math.log(float(FLAGS.num_dropout_samples)))

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
                metrics['test/stddev'].update_state(stddev)
            else:
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/stddev_{}'.format(
                    dataset_name)].update_state(stddev)

        strategy.run(step_fn, args=(next(iterator), ))

    metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_start_time = time.time()
                test_step(test_iterator, dataset_name)
                ms_per_example = (time.time() -
                                  test_start_time) * 1e6 / batch_size
                metrics['test/ms_per_example'].update_state(ms_per_example)

            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types, max_intensity,
                FLAGS.alexnet_errors_path)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)

    # Save final checkpoint.
    final_checkpoint_name = checkpoint.save(
        os.path.join(FLAGS.output_dir, 'checkpoint'))
    logging.info('Saved last checkpoint to %s', final_checkpoint_name)

    # Export final model as SavedModel.
    final_save_name = os.path.join(FLAGS.output_dir, 'model')
    model.save(final_save_name)
    logging.info('Saved model to %s', final_save_name)
Beispiel #2
0
def main(argv):

  del argv  # unused arg
  tf.io.gfile.makedirs(FLAGS.output_dir)
  logging.info('Saving checkpoints at %s', FLAGS.output_dir)
  tf.random.set_seed(FLAGS.seed)

  batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
  steps_per_epoch = APPROX_IMAGENET_TRAIN_IMAGES // batch_size
  steps_per_eval = IMAGENET_VALIDATION_IMAGES // batch_size

  if FLAGS.use_gpu:
    logging.info('Use GPU')
    strategy = tf.distribute.MirroredStrategy()
  else:
    logging.info('Use TPU at %s',
                 FLAGS.tpu if FLAGS.tpu is not None else 'local')
    resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=FLAGS.tpu)
    tf.config.experimental_connect_to_cluster(resolver)
    tf.tpu.experimental.initialize_tpu_system(resolver)
    strategy = tf.distribute.TPUStrategy(resolver)

  enable_mixup = (FLAGS.mixup_alpha > 0.0)
  mixup_params = {
      'mixup_alpha': FLAGS.mixup_alpha,
      'adaptive_mixup': False,
      'same_mix_weight_per_batch': FLAGS.same_mix_weight_per_batch,
      'use_random_shuffling': FLAGS.use_random_shuffling,
      'use_truncated_beta': FLAGS.use_truncated_beta
  }

  train_builder = utils.ImageNetInput(
      data_dir=FLAGS.data_dir,
      use_bfloat16=FLAGS.use_bfloat16,
      one_hot=True,
      mixup_params=mixup_params)
  test_builder = utils.ImageNetInput(
      data_dir=FLAGS.data_dir, use_bfloat16=FLAGS.use_bfloat16)
  train_dataset = train_builder.as_dataset(
      split=tfds.Split.TRAIN, batch_size=batch_size)
  test_dataset = test_builder.as_dataset(
      split=tfds.Split.TEST, batch_size=batch_size)
  train_dataset = strategy.experimental_distribute_dataset(train_dataset)
  test_dataset = strategy.experimental_distribute_dataset(test_dataset)

  if enable_mixup:

    mean_theta = mean_truncated_beta_distribution(FLAGS.mixup_alpha)

    # Train set to compute the means of the images and of the (one-hot) labels
    imagenet_train_no_mixup = utils.ImageNetInput(
        data_dir=FLAGS.data_dir, use_bfloat16=FLAGS.use_bfloat16, one_hot=True)
    imagenet_train_no_mixup = imagenet_train_no_mixup.as_dataset(
        split=tfds.Split.TRAIN, batch_size=batch_size)
    tr_data_no_mixup = strategy.experimental_distribute_dataset(
        imagenet_train_no_mixup)

  if FLAGS.use_bfloat16:
    policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
    tf.keras.mixed_precision.experimental.set_policy(policy)

  with strategy.scope():

    if enable_mixup:
      # Variables used to track the means of the images and the (one-hot) labels
      count = tf.Variable(tf.zeros((1,), dtype=tf.float32))
      mean_images = tf.Variable(tf.zeros(IMAGE_SHAPE, dtype=tf.float32))
      mean_labels = tf.Variable(tf.zeros((NUM_CLASSES,), dtype=tf.float32))

    logging.info('Building Keras ResNet-50 model')
    model = ub.models.resnet50_deterministic(input_shape=IMAGE_SHAPE,
                                             num_classes=NUM_CLASSES)
    logging.info('Model input shape: %s', model.input_shape)
    logging.info('Model output shape: %s', model.output_shape)
    logging.info('Model number of weights: %s', model.count_params())
    # Scale learning rate and decay epochs by vanilla settings.
    base_lr = FLAGS.base_learning_rate * batch_size / 256
    learning_rate = utils.LearningRateSchedule(steps_per_epoch,
                                               base_lr,
                                               FLAGS.train_epochs,
                                               _LR_SCHEDULE)
    optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate,
                                        momentum=0.9,
                                        nesterov=True)
    metrics = {
        'train/negative_log_likelihood': tf.keras.metrics.Mean(),
        'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'train/loss': tf.keras.metrics.Mean(),
        'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
        'test/negative_log_likelihood': tf.keras.metrics.Mean(),
        'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
    }
    logging.info('Finished building Keras ResNet-50 model')

    if enable_mixup:
      # With mixup enabled, we log the predictions with the rescaling from [2]
      metrics['test/negative_log_likelihood+rescaling'] = (tf.keras.metrics
                                                           .Mean())
      metrics['test/accuracy+rescaling'] = (tf.keras.metrics
                                            .SparseCategoricalAccuracy())
      metrics['test/ece+rescaling'] = um.ExpectedCalibrationError(
          num_bins=FLAGS.num_bins)

    checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
    latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
    initial_epoch = 0
    if latest_checkpoint:
      # checkpoint.restore must be within a strategy.scope() so that optimizer
      # slot variables are mirrored.
      checkpoint.restore(latest_checkpoint)
      logging.info('Loaded checkpoint %s', latest_checkpoint)
      initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

  summary_writer = tf.summary.create_file_writer(
      os.path.join(FLAGS.output_dir, 'summaries'))

  @tf.function
  def moving_average_step(iterator):
    """Training StepFn to compute the means of the images and labels."""

    def step_fn_labels(labels):
      return tf.reduce_mean(labels, axis=0)

    def step_fn_images(images):
      return tf.reduce_mean(tf.cast(images, tf.float32), axis=0)

    new_count = count + 1.
    count.assign(new_count)

    images, labels = next(iterator)

    per_replica_means = strategy.run(step_fn_labels, args=(labels,))
    cr_replica_means = strategy.reduce('mean', per_replica_means, axis=0)
    mean_labels.assign(cr_replica_means/count + (count-1.)/count * mean_labels)

    per_replica_means = strategy.run(step_fn_images, args=(images,))
    cr_replica_means = strategy.reduce('mean', per_replica_means, axis=0)
    mean_images.assign(cr_replica_means/count + (count-1.)/count * mean_images)

  @tf.function
  def train_step(iterator):
    """Training StepFn."""
    def step_fn(inputs):
      """Per-Replica StepFn."""
      images, labels = inputs

      with tf.GradientTape() as tape:

        logits = model(images, training=True)
        if FLAGS.use_bfloat16:
          logits = tf.cast(logits, tf.float32)

        negative_log_likelihood = tf.reduce_mean(
            tf.keras.losses.categorical_crossentropy(
                labels, logits, from_logits=True))

        filtered_variables = []
        for var in model.trainable_variables:
          # Apply l2 on the weights. This excludes BN parameters and biases, but
          # pay caution to their naming scheme.
          if 'kernel' in var.name or 'bias' in var.name:
            filtered_variables.append(tf.reshape(var, (-1,)))

        l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss(
            tf.concat(filtered_variables, axis=0))
        # Scale the loss given the TPUStrategy will reduce sum all gradients.
        loss = negative_log_likelihood + l2_loss
        scaled_loss = loss / strategy.num_replicas_in_sync

      grads = tape.gradient(scaled_loss, model.trainable_variables)
      optimizer.apply_gradients(zip(grads, model.trainable_variables))

      probs = tf.nn.softmax(logits)

      # We go back from one-hot labels to integers
      labels = tf.argmax(labels, axis=-1)

      metrics['train/ece'].update_state(labels, probs)
      metrics['train/loss'].update_state(loss)
      metrics['train/negative_log_likelihood'].update_state(
          negative_log_likelihood)
      metrics['train/accuracy'].update_state(labels, logits)

    strategy.run(step_fn, args=(next(iterator),))

  @tf.function
  def update_test_metrics(labels, logits, metric_suffix=''):
    negative_log_likelihood = tf.reduce_mean(
        tf.keras.losses.sparse_categorical_crossentropy(
            labels, logits, from_logits=True))
    probs = tf.nn.softmax(logits)
    metrics['test/negative_log_likelihood' + metric_suffix].update_state(
        negative_log_likelihood)
    metrics['test/accuracy' + metric_suffix].update_state(labels, probs)
    metrics['test/ece' + metric_suffix].update_state(labels, probs)

  @tf.function
  def test_step(iterator):
    """Evaluation StepFn."""
    def step_fn(inputs):
      """Per-Replica StepFn."""
      images, labels = inputs

      logits = model(images, training=False)
      if FLAGS.use_bfloat16:
        logits = tf.cast(logits, tf.float32)

      update_test_metrics(labels, logits)

      # Rescaling logic in Eq.(15) from [2]
      if enable_mixup:
        images *= mean_theta
        images += (1.-mean_theta) * tf.cast(mean_images, images.dtype)

        scaled_logits = model(images, training=False)
        if FLAGS.use_bfloat16:
          scaled_logits = tf.cast(scaled_logits, tf.float32)

        scaled_logits *= 1./mean_theta
        scaled_logits += (1.-1./mean_theta) * tf.cast(mean_labels, logits.dtype)

        update_test_metrics(labels, scaled_logits, '+rescaling')

    strategy.run(step_fn, args=(next(iterator),))

  metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

  if enable_mixup:
    logging.info('Starting to compute the means of labels and images')
    tr_iterator_no_mixup = iter(tr_data_no_mixup)
    for step in range(steps_per_epoch):
      moving_average_step(tr_iterator_no_mixup)
    # Save stats required by the mixup rescaling [2] for subsequent predictions
    mixup_rescaling_stats = {
        'mean_labels': mean_labels.numpy(),
        'mean_images': mean_images.numpy(),
        'mean_theta': mean_theta
    }
    output_dir = os.path.join(FLAGS.output_dir, 'mixup_rescaling_stats.npz')
    with tf.io.gfile.GFile(output_dir, 'wb') as f:
      np.save(f, list(mixup_rescaling_stats.items()))
    logging.info('Finished to compute the means of labels and images')

  train_iterator = iter(train_dataset)
  start_time = time.time()
  for epoch in range(initial_epoch, FLAGS.train_epochs):
    logging.info('Starting to run epoch: %s', epoch)
    for step in range(steps_per_epoch):
      train_step(train_iterator)

      current_step = epoch * steps_per_epoch + (step + 1)
      max_steps = steps_per_epoch * FLAGS.train_epochs
      time_elapsed = time.time() - start_time
      steps_per_sec = float(current_step) / time_elapsed
      eta_seconds = (max_steps - current_step) / steps_per_sec
      message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                 'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                     current_step / max_steps,
                     epoch + 1,
                     FLAGS.train_epochs,
                     steps_per_sec,
                     eta_seconds / 60,
                     time_elapsed / 60))
      if step % 20 == 0:
        logging.info(message)

    test_iterator = iter(test_dataset)
    for step in range(steps_per_eval):
      if step % 20 == 0:
        logging.info('Starting to run eval step %s of epoch: %s', step, epoch)
      test_start_time = time.time()
      test_step(test_iterator)
      ms_per_example = (time.time() - test_start_time) * 1e6 / batch_size
      metrics['test/ms_per_example'].update_state(ms_per_example)

    logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                 metrics['train/loss'].result(),
                 metrics['train/accuracy'].result() * 100)
    logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                 metrics['test/negative_log_likelihood'].result(),
                 metrics['test/accuracy'].result() * 100)
    if enable_mixup:
      logging.info(
          'Test NLL (+ rescaling): %.4f, Accuracy (+ rescaling): %.2f%%',
          metrics['test/negative_log_likelihood+rescaling'].result(),
          metrics['test/accuracy+rescaling'].result() * 100)

    total_results = {name: metric.result() for name, metric in metrics.items()}
    with summary_writer.as_default():
      for name, result in total_results.items():
        tf.summary.scalar(name, result, step=epoch + 1)

    for metric in metrics.values():
      metric.reset_states()

    if (FLAGS.checkpoint_interval > 0 and
        (epoch + 1) % FLAGS.checkpoint_interval == 0):
      checkpoint_name = checkpoint.save(os.path.join(
          FLAGS.output_dir, 'checkpoint'))
      logging.info('Saved checkpoint to %s', checkpoint_name)

  final_save_name = os.path.join(FLAGS.output_dir, 'model')
  model.save(final_save_name)
  logging.info('Saved model to %s', final_save_name)
Beispiel #3
0
def main(argv):
    del argv  # unused arg
    tf.enable_v2_behavior()
    tf.random.set_seed(FLAGS.seed)

    # In BatchEnsemble version 2, the
    # input images are not only tiled in the inference mode but also tiled in the
    # training. BatchEnsemble version 2 means each ensemble member is trained with
    # the same batch size as single model.
    if FLAGS.version2:
        logging.info('Training BatchEnsemble version 2')
        batch_size = ((FLAGS.per_core_batch_size // FLAGS.num_models) *
                      FLAGS.num_cores)
    else:
        batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores

    steps_per_epoch = APPROX_IMAGENET_TRAIN_IMAGES // batch_size
    steps_per_eval = IMAGENET_VALIDATION_IMAGES // batch_size

    logging.info('Saving checkpoints at %s', FLAGS.output_dir)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)

    imagenet_train = utils.ImageNetInput(is_training=True,
                                         data_dir=FLAGS.data_dir,
                                         batch_size=batch_size,
                                         use_bfloat16=not FLAGS.use_gpu,
                                         drop_remainder=True)
    imagenet_eval = utils.ImageNetInput(is_training=False,
                                        data_dir=FLAGS.data_dir,
                                        batch_size=batch_size,
                                        use_bfloat16=not FLAGS.use_gpu,
                                        drop_remainder=True)
    train_dataset = strategy.experimental_distribute_dataset(
        imagenet_train.input_fn())
    test_dataset = strategy.experimental_distribute_dataset(
        imagenet_eval.input_fn())

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building Keras ResNet-50 model')
        model = batchensemble_model.ensemble_resnet50(
            input_shape=(224, 224, 3),
            num_classes=NUM_CLASSES,
            num_models=FLAGS.num_models,
            random_sign_init=FLAGS.random_sign_init,
            use_tpu=not FLAGS.use_gpu)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Scale learning rate and decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 256
        learning_rate = utils.LearningRateSchedule(steps_per_epoch, base_lr,
                                                   FLAGS.train_epochs,
                                                   _LR_SCHEDULE)
        optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        }
        for i in range(FLAGS.num_models):
            metrics['test/nll_member_{}'.format(i)] = tf.keras.metrics.Mean()
            metrics['test/accuracy_member_{}'.format(i)] = (
                tf.keras.metrics.SparseCategoricalAccuracy())
        logging.info('Finished building Keras ResNet-50 model')

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs

            if FLAGS.version2:
                images = tf.tile(images, [FLAGS.num_models, 1, 1, 1])
                labels = tf.tile(labels, [FLAGS.num_models, 1])

            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)

                negative_log_likelihood = tf.reduce_mean(
                    tf.keras.losses.sparse_categorical_crossentropy(
                        labels, logits, from_logits=True))
                filtered_variables = []
                for var in model.trainable_variables:
                    # Apply l2 on the slow weights and bias terms. This excludes BN
                    # parameters and fast weight approximate posterior/prior parameters,
                    # but pay caution to their naming scheme.
                    if 'kernel' in var.name or 'bias' in var.name:
                        filtered_variables.append(tf.reshape(var, (-1, )))

                l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss(
                    tf.concat(filtered_variables, axis=0))
                loss = negative_log_likelihood + l2_loss
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)

            # Separate learning rate implementation.
            if FLAGS.fast_weight_lr_multiplier != 1.0:
                grads_and_vars = []
                for grad, var in zip(grads, model.trainable_variables):
                    # Apply different learning rate on the fast weights. This excludes BN
                    # and slow weights, but pay caution to the naming scheme.
                    if ('batch_norm' not in var.name
                            and 'kernel' not in var.name):
                        grads_and_vars.append(
                            (grad * FLAGS.fast_weight_lr_multiplier, var))
                    else:
                        grads_and_vars.append((grad, var))
                optimizer.apply_gradients(grads_and_vars)
            else:
                optimizer.apply_gradients(zip(grads,
                                              model.trainable_variables))

            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)

        strategy.experimental_run_v2(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            images = tf.tile(images, [FLAGS.num_models, 1, 1, 1])
            logits = model(images, training=False)
            if FLAGS.use_bfloat16:
                logits = tf.cast(logits, tf.float32)
            probs = tf.nn.softmax(logits)

            per_probs = tf.split(probs,
                                 num_or_size_splits=FLAGS.num_models,
                                 axis=0)
            for i in range(FLAGS.num_models):
                member_probs = per_probs[i]
                member_loss = tf.keras.losses.sparse_categorical_crossentropy(
                    labels, member_probs)
                metrics['test/nll_member_{}'.format(i)].update_state(
                    member_loss)
                metrics['test/accuracy_member_{}'.format(i)].update_state(
                    labels, member_probs)

            probs = tf.reduce_mean(per_probs, axis=0)
            negative_log_likelihood = tf.reduce_mean(
                tf.keras.losses.sparse_categorical_crossentropy(labels, probs))
            metrics['test/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['test/accuracy'].update_state(labels, probs)

        strategy.experimental_run_v2(step_fn, args=(next(iterator), ))

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        test_iterator = iter(test_dataset)
        for step in range(steps_per_eval):
            if step % 20 == 0:
                logging.info('Starting to run eval step %s of epoch: %s', step,
                             epoch)
            test_step(test_iterator)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        for i in range(FLAGS.num_models):
            logging.info(
                'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i,
                metrics['test/nll_member_{}'.format(i)].result(),
                metrics['test/accuracy_member_{}'.format(i)].result() * 100)
        with summary_writer.as_default():
            for name, metric in metrics.items():
                tf.summary.scalar(name, metric.result(), step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (epoch + 1) % 20 == 0:
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)
Beispiel #4
0
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    per_core_batch_size = FLAGS.per_core_batch_size // FLAGS.ensemble_size
    batch_size = per_core_batch_size * FLAGS.num_cores
    steps_per_epoch = APPROX_IMAGENET_TRAIN_IMAGES // batch_size
    steps_per_eval = IMAGENET_VALIDATION_IMAGES // batch_size

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.TPUStrategy(resolver)

    mixup_params = {
        'ensemble_size': FLAGS.ensemble_size,
        'mixup_alpha': FLAGS.mixup_alpha,
        'adaptive_mixup': FLAGS.adaptive_mixup,
        'num_classes': NUM_CLASSES,
    }
    train_builder = utils.ImageNetInput(data_dir=FLAGS.data_dir,
                                        one_hot=(FLAGS.mixup_alpha > 0),
                                        use_bfloat16=FLAGS.use_bfloat16,
                                        mixup_params=mixup_params,
                                        ensemble_size=FLAGS.ensemble_size)
    test_builder = utils.ImageNetInput(data_dir=FLAGS.data_dir,
                                       use_bfloat16=FLAGS.use_bfloat16)
    train_dataset = train_builder.as_dataset(split=tfds.Split.TRAIN,
                                             batch_size=batch_size)
    clean_test_dataset = test_builder.as_dataset(split=tfds.Split.TEST,
                                                 batch_size=batch_size)
    train_dataset = strategy.experimental_distribute_dataset(train_dataset)
    test_datasets = {
        'clean': strategy.experimental_distribute_dataset(clean_test_dataset)
    }
    if FLAGS.adaptive_mixup:
        imagenet_confidence_dataset = test_builder.as_dataset(
            split=tfds.Split.VALIDATION,
            batch_size=FLAGS.per_core_batch_size * FLAGS.num_cores)
        imagenet_confidence_dataset = (
            strategy.experimental_distribute_dataset(
                imagenet_confidence_dataset))
    if FLAGS.corruptions_interval > 0:
        corruption_types, max_intensity = utils.load_corrupted_test_info()
        for name in corruption_types:
            for intensity in range(1, max_intensity + 1):
                dataset_name = '{0}_{1}'.format(name, intensity)
                dataset = utils.load_corrupted_test_dataset(
                    batch_size=batch_size,
                    corruption_name=name,
                    corruption_intensity=intensity,
                    use_bfloat16=FLAGS.use_bfloat16)
                test_datasets[dataset_name] = (
                    strategy.experimental_distribute_dataset(dataset))

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building Keras ResNet-50 model')
        model = ub.models.resnet_batchensemble(
            input_shape=(224, 224, 3),
            num_classes=NUM_CLASSES,
            ensemble_size=FLAGS.ensemble_size,
            random_sign_init=FLAGS.random_sign_init,
            use_ensemble_bn=FLAGS.use_ensemble_bn,
            depth=FLAGS.depth)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Scale learning rate and decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 256
        learning_rate = utils.LearningRateSchedule(steps_per_epoch, base_lr,
                                                   FLAGS.train_epochs,
                                                   _LR_SCHEDULE)
        optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood':
            tf.keras.metrics.Mean(),
            'train/accuracy':
            tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss':
            tf.keras.metrics.Mean(),
            'train/ece':
            um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood':
            tf.keras.metrics.Mean(),
            'test/accuracy':
            tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece':
            um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/member_accuracy_mean':
            (tf.keras.metrics.SparseCategoricalAccuracy()),
            'test/member_ece_mean':
            um.ExpectedCalibrationError(num_bins=FLAGS.num_bins)
        }

        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))
                    corrupt_metrics['test/member_acc_mean_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/member_ece_mean_{}'.format(
                        dataset_name)] = (um.ExpectedCalibrationError(
                            num_bins=FLAGS.num_bins))

        test_diversity = {}
        training_diversity = {}
        for i in range(FLAGS.ensemble_size):
            metrics['test/nll_member_{}'.format(i)] = tf.keras.metrics.Mean()
            metrics['test/accuracy_member_{}'.format(i)] = (
                tf.keras.metrics.SparseCategoricalAccuracy())
        test_diversity = {
            'test/disagreement': tf.keras.metrics.Mean(),
            'test/average_kl': tf.keras.metrics.Mean(),
            'test/cosine_similarity': tf.keras.metrics.Mean(),
        }
        training_diversity = {
            'train/disagreement': tf.keras.metrics.Mean(),
            'train/average_kl': tf.keras.metrics.Mean(),
            'train/cosine_similarity': tf.keras.metrics.Mean(),
        }

        logging.info('Finished building Keras ResNet-50 model')

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            if FLAGS.adaptive_mixup:
                images = tf.identity(images)
            else:
                images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])

            if FLAGS.adaptive_mixup:
                labels = tf.identity(labels)
            elif FLAGS.mixup_alpha > 0:
                labels = tf.tile(labels, [FLAGS.ensemble_size, 1])
            else:
                labels = tf.tile(labels, [FLAGS.ensemble_size])

            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)

                probs = tf.nn.softmax(logits)
                per_probs = tf.reshape(
                    probs,
                    tf.concat([[FLAGS.ensemble_size, -1], probs.shape[1:]], 0))
                diversity_results = um.average_pairwise_diversity(
                    per_probs, FLAGS.ensemble_size)

                if FLAGS.mixup_alpha > 0:
                    negative_log_likelihood = tf.reduce_mean(
                        tf.keras.losses.categorical_crossentropy(
                            labels, logits, from_logits=True))
                else:
                    negative_log_likelihood = tf.reduce_mean(
                        tf.keras.losses.sparse_categorical_crossentropy(
                            labels, logits, from_logits=True))
                filtered_variables = []
                for var in model.trainable_variables:
                    # Apply l2 on the slow weights and bias terms. This excludes BN
                    # parameters and fast weight approximate posterior/prior parameters,
                    # but pay caution to their naming scheme.
                    if 'kernel' in var.name or 'bias' in var.name:
                        filtered_variables.append(tf.reshape(var, (-1, )))

                l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss(
                    tf.concat(filtered_variables, axis=0))
                loss = negative_log_likelihood + l2_loss
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)

            # Separate learning rate implementation.
            if FLAGS.fast_weight_lr_multiplier != 1.0:
                grads_and_vars = []
                for grad, var in zip(grads, model.trainable_variables):
                    # Apply different learning rate on the fast weights. This excludes BN
                    # and slow weights, but pay caution to the naming scheme.
                    if ('batch_norm' not in var.name
                            and 'kernel' not in var.name):
                        grads_and_vars.append(
                            (grad * FLAGS.fast_weight_lr_multiplier, var))
                    else:
                        grads_and_vars.append((grad, var))
                optimizer.apply_gradients(grads_and_vars)
            else:
                optimizer.apply_gradients(zip(grads,
                                              model.trainable_variables))

            if FLAGS.mixup_alpha > 0:
                labels = tf.argmax(labels, axis=-1)
            metrics['train/ece'].update_state(labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)
            for k, v in diversity_results.items():
                training_diversity['train/' + k].update_state(v)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])
            logits = model(images, training=False)
            if FLAGS.use_bfloat16:
                logits = tf.cast(logits, tf.float32)
            probs = tf.nn.softmax(logits)

            if dataset_name == 'clean':
                per_probs_tensor = tf.reshape(
                    probs,
                    tf.concat([[FLAGS.ensemble_size, -1], probs.shape[1:]], 0))
                diversity_results = um.average_pairwise_diversity(
                    per_probs_tensor, FLAGS.ensemble_size)
                for k, v in diversity_results.items():
                    test_diversity['test/' + k].update_state(v)

            per_probs = tf.split(probs,
                                 num_or_size_splits=FLAGS.ensemble_size,
                                 axis=0)
            probs = tf.reduce_mean(per_probs, axis=0)

            negative_log_likelihood = tf.reduce_mean(
                tf.keras.losses.sparse_categorical_crossentropy(labels, probs))

            for i in range(FLAGS.ensemble_size):
                member_probs = per_probs[i]
                if dataset_name == 'clean':
                    member_loss = tf.keras.losses.sparse_categorical_crossentropy(
                        labels, member_probs)
                    metrics['test/nll_member_{}'.format(i)].update_state(
                        member_loss)
                    metrics['test/accuracy_member_{}'.format(i)].update_state(
                        labels, member_probs)
                    metrics['test/member_accuracy_mean'].update_state(
                        labels, member_probs)
                    metrics['test/member_ece_mean'].update_state(
                        labels, member_probs)
                elif dataset_name != 'confidence_validation':
                    corrupt_metrics['test/member_acc_mean_{}'.format(
                        dataset_name)].update_state(labels, member_probs)
                    corrupt_metrics['test/member_ece_mean_{}'.format(
                        dataset_name)].update_state(labels, member_probs)

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            elif dataset_name != 'confidence_validation':
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)

            if dataset_name == 'confidence_validation':
                return tf.stack(per_probs, 0), labels

        if dataset_name == 'confidence_validation':
            return strategy.run(step_fn, args=(next(iterator), ))
        else:
            strategy.run(step_fn, args=(next(iterator), ))

    metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        if FLAGS.adaptive_mixup:
            confidence_set_iterator = iter(imagenet_confidence_dataset)
            predictions_list = []
            labels_list = []
            for step in range(FLAGS.confidence_eval_iterations):
                temp_predictions, temp_labels = test_step(
                    confidence_set_iterator, 'confidence_validation')
                predictions_list.append(temp_predictions)
                labels_list.append(temp_labels)
            predictions = [
                tf.concat(list(predictions_list[i].values), axis=1)
                for i in range(len(predictions_list))
            ]
            labels = [
                tf.concat(list(labels_list[i].values), axis=0)
                for i in range(len(labels_list))
            ]
            predictions = tf.concat(predictions, axis=1)
            labels = tf.cast(tf.concat(labels, axis=0), tf.int64)

            def compute_acc_conf(preds, label, focus_class):
                class_preds = tf.boolean_mask(preds,
                                              label == focus_class,
                                              axis=1)
                class_pred_labels = tf.argmax(class_preds, axis=-1)
                confidence = tf.reduce_mean(
                    tf.reduce_max(class_preds, axis=-1), -1)
                accuracy = tf.reduce_mean(tf.cast(
                    class_pred_labels == focus_class, tf.float32),
                                          axis=-1)
                return accuracy - confidence

            calibration_per_class = [
                compute_acc_conf(predictions, labels, i)
                for i in range(NUM_CLASSES)
            ]
            calibration_per_class = tf.stack(calibration_per_class, axis=1)
            logging.info('calibration per class')
            logging.info(calibration_per_class)
            mixup_coeff = tf.where(calibration_per_class > 0, 1.0,
                                   FLAGS.mixup_alpha)
            mixup_coeff = tf.clip_by_value(mixup_coeff, 0, 1)
            logging.info('mixup coeff')
            logging.info(mixup_coeff)
            mixup_params['mixup_coeff'] = mixup_coeff
            builder = utils.ImageNetInput(data_dir=FLAGS.data_dir,
                                          one_hot=(FLAGS.mixup_alpha > 0),
                                          use_bfloat16=FLAGS.use_bfloat16,
                                          mixup_params=mixup_params)
            train_dataset = builder.as_dataset(split=tfds.Split.TRAIN,
                                               batch_size=batch_size)
            train_dataset = strategy.experimental_distribute_dataset(
                train_dataset)
            train_iterator = iter(train_dataset)

        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_start_time = time.time()
                test_step(test_iterator, dataset_name)
                ms_per_example = (time.time() -
                                  test_start_time) * 1e6 / batch_size
                metrics['test/ms_per_example'].update_state(ms_per_example)

            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types, max_intensity,
                FLAGS.alexnet_errors_path)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        for i in range(FLAGS.ensemble_size):
            logging.info(
                'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i,
                metrics['test/nll_member_{}'.format(i)].result(),
                metrics['test/accuracy_member_{}'.format(i)].result() * 100)

        total_metrics = metrics.copy()
        total_metrics.update(training_diversity)
        total_metrics.update(test_diversity)
        total_results = {
            name: metric.result()
            for name, metric in total_metrics.items()
        }
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for _, metric in total_metrics.items():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)

    final_save_name = os.path.join(FLAGS.output_dir, 'model')
    model.save(final_save_name)
    logging.info('Saved model to %s', final_save_name)
Beispiel #5
0
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)

    train_input_fn = utils.load_input_fn(
        split=tfds.Split.TRAIN,
        name=FLAGS.dataset,
        batch_size=FLAGS.per_core_batch_size // FLAGS.batch_repetitions,
        use_bfloat16=FLAGS.use_bfloat16)
    clean_test_input_fn = utils.load_input_fn(
        split=tfds.Split.TEST,
        name=FLAGS.dataset,
        batch_size=FLAGS.per_core_batch_size,
        use_bfloat16=FLAGS.use_bfloat16)
    train_dataset = strategy.experimental_distribute_datasets_from_function(
        train_input_fn)
    test_datasets = {
        'clean':
        strategy.experimental_distribute_datasets_from_function(
            clean_test_input_fn),
    }
    if FLAGS.corruptions_interval > 0:
        if FLAGS.dataset == 'cifar10':
            load_c_input_fn = utils.load_cifar10_c_input_fn
        else:
            load_c_input_fn = functools.partial(utils.load_cifar100_c_input_fn,
                                                path=FLAGS.cifar100_c_path)
        corruption_types, max_intensity = utils.load_corrupted_test_info(
            FLAGS.dataset)
        for corruption in corruption_types:
            for intensity in range(1, max_intensity + 1):
                input_fn = load_c_input_fn(
                    corruption_name=corruption,
                    corruption_intensity=intensity,
                    batch_size=FLAGS.per_core_batch_size,
                    use_bfloat16=FLAGS.use_bfloat16)
                test_datasets['{0}_{1}'.format(corruption, intensity)] = (
                    strategy.experimental_distribute_datasets_from_function(
                        input_fn))

    ds_info = tfds.builder(FLAGS.dataset).info
    train_batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores // FLAGS.batch_repetitions
    test_batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    train_dataset_size = ds_info.splits['train'].num_examples
    steps_per_epoch = train_dataset_size // train_batch_size
    steps_per_eval = ds_info.splits['test'].num_examples // test_batch_size
    num_classes = ds_info.features['label'].num_classes

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building Keras model')
        model = ub.models.wide_resnet_mimo(
            input_shape=[FLAGS.ensemble_size] +
            list(ds_info.features['image'].shape),
            depth=28,
            width_multiplier=FLAGS.width_multiplier,
            num_classes=num_classes,
            ensemble_size=FLAGS.ensemble_size)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Linearly scale learning rate and the decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * train_batch_size / 128
        lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200
                           for start_epoch_str in FLAGS.lr_decay_epochs]
        lr_schedule = utils.LearningRateSchedule(steps_per_epoch, base_lr,
                                                 FLAGS.lr_decay_ratio,
                                                 lr_decay_epochs,
                                                 FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
        }
        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))

        for i in range(FLAGS.ensemble_size):
            metrics['test/nll_member_{}'.format(i)] = tf.keras.metrics.Mean()
            metrics['test/accuracy_member_{}'.format(i)] = (
                tf.keras.metrics.SparseCategoricalAccuracy())
        test_diversity = {
            'test/disagreement': tf.keras.metrics.Mean(),
            'test/average_kl': tf.keras.metrics.Mean(),
            'test/cosine_similarity': tf.keras.metrics.Mean(),
        }

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            batch_size = tf.shape(images)[0]

            main_shuffle = tf.random.shuffle(
                tf.tile(tf.range(batch_size), [FLAGS.batch_repetitions]))
            to_shuffle = tf.cast(
                tf.cast(tf.shape(main_shuffle)[0], tf.float32) *
                (1. - FLAGS.input_repetition_probability), tf.int32)
            shuffle_indices = [
                tf.concat([
                    tf.random.shuffle(main_shuffle[:to_shuffle]),
                    main_shuffle[to_shuffle:]
                ],
                          axis=0) for _ in range(FLAGS.ensemble_size)
            ]
            images = tf.stack([
                tf.gather(images, indices, axis=0)
                for indices in shuffle_indices
            ],
                              axis=1)
            labels = tf.stack([
                tf.gather(labels, indices, axis=0)
                for indices in shuffle_indices
            ],
                              axis=1)

            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)

                negative_log_likelihood = tf.reduce_mean(
                    tf.reduce_sum(
                        tf.keras.losses.sparse_categorical_crossentropy(
                            labels, logits, from_logits=True),
                        axis=1))
                filtered_variables = []
                for var in model.trainable_variables:
                    # Apply l2 on the BN parameters and bias terms.
                    if ('kernel' in var.name or 'batch_norm' in var.name
                            or 'bias' in var.name):
                        filtered_variables.append(tf.reshape(var, (-1, )))

                l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss(
                    tf.concat(filtered_variables, axis=0))

                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                loss = negative_log_likelihood + l2_loss
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            probs = tf.nn.softmax(tf.reshape(logits, [-1, num_classes]))
            flat_labels = tf.reshape(labels, [-1])
            metrics['train/ece'].update_state(flat_labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(flat_labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            images = tf.tile(tf.expand_dims(images, 1),
                             [1, FLAGS.ensemble_size, 1, 1, 1])
            logits = model(images, training=False)
            if FLAGS.use_bfloat16:
                logits = tf.cast(logits, tf.float32)
            probs = tf.nn.softmax(logits)

            if dataset_name == 'clean':
                per_probs = tf.transpose(probs, perm=[1, 0, 2])
                diversity_results = um.average_pairwise_diversity(
                    per_probs, FLAGS.ensemble_size)
                for k, v in diversity_results.items():
                    test_diversity['test/' + k].update_state(v)

            for i in range(FLAGS.ensemble_size):
                member_probs = probs[:, i]
                member_loss = tf.keras.losses.sparse_categorical_crossentropy(
                    labels, member_probs)
                metrics['test/nll_member_{}'.format(i)].update_state(
                    member_loss)
                metrics['test/accuracy_member_{}'.format(i)].update_state(
                    labels, member_probs)

            # Negative log marginal likelihood computed in a numerically-stable way.
            labels_tiled = tf.tile(tf.expand_dims(labels, 1),
                                   [1, FLAGS.ensemble_size])
            log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy(
                labels_tiled, logits, from_logits=True)
            negative_log_likelihood = tf.reduce_mean(
                -tf.reduce_logsumexp(log_likelihoods, axis=[1]) +
                tf.math.log(float(FLAGS.ensemble_size)))
            probs = tf.math.reduce_mean(probs, axis=1)  # marginalize

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            else:
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)

        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * (FLAGS.train_epochs)
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_start_time = time.time()
                test_step(test_iterator, dataset_name)
                ms_per_example = (time.time() -
                                  test_start_time) * 1e6 / test_batch_size
                metrics['test/ms_per_example'].update_state(ms_per_example)
            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types, max_intensity)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        for i in range(FLAGS.ensemble_size):
            logging.info(
                'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i,
                metrics['test/nll_member_{}'.format(i)].result(),
                metrics['test/accuracy_member_{}'.format(i)].result() * 100)

        metrics.update(test_diversity)
        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)

    final_checkpoint_name = checkpoint.save(
        os.path.join(FLAGS.output_dir, 'checkpoint'))
    logging.info('Saved last checkpoint to %s', final_checkpoint_name)
Beispiel #6
0
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    # Initialize distribution strategy on flag-specified accelerator
    strategy = utils.init_distribution_strategy(FLAGS.force_use_cpu,
                                                FLAGS.use_gpu, FLAGS.tpu)

    train_batch_size = FLAGS.train_batch_size * FLAGS.num_cores
    eval_batch_size = FLAGS.eval_batch_size * FLAGS.num_cores

    # As per the Kaggle challenge, we have split sizes:
    # train: 35,126
    # validation: 10,906 (currently unused)
    # test: 42,670
    ds_info = tfds.builder('diabetic_retinopathy_detection').info
    steps_per_epoch = ds_info.splits['train'].num_examples // train_batch_size
    steps_per_eval = ds_info.splits['test'].num_examples // eval_batch_size

    dataset_train_builder = ub.datasets.get('diabetic_retinopathy_detection',
                                            split='train',
                                            data_dir=FLAGS.data_dir)
    dataset_train = dataset_train_builder.load(batch_size=train_batch_size)
    dataset_train = strategy.experimental_distribute_dataset(dataset_train)
    dataset_test_builder = ub.datasets.get('diabetic_retinopathy_detection',
                                           split='test',
                                           data_dir=FLAGS.data_dir)
    dataset_test = dataset_test_builder.load(batch_size=eval_batch_size)
    dataset_test = strategy.experimental_distribute_dataset(dataset_test)

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building Keras ResNet-50 deterministic model.')
        model = ub.models.resnet50_deterministic(
            input_shape=utils.load_input_shape(dataset_train),
            num_classes=1)  # binary classification task
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())

        # Linearly scale learning rate and the decay epochs by vanilla settings.
        base_lr = (FLAGS.base_learning_rate *
                   train_batch_size) / DEFAULT_TRAIN_BATCH_SIZE
        lr_decay_epochs = [
            (int(start_epoch_str) * FLAGS.train_epochs) // DEFAULT_NUM_EPOCHS
            for start_epoch_str in FLAGS.lr_decay_epochs
        ]

        lr_schedule = utils.LearningRateSchedule(
            steps_per_epoch,
            base_lr,
            decay_ratio=FLAGS.lr_decay_ratio,
            decay_epochs=lr_decay_epochs,
            warmup_epochs=FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.BinaryAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),  # NLL + L2
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.BinaryAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins)
        }
        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope()
            # so that optimizer slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    # Finally, define OOD metrics outside the accelerator scope for CPU eval.
    metrics.update({
        'train/auc': tf.keras.metrics.AUC(),
        'test/auc': tf.keras.metrics.AUC()
    })

    @tf.function
    def train_step(iterator):
        """Training step function."""
        def step_fn(inputs):
            """Per-replica step function."""
            images = inputs['features']
            labels = inputs['labels']

            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)

                negative_log_likelihood = tf.reduce_mean(
                    tf.keras.losses.binary_crossentropy(y_true=tf.expand_dims(
                        labels, axis=-1),
                                                        y_pred=logits,
                                                        from_logits=True))
                l2_loss = sum(model.losses)
                loss = negative_log_likelihood + (FLAGS.l2 * l2_loss)

                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))
            probs = tf.squeeze(tf.nn.sigmoid(logits))
            metrics['train/ece'].update_state(labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, probs)
            metrics['train/auc'].update_state(labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator):
        """Evaluation step function."""
        def step_fn(inputs):
            """Per-replica step function."""
            images = inputs['features']
            labels = inputs['labels']
            logits = model(images, training=False)
            if FLAGS.use_bfloat16:
                logits = tf.cast(logits, tf.float32)

            negative_log_likelihood = tf.reduce_mean(
                tf.keras.losses.binary_crossentropy(y_true=tf.expand_dims(
                    labels, axis=-1),
                                                    y_pred=logits,
                                                    from_logits=True))
            probs = tf.squeeze(tf.nn.sigmoid(logits))
            metrics['test/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['test/accuracy'].update_state(labels, probs)
            metrics['test/auc'].update_state(labels, probs)
            metrics['test/ece'].update_state(labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})
    start_time = time.time()

    for epoch in range(initial_epoch, FLAGS.train_epochs):
        train_iterator = iter(dataset_train)
        test_iterator = iter(dataset_test)
        logging.info('Starting to run epoch: %s', epoch + 1)
        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        for step in range(steps_per_eval):
            if step % 20 == 0:
                logging.info('Starting to run eval step %s of epoch: %s', step,
                             epoch + 1)

            test_start_time = time.time()
            test_step(test_iterator)
            ms_per_example = (time.time() -
                              test_start_time) * 1e6 / eval_batch_size
            metrics['test/ms_per_example'].update_state(ms_per_example)

        logging.info(
            'Train Loss (NLL+L2): %.4f, Accuracy: %.2f%%, AUC: %.2f%%, ECE: %.2f%%',
            metrics['train/loss'].result(),
            metrics['train/accuracy'].result() * 100,
            metrics['train/auc'].result() * 100,
            metrics['train/ece'].result() * 100)
        logging.info(
            'Test NLL: %.4f, Accuracy: %.2f%%, AUC: %.2f%%, ECE: %.2f%%',
            metrics['test/negative_log_likelihood'].result(),
            metrics['test/accuracy'].result() * 100,
            metrics['test/auc'].result() * 100,
            metrics['test/ece'].result() * 100)
        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)

            # TODO(nband): debug checkpointing
            # Also save Keras model, due to checkpoint.save issue
            keras_model_name = os.path.join(FLAGS.output_dir,
                                            f'keras_model_{epoch + 1}')
            model.save(keras_model_name)
            logging.info('Saved keras model to %s', keras_model_name)

    final_checkpoint_name = checkpoint.save(
        os.path.join(FLAGS.output_dir, 'checkpoint'))
    logging.info('Saved last checkpoint to %s', final_checkpoint_name)

    keras_model_name = os.path.join(FLAGS.output_dir,
                                    f'keras_model_{FLAGS.train_epochs}')
    model.save(keras_model_name)
    logging.info('Saved keras model to %s', keras_model_name)
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.TPUStrategy(resolver)

    ds_info = tfds.builder(FLAGS.dataset).info
    batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    train_dataset_size = ds_info.splits['train'].num_examples
    steps_per_epoch = train_dataset_size // batch_size
    steps_per_eval = ds_info.splits['test'].num_examples // batch_size
    num_classes = ds_info.features['label'].num_classes

    train_dataset = ub.datasets.get(
        FLAGS.dataset, split=tfds.Split.TRAIN).load(batch_size=batch_size)
    clean_test_dataset = ub.datasets.get(
        FLAGS.dataset, split=tfds.Split.TEST).load(batch_size=batch_size)
    train_dataset = strategy.experimental_distribute_dataset(train_dataset)
    test_datasets = {
        'clean': strategy.experimental_distribute_dataset(clean_test_dataset),
    }
    if FLAGS.corruptions_interval > 0:
        extra_kwargs = {}
        if FLAGS.dataset == 'cifar100':
            extra_kwargs['data_dir'] = FLAGS.cifar100_c_path
        corruption_types, _ = utils.load_corrupted_test_info(FLAGS.dataset)
        for corruption_type in corruption_types:
            for severity in range(1, 6):
                dataset = ub.datasets.get(
                    f'{FLAGS.dataset}_corrupted',
                    corruption_type=corruption_type,
                    severity=severity,
                    split=tfds.Split.TEST,
                    **extra_kwargs).load(batch_size=batch_size)
                test_datasets[f'{corruption_type}_{severity}'] = (
                    strategy.experimental_distribute_dataset(dataset))

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building ResNet model')
        model = ub.models.wide_resnet_variational(
            input_shape=ds_info.features['image'].shape,
            depth=28,
            width_multiplier=10,
            num_classes=num_classes,
            prior_stddev=FLAGS.prior_stddev,
            dataset_size=train_dataset_size,
            stddev_init=FLAGS.stddev_init)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Linearly scale learning rate and the decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 128
        lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200
                           for start_epoch_str in FLAGS.lr_decay_epochs]
        lr_schedule = utils.LearningRateSchedule(
            steps_per_epoch,
            base_lr,
            decay_ratio=FLAGS.lr_decay_ratio,
            decay_epochs=lr_decay_epochs,
            warmup_epochs=FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'train/kl': tf.keras.metrics.Mean(),
            'train/kl_scale': tf.keras.metrics.Mean(),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
        }
        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, 6):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images = inputs['features']
            labels = inputs['labels']
            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                negative_log_likelihood = tf.reduce_mean(
                    tf.keras.losses.sparse_categorical_crossentropy(
                        labels, logits, from_logits=True))

                filtered_variables = []
                for var in model.trainable_variables:
                    # Apply l2 on the BN parameters and bias terms. This
                    # excludes only fast weight approximate posterior/prior parameters,
                    # but pay caution to their naming scheme.
                    if 'batch_norm' in var.name or 'bias' in var.name:
                        filtered_variables.append(tf.reshape(var, (-1, )))

                l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss(
                    tf.concat(filtered_variables, axis=0))
                kl = sum(model.losses)
                kl_scale = tf.cast(optimizer.iterations + 1, kl.dtype)
                kl_scale /= steps_per_epoch * FLAGS.kl_annealing_epochs
                kl_scale = tf.minimum(1., kl_scale)
                kl_loss = kl_scale * kl

                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                loss = negative_log_likelihood + l2_loss + kl_loss
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            probs = tf.nn.softmax(logits)
            metrics['train/ece'].update_state(labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/kl'].update_state(kl)
            metrics['train/kl_scale'].update_state(kl_scale)
            metrics['train/accuracy'].update_state(labels, logits)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images = inputs['features']
            labels = inputs['labels']
            # TODO(trandustin): Use more eval samples only on corrupted predictions;
            # it's expensive but a one-time compute if scheduled post-training.
            if FLAGS.num_eval_samples > 1 and dataset_name != 'clean':
                logits = tf.stack([
                    model(images, training=False)
                    for _ in range(FLAGS.num_eval_samples)
                ],
                                  axis=0)
            else:
                logits = model(images, training=False)
            probs = tf.nn.softmax(logits)
            if FLAGS.num_eval_samples > 1 and dataset_name != 'clean':
                probs = tf.reduce_mean(probs, axis=0)
            negative_log_likelihood = tf.reduce_mean(
                tf.keras.losses.sparse_categorical_crossentropy(labels, probs))

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            else:
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_start_time = time.time()
                test_step(test_iterator, dataset_name)
                ms_per_example = (time.time() -
                                  test_start_time) * 1e6 / batch_size
                metrics['test/ms_per_example'].update_state(ms_per_example)

            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)

    final_checkpoint_name = checkpoint.save(
        os.path.join(FLAGS.output_dir, 'checkpoint'))
    logging.info('Saved last checkpoint to %s', final_checkpoint_name)
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    ds_info = tfds.builder(FLAGS.dataset).info
    per_core_batch_size = FLAGS.per_core_batch_size // FLAGS.ensemble_size
    batch_size = per_core_batch_size * FLAGS.num_cores
    # Train_proportion is a float so need to convert steps_per_epoch to int.
    steps_per_epoch = int(
        (ds_info.splits['train'].num_examples * FLAGS.train_proportion) //
        batch_size)
    steps_per_eval = ds_info.splits['test'].num_examples // batch_size
    num_classes = ds_info.features['label'].num_classes

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.TPUStrategy(resolver)

    train_dataset = ub.datasets.get(
        FLAGS.dataset,
        split=tfds.Split.TRAIN,
        validation_percent=1. -
        FLAGS.train_proportion).load(batch_size=batch_size)
    clean_test_dataset = ub.datasets.get(
        FLAGS.dataset, split=tfds.Split.TEST).load(batch_size=batch_size)
    train_dataset = strategy.experimental_distribute_dataset(train_dataset)
    test_datasets = {
        'clean': strategy.experimental_distribute_dataset(clean_test_dataset),
    }
    if FLAGS.corruptions_interval > 0:
        extra_kwargs = {}
        if FLAGS.dataset == 'cifar100':
            extra_kwargs['data_dir'] = FLAGS.cifar100_c_path
        corruption_types, _ = utils.load_corrupted_test_info(FLAGS.dataset)
        for corruption_type in corruption_types:
            for severity in range(1, 6):
                dataset = ub.datasets.get(
                    f'{FLAGS.dataset}_corrupted',
                    corruption_type=corruption_type,
                    severity=severity,
                    split=tfds.Split.TEST,
                    **extra_kwargs).load(batch_size=batch_size)
                test_datasets[f'{corruption_type}_{severity}'] = (
                    strategy.experimental_distribute_dataset(dataset))

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building Keras model')
        model = ub.models.wide_resnet_sngp_be(
            input_shape=ds_info.features['image'].shape,
            batch_size=batch_size,
            depth=28,
            width_multiplier=10,
            num_classes=num_classes,
            ensemble_size=FLAGS.ensemble_size,
            random_sign_init=FLAGS.random_sign_init,
            l2=FLAGS.l2,
            use_gp_layer=FLAGS.use_gp_layer,
            gp_input_dim=FLAGS.gp_input_dim,
            gp_hidden_dim=FLAGS.gp_hidden_dim,
            gp_scale=FLAGS.gp_scale,
            gp_bias=FLAGS.gp_bias,
            gp_input_normalization=FLAGS.gp_input_normalization,
            gp_cov_discount_factor=FLAGS.gp_cov_discount_factor,
            gp_cov_ridge_penalty=FLAGS.gp_cov_ridge_penalty,
            use_spec_norm=FLAGS.use_spec_norm,
            spec_norm_iteration=FLAGS.spec_norm_iteration,
            spec_norm_bound=FLAGS.spec_norm_bound)

        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Linearly scale learning rate and the decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 128
        lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200
                           for start_epoch_str in FLAGS.lr_decay_epochs]
        lr_schedule = utils.LearningRateSchedule(
            steps_per_epoch,
            base_lr,
            decay_ratio=FLAGS.lr_decay_ratio,
            decay_epochs=lr_decay_epochs,
            warmup_epochs=FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/stddev': tf.keras.metrics.Mean(),
        }
        for i in range(FLAGS.ensemble_size):
            metrics['test/nll_member_{}'.format(i)] = tf.keras.metrics.Mean()
            metrics['test/accuracy_member_{}'.format(i)] = (
                tf.keras.metrics.SparseCategoricalAccuracy())
        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, 6):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))
                    corrupt_metrics['test/stddev_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images = inputs['features']
            labels = inputs['labels']
            images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])
            labels = tf.tile(labels, [FLAGS.ensemble_size])

            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if isinstance(logits, tuple):
                    # If model returns a tuple of (logits, covmat), extract logits
                    logits, _ = logits
                negative_log_likelihood = tf.reduce_mean(
                    tf.keras.losses.sparse_categorical_crossentropy(
                        labels, logits, from_logits=True))
                l2_loss = sum(model.losses)
                loss = negative_log_likelihood + l2_loss
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            # Separate learning rate implementation.
            if FLAGS.fast_weight_lr_multiplier != 1.0:
                grads_and_vars = []
                for grad, var in zip(grads, model.trainable_variables):
                    # Apply different learning rate on the fast weight approximate
                    # posterior/prior parameters. This is excludes BN and slow weights,
                    # but pay caution to the naming scheme.
                    if ('batch_norm' not in var.name
                            and 'kernel' not in var.name):
                        grads_and_vars.append(
                            (grad * FLAGS.fast_weight_lr_multiplier, var))
                    else:
                        grads_and_vars.append((grad, var))
                optimizer.apply_gradients(grads_and_vars)
            else:
                optimizer.apply_gradients(zip(grads,
                                              model.trainable_variables))

            probs = tf.nn.softmax(logits)
            metrics['train/ece'].update_state(labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images = inputs['features']
            labels = inputs['labels']

            logits_list = []
            stddev_list = []

            for i in range(FLAGS.ensemble_size):
                logits = model(images, training=False)
                if isinstance(logits, tuple):
                    # If model returns a tuple of (logits, covmat), extract both
                    logits, covmat = logits
                else:
                    covmat = tf.eye(FLAGS.per_core_batch_size)
                logits = mean_field_logits(
                    logits,
                    covmat,
                    mean_field_factor=FLAGS.gp_mean_field_factor)
                stddev = tf.sqrt(tf.linalg.diag_part(covmat))

                stddev_list.append(stddev)
                logits_list.append(logits)

                member_probs = tf.nn.softmax(logits)
                member_loss = tf.keras.losses.sparse_categorical_crossentropy(
                    labels, member_probs)
                metrics['test/nll_member_{}'.format(i)].update_state(
                    member_loss)
                metrics['test/accuracy_member_{}'.format(i)].update_state(
                    labels, member_probs)
            # Logits dimension is (num_samples, batch_size, num_classes).
            logits_list = tf.stack(logits_list, axis=0)
            stddev_list = tf.stack(stddev_list, axis=0)

            stddev = tf.reduce_mean(stddev_list, axis=0)
            probs_list = tf.nn.softmax(logits_list)
            probs = tf.reduce_mean(probs_list, axis=0)

            labels_broadcasted = tf.broadcast_to(
                labels, [FLAGS.ensemble_size, labels.shape[0]])
            log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy(
                labels_broadcasted, logits_list, from_logits=True)
            negative_log_likelihood = tf.reduce_mean(
                -tf.reduce_logsumexp(log_likelihoods, axis=[0]) +
                tf.math.log(float(FLAGS.ensemble_size)))

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
                metrics['test/stddev'].update_state(stddev)
            else:
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/stddev_{}'.format(
                    dataset_name)].update_state(stddev)

        strategy.run(step_fn, args=(next(iterator), ))

    metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_start_time = time.time()
                test_step(test_iterator, dataset_name)
                ms_per_example = (time.time() -
                                  test_start_time) * 1e6 / batch_size
                metrics['test/ms_per_example'].update_state(ms_per_example)

            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        for i in range(FLAGS.ensemble_size):
            logging.info(
                'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i,
                metrics['test/nll_member_{}'.format(i)].result(),
                metrics['test/accuracy_member_{}'.format(i)].result() * 100)
        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)

    final_checkpoint_name = checkpoint.save(
        os.path.join(FLAGS.output_dir, 'checkpoint'))
    logging.info('Saved last checkpoint to %s', final_checkpoint_name)
Beispiel #9
0
def main(argv):
    del argv  # unused arg
    tf.enable_v2_behavior()
    tf.random.set_seed(FLAGS.seed)

    batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    steps_per_epoch = APPROX_IMAGENET_TRAIN_IMAGES // batch_size
    steps_per_eval = IMAGENET_VALIDATION_IMAGES // batch_size

    logging.info('Saving checkpoints at %s', FLAGS.output_dir)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)

    imagenet_train = utils.ImageNetInput(is_training=True,
                                         data_dir=FLAGS.data_dir,
                                         batch_size=batch_size,
                                         use_bfloat16=not FLAGS.use_gpu,
                                         drop_remainder=True)
    imagenet_eval = utils.ImageNetInput(is_training=False,
                                        data_dir=FLAGS.data_dir,
                                        batch_size=batch_size,
                                        use_bfloat16=not FLAGS.use_gpu,
                                        drop_remainder=True)
    train_dataset = strategy.experimental_distribute_dataset(
        imagenet_train.input_fn())
    test_dataset = strategy.experimental_distribute_dataset(
        imagenet_eval.input_fn())

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    with strategy.scope():
        logging.info('Building Keras ResNet-50 model')
        model = deterministic_model.resnet50(input_shape=(224, 224, 3),
                                             num_classes=NUM_CLASSES)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Scale learning rate and decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 256
        learning_rate = utils.LearningRateSchedule(steps_per_epoch, base_lr,
                                                   FLAGS.train_epochs,
                                                   _LR_SCHEDULE)
        optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate,
                                            momentum=0.9,
                                            nesterov=True)
        train_loss = tf.keras.metrics.Mean('train_loss', dtype=tf.float32)
        train_nll = tf.keras.metrics.Mean('train_nll', dtype=tf.float32)
        train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
            'train_accuracy', dtype=tf.float32)
        test_nll = tf.keras.metrics.Mean('test_nll', dtype=tf.float32)
        test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
            'test_accuracy', dtype=tf.float32)
        logging.info('Finished building Keras ResNet-50 model')

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs

            with tf.GradientTape() as tape:
                predictions = model(images, training=True)
                if FLAGS.use_bfloat16:
                    predictions = tf.cast(predictions, tf.float32)

                prediction_loss = tf.keras.losses.sparse_categorical_crossentropy(
                    labels, predictions)
                loss1 = tf.reduce_mean(prediction_loss)
                filtered_variables = []
                for var in model.trainable_variables:
                    # Apply l2 on the weights. This excludes BN parameters and biases, but
                    # pay caution to their naming scheme.
                    if 'kernel' in var.name or 'bias' in var.name:
                        filtered_variables.append(tf.reshape(var, (-1, )))

                l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss(
                    tf.concat(filtered_variables, axis=0))
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                loss = loss1 + l2_loss
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            train_loss.update_state(loss)
            train_nll.update_state(loss1)
            train_accuracy.update_state(labels, predictions)

        strategy.experimental_run_v2(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            predictions = model(images, training=False)
            if FLAGS.use_bfloat16:
                predictions = tf.cast(predictions, tf.float32)

            loss = tf.keras.losses.sparse_categorical_crossentropy(
                labels, predictions)
            loss = safe_mean(loss)
            test_nll.update_state(loss)
            test_accuracy.update_state(labels, predictions)

        strategy.experimental_run_v2(step_fn, args=(next(iterator), ))

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        with summary_writer.as_default():
            for step in range(steps_per_epoch):
                train_step(train_iterator)

                current_step = epoch * steps_per_epoch + (step + 1)
                max_steps = steps_per_epoch * FLAGS.train_epochs
                time_elapsed = time.time() - start_time
                steps_per_sec = float(current_step) / time_elapsed
                eta_seconds = (max_steps - current_step) / steps_per_sec
                message = (
                    '{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                    'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                        current_step / max_steps, epoch + 1,
                        FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                        time_elapsed / 60))
                if step % 20 == 0:
                    logging.info(message)

            tf.summary.scalar('train/loss',
                              train_loss.result(),
                              step=epoch + 1)
            tf.summary.scalar('train/nll', train_nll.result(), step=epoch + 1)
            tf.summary.scalar('train/accuracy',
                              train_accuracy.result(),
                              step=epoch + 1)
            logging.info('Train loss: %s, Accuracy: %s%%',
                         round(float(train_loss.result()), 4),
                         round(float(train_accuracy.result() * 100), 2))

            train_loss.reset_states()
            train_nll.reset_states()
            train_accuracy.reset_states()

            test_iterator = iter(test_dataset)
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_step(test_iterator)
            tf.summary.scalar('test/negative_log_likelihood',
                              test_nll.result(),
                              step=epoch + 1)
            tf.summary.scalar('test/accuracy',
                              test_accuracy.result(),
                              step=epoch + 1)
            logging.info('Test NLL: %s, Accuracy: %s%%',
                         round(float(test_nll.result()), 4),
                         round(float(test_accuracy.result() * 100), 2))

            test_nll.reset_states()
            test_accuracy.reset_states()

        checkpoint_name = checkpoint.save(
            os.path.join(FLAGS.output_dir, 'checkpoint'))
        logging.info('Saved checkpoint to %s', checkpoint_name)
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)

    per_core_batch_size = FLAGS.per_core_batch_size // FLAGS.ensemble_size
    check_bool = FLAGS.train_proportion > 0 and FLAGS.train_proportion <= 1
    assert check_bool, 'Proportion of train set has to meet 0 < prop <= 1.'

    drop_remainder_validation = True
    if not FLAGS.use_gpu:
        # This has to be True for TPU traing, otherwise the batchsize of images in
        # the validation set can't be determined by TPU compile.
        assert drop_remainder_validation, 'drop_remainder must be True in TPU mode.'

    train_input_fn = utils.load_input_fn(split=tfds.Split.TRAIN,
                                         name=FLAGS.dataset,
                                         batch_size=per_core_batch_size,
                                         use_bfloat16=FLAGS.use_bfloat16,
                                         repeat=True,
                                         proportion=FLAGS.train_proportion)
    validation_proportion = 1 - FLAGS.train_proportion
    validation_input_fn = utils.load_input_fn(
        split=tfds.Split.VALIDATION,
        name=FLAGS.dataset,
        batch_size=per_core_batch_size,
        use_bfloat16=FLAGS.use_bfloat16,
        repeat=True,
        proportion=validation_proportion,
        drop_remainder=drop_remainder_validation)
    clean_test_input_fn = utils.load_input_fn(split=tfds.Split.TEST,
                                              name=FLAGS.dataset,
                                              batch_size=per_core_batch_size,
                                              use_bfloat16=FLAGS.use_bfloat16)
    train_dataset = strategy.experimental_distribute_datasets_from_function(
        train_input_fn)
    validation_dataset = strategy.experimental_distribute_datasets_from_function(
        validation_input_fn)
    test_datasets = {
        'clean':
        strategy.experimental_distribute_datasets_from_function(
            clean_test_input_fn),
    }
    if FLAGS.corruptions_interval > 0:
        if FLAGS.dataset == 'cifar10':
            load_c_input_fn = utils.load_cifar10_c_input_fn
        else:
            load_c_input_fn = functools.partial(utils.load_cifar100_c_input_fn,
                                                path=FLAGS.cifar100_c_path)
        corruption_types, max_intensity = utils.load_corrupted_test_info(
            FLAGS.dataset)
        for corruption in corruption_types:
            for intensity in range(1, max_intensity + 1):
                input_fn = load_c_input_fn(corruption_name=corruption,
                                           corruption_intensity=intensity,
                                           batch_size=per_core_batch_size,
                                           use_bfloat16=FLAGS.use_bfloat16)
                test_datasets['{0}_{1}'.format(corruption, intensity)] = (
                    strategy.experimental_distribute_datasets_from_function(
                        input_fn))

    ds_info = tfds.builder(FLAGS.dataset).info
    batch_size = per_core_batch_size * FLAGS.num_cores
    train_sample_size = ds_info.splits[
        'train'].num_examples * FLAGS.train_proportion
    steps_per_epoch = int(train_sample_size / batch_size)
    train_sample_size = int(train_sample_size)

    steps_per_eval = ds_info.splits['test'].num_examples // batch_size
    num_classes = ds_info.features['label'].num_classes

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    logging.info('Building Keras model.')
    depth = 28
    width = 10

    dict_ranges = {'min': FLAGS.min_l2_range, 'max': FLAGS.max_l2_range}
    ranges = [dict_ranges for _ in range(6)]  # 6 independent l2 parameters
    model_config = {
        'key_to_index': {
            'input_conv_l2_kernel': 0,
            'group_l2_kernel': 1,
            'group_1_l2_kernel': 2,
            'group_2_l2_kernel': 3,
            'dense_l2_kernel': 4,
            'dense_l2_bias': 5,
        },
        'ranges': ranges,
        'test': None
    }
    lambdas_config = LambdaConfig(model_config['ranges'],
                                  model_config['key_to_index'])

    if FLAGS.e_body_hidden_units > 0:
        e_body_arch = '({},)'.format(FLAGS.e_body_hidden_units)
    else:
        e_body_arch = '()'
    e_shared_arch = '()'
    e_activation = 'tanh'
    filters_resnet = [16]
    for i in range(0, 3):  # 3 groups of blocks
        filters_resnet.extend([16 * width * 2**i] *
                              9)  # 9 layers in each block
    # e_head dim for conv2d is just the number of filters (only
    # kernel) and twice num of classes for the last dense layer (kernel + bias)
    e_head_dims = [x for x in filters_resnet] + [2 * num_classes]

    with strategy.scope():
        e_models = e_factory(
            lambdas_config.input_shape,
            e_head_dims=e_head_dims,
            e_body_arch=eval(e_body_arch),  # pylint: disable=eval-used
            e_shared_arch=eval(e_shared_arch),  # pylint: disable=eval-used
            activation=e_activation,
            use_bias=FLAGS.e_model_use_bias,
            e_head_init=FLAGS.init_emodels_stddev)

        model = wide_resnet_hyperbatchensemble(
            input_shape=ds_info.features['image'].shape,
            depth=depth,
            width_multiplier=width,
            num_classes=num_classes,
            ensemble_size=FLAGS.ensemble_size,
            random_sign_init=FLAGS.random_sign_init,
            config=lambdas_config,
            e_models=e_models,
            l2_batchnorm_layer=FLAGS.l2_batchnorm,
            regularize_fast_weights=FLAGS.regularize_fast_weights,
            fast_weights_eq_contraint=FLAGS.fast_weights_eq_contraint,
            version=2)

        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # build hyper-batchensemble complete -------------------------

        # Initialize Lambda distributions for tuning
        lambdas_mean = tf.reduce_mean(
            log_uniform_mean([lambdas_config.log_min, lambdas_config.log_max]))
        lambdas0 = tf.random.normal((FLAGS.ensemble_size, lambdas_config.dim),
                                    lambdas_mean,
                                    0.1 * FLAGS.ens_init_delta_bounds)
        lower0 = lambdas0 - tf.constant(FLAGS.ens_init_delta_bounds)
        lower0 = tf.maximum(lower0, 1e-8)
        upper0 = lambdas0 + tf.constant(FLAGS.ens_init_delta_bounds)

        log_lower = tf.Variable(tf.math.log(lower0))
        log_upper = tf.Variable(tf.math.log(upper0))
        lambda_parameters = [log_lower, log_upper]  # these variables are tuned
        clip_lambda_parameters(lambda_parameters, lambdas_config)

        # Optimizer settings to train model weights
        # Linearly scale learning rate and the decay epochs by vanilla settings.
        # Note: Here, we don't divide the epochs by 200 as for the other uncertainty
        # baselines.
        base_lr = FLAGS.base_learning_rate * batch_size / 128
        lr_decay_epochs = [int(l) for l in FLAGS.lr_decay_epochs]

        lr_schedule = utils.LearningRateSchedule(
            steps_per_epoch,
            base_lr,
            decay_ratio=FLAGS.lr_decay_ratio,
            decay_epochs=lr_decay_epochs,
            warmup_epochs=FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)

        # tuner used for optimizing lambda_parameters
        tuner = tf.keras.optimizers.Adam(FLAGS.lr_tuning)

        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'train/disagreement': tf.keras.metrics.Mean(),
            'train/average_kl': tf.keras.metrics.Mean(),
            'train/cosine_similarity': tf.keras.metrics.Mean(),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/gibbs_nll': tf.keras.metrics.Mean(),
            'test/gibbs_accuracy':
            tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/disagreement': tf.keras.metrics.Mean(),
            'test/average_kl': tf.keras.metrics.Mean(),
            'test/cosine_similarity': tf.keras.metrics.Mean(),
            'validation/loss': tf.keras.metrics.Mean(),
            'validation/loss_entropy': tf.keras.metrics.Mean(),
            'validation/loss_ce': tf.keras.metrics.Mean()
        }
        corrupt_metrics = {}

        for i in range(FLAGS.ensemble_size):
            metrics['test/nll_member_{}'.format(i)] = tf.keras.metrics.Mean()
            metrics['test/accuracy_member_{}'.format(i)] = (
                tf.keras.metrics.SparseCategoricalAccuracy())
        if FLAGS.corruptions_interval > 0:
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))

        checkpoint = tf.train.Checkpoint(model=model,
                                         lambda_parameters=lambda_parameters,
                                         optimizer=optimizer)

        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint and FLAGS.restore_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])

            # generate lambdas
            lambdas = log_uniform_sample(per_core_batch_size,
                                         lambda_parameters)
            lambdas = tf.reshape(lambdas,
                                 (FLAGS.ensemble_size * per_core_batch_size,
                                  lambdas_config.dim))

            with tf.GradientTape() as tape:
                logits = model([images, lambdas], training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)

                if FLAGS.use_gibbs_ce:
                    # Average of single model CEs
                    # tiling of labels should be only done for Gibbs CE loss
                    labels = tf.tile(labels, [FLAGS.ensemble_size])
                    negative_log_likelihood = tf.reduce_mean(
                        tf.keras.losses.sparse_categorical_crossentropy(
                            labels, logits, from_logits=True))
                else:
                    # Ensemble CE uses no tiling of the labels
                    negative_log_likelihood = ensemble_crossentropy(
                        labels, logits, FLAGS.ensemble_size)
                # Note: Divide l2_loss by sample_size (this differs from uncertainty_
                # baselines implementation.)
                l2_loss = sum(model.losses) / train_sample_size
                loss = negative_log_likelihood + l2_loss
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)

            # Separate learning rate for fast weights.
            grads_and_vars = []
            for grad, var in zip(grads, model.trainable_variables):
                if (('alpha' in var.name or 'gamma' in var.name)
                        and 'batch_norm' not in var.name):
                    grads_and_vars.append(
                        (grad * FLAGS.fast_weight_lr_multiplier, var))
                else:
                    grads_and_vars.append((grad, var))
            optimizer.apply_gradients(grads_and_vars)

            probs = tf.nn.softmax(logits)
            per_probs = tf.split(probs,
                                 num_or_size_splits=FLAGS.ensemble_size,
                                 axis=0)
            per_probs_stacked = tf.stack(per_probs, axis=0)
            metrics['train/ece'].update_state(labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)
            diversity_results = um.average_pairwise_diversity(
                per_probs_stacked, FLAGS.ensemble_size)
            for k, v in diversity_results.items():
                metrics['train/' + k].update_state(v)

            if grads_and_vars:
                grads, _ = zip(*grads_and_vars)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def tuning_step(iterator):
        """Tuning StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])

            with tf.GradientTape(watch_accessed_variables=False) as tape:
                tape.watch(lambda_parameters)

                # sample lambdas
                if FLAGS.sample_and_tune:
                    lambdas = log_uniform_sample(per_core_batch_size,
                                                 lambda_parameters)
                else:
                    lambdas = log_uniform_mean(lambda_parameters)
                    lambdas = tf.repeat(lambdas, per_core_batch_size, axis=0)
                lambdas = tf.reshape(lambdas,
                                     (FLAGS.ensemble_size *
                                      per_core_batch_size, lambdas_config.dim))
                # ensemble CE
                logits = model([images, lambdas], training=False)
                ce = ensemble_crossentropy(labels, logits, FLAGS.ensemble_size)
                # entropy penalty for lambda distribution
                entropy = FLAGS.tau * log_uniform_entropy(lambda_parameters)
                loss = ce - entropy
                scaled_loss = loss / strategy.num_replicas_in_sync

            gradients = tape.gradient(loss, lambda_parameters)
            tuner.apply_gradients(zip(gradients, lambda_parameters))

            metrics['validation/loss_ce'].update_state(
                ce / strategy.num_replicas_in_sync)
            metrics['validation/loss_entropy'].update_state(
                entropy / strategy.num_replicas_in_sync)
            metrics['validation/loss'].update_state(scaled_loss)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            # Note that we don't use tf.tile for labels here
            images, labels = inputs
            images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])

            # get lambdas
            lambdas = log_uniform_mean(lambda_parameters)
            rep_lambdas = tf.repeat(lambdas, per_core_batch_size, axis=0)

            # eval on testsets
            logits = model([images, rep_lambdas], training=False)
            if FLAGS.use_bfloat16:
                logits = tf.cast(logits, tf.float32)
            probs = tf.nn.softmax(logits)
            per_probs = tf.split(probs,
                                 num_or_size_splits=FLAGS.ensemble_size,
                                 axis=0)

            # per member performance and gibbs performance (average per member perf)
            if dataset_name == 'clean':
                for i in range(FLAGS.ensemble_size):
                    member_probs = per_probs[i]
                    member_loss = tf.keras.losses.sparse_categorical_crossentropy(
                        labels, member_probs)
                    metrics['test/nll_member_{}'.format(i)].update_state(
                        member_loss)
                    metrics['test/accuracy_member_{}'.format(i)].update_state(
                        labels, member_probs)

                labels_tile = tf.tile(labels, [FLAGS.ensemble_size])
                metrics['test/gibbs_nll'].update_state(
                    tf.reduce_mean(
                        tf.keras.losses.sparse_categorical_crossentropy(
                            labels_tile, logits, from_logits=True)))
                metrics['test/gibbs_accuracy'].update_state(labels_tile, probs)

            # ensemble performance
            negative_log_likelihood = ensemble_crossentropy(
                labels, logits, FLAGS.ensemble_size)
            probs = tf.reduce_mean(per_probs, axis=0)
            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            else:
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)

            if dataset_name == 'clean':
                per_probs_stacked = tf.stack(per_probs, axis=0)
                diversity_results = um.average_pairwise_diversity(
                    per_probs_stacked, FLAGS.ensemble_size)
                for k, v in diversity_results.items():
                    metrics['test/' + k].update_state(v)

        strategy.run(step_fn, args=(next(iterator), ))

    logging.info('--- Starting training using %d examples. ---',
                 train_sample_size)
    train_iterator = iter(train_dataset)
    validation_iterator = iter(validation_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)
            do_tuning = (epoch >= FLAGS.tuning_warmup_epochs)
            if do_tuning and ((step + 1) % FLAGS.tuning_every_x_step == 0):
                tuning_step(validation_iterator)
                # clip lambda parameters if outside of range
                clip_lambda_parameters(lambda_parameters, lambdas_config)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        # evaluate on test data
        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_step(test_iterator, dataset_name)
            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types, max_intensity)
        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Validation Loss: %.4f, CE: %.4f, Entropy: %.4f',
                     metrics['validation/loss'].result(),
                     metrics['validation/loss_ce'].result(),
                     metrics['validation/loss_entropy'].result())
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        for i in range(FLAGS.ensemble_size):
            logging.info(
                'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i,
                metrics['test/nll_member_{}'.format(i)].result(),
                metrics['test/accuracy_member_{}'.format(i)].result() * 100)

        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update({
            name: metric.result()
            for name, metric in corrupt_metrics.items()
        })
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        # save checkpoint and lambdas config
        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            lambdas_cf = lambdas_config.get_config()
            filepath = os.path.join(FLAGS.output_dir, 'lambdas_config.p')
            with tf.io.gfile.GFile(filepath, 'wb') as fp:
                pickle.dump(lambdas_cf, fp, protocol=pickle.HIGHEST_PROTOCOL)
            logging.info('Saved checkpoint to %s', checkpoint_name)
def main(argv):
  del argv  # unused arg
  tf.io.gfile.makedirs(FLAGS.output_dir)
  logging.info('Saving checkpoints at %s', FLAGS.output_dir)
  tf.random.set_seed(FLAGS.seed)

  if FLAGS.use_gpu:
    logging.info('Use GPU')
    strategy = tf.distribute.MirroredStrategy()
  else:
    logging.info('Use TPU at %s',
                 FLAGS.tpu if FLAGS.tpu is not None else 'local')
    resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=FLAGS.tpu)
    tf.config.experimental_connect_to_cluster(resolver)
    tf.tpu.experimental.initialize_tpu_system(resolver)
    strategy = tf.distribute.TPUStrategy(resolver)

  ds_info = tfds.builder(FLAGS.dataset).info
  batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
  test_batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
  steps_per_epoch = ds_info.splits['train'].num_examples // batch_size
  steps_per_eval = ds_info.splits['test'].num_examples // test_batch_size
  num_classes = ds_info.features['label'].num_classes

  train_dataset = utils.load_dataset(
      split=tfds.Split.TRAIN,
      name=FLAGS.dataset,
      batch_size=batch_size,
      use_bfloat16=FLAGS.use_bfloat16)
  clean_test_dataset = utils.load_dataset(
      split=tfds.Split.TEST,
      name=FLAGS.dataset,
      batch_size=test_batch_size,
      use_bfloat16=FLAGS.use_bfloat16)
  train_dataset = strategy.experimental_distribute_dataset(train_dataset)
  test_datasets = {
      'clean': strategy.experimental_distribute_dataset(clean_test_dataset),
  }
  if FLAGS.corruptions_interval > 0:
    if FLAGS.dataset == 'cifar10':
      load_c_dataset = utils.load_cifar10_c
    else:
      load_c_dataset = functools.partial(
          utils.load_cifar100_c, path=FLAGS.cifar100_c_path)
    corruption_types, max_intensity = utils.load_corrupted_test_info(
        FLAGS.dataset)
    for corruption in corruption_types:
      for intensity in range(1, max_intensity + 1):
        dataset = load_c_dataset(
            corruption_name=corruption,
            corruption_intensity=intensity,
            batch_size=test_batch_size,
            use_bfloat16=FLAGS.use_bfloat16)
        test_datasets['{0}_{1}'.format(corruption, intensity)] = (
            strategy.experimental_distribute_dataset(dataset))

  if FLAGS.use_bfloat16:
    policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
    tf.keras.mixed_precision.experimental.set_policy(policy)

  summary_writer = tf.summary.create_file_writer(
      os.path.join(FLAGS.output_dir, 'summaries'))

  with strategy.scope():
    logging.info('Building ResNet model')
    model = ub.models.wide_resnet_condconv(
        input_shape=ds_info.features['image'].shape,
        depth=28,
        width_multiplier=FLAGS.resnet_width_multiplier,
        num_classes=num_classes,
        num_experts=FLAGS.num_experts,
        per_core_batch_size=FLAGS.per_core_batch_size,
        use_cond_dense=FLAGS.use_cond_dense,
        reduce_dense_outputs=FLAGS.reduce_dense_outputs,
        cond_placement=FLAGS.cond_placement,
        routing_fn=FLAGS.routing_fn,
        normalize_routing=FLAGS.normalize_routing,
        normalize_dense_routing=FLAGS.normalize_dense_routing,
        top_k=FLAGS.top_k,
        routing_pooling=FLAGS.routing_pooling,
        l2=FLAGS.l2)
    # reuse_routing=FLAGS.reuse_routing,
    # shared_routing_type=FLAGS.shared_routing_type)
    logging.info('Model input shape: %s', model.input_shape)
    logging.info('Model output shape: %s', model.output_shape)
    logging.info('Model number of weights: %s', model.count_params())
    # Linearly scale learning rate and the decay epochs by vanilla settings.
    base_lr = FLAGS.base_learning_rate * batch_size / 128
    lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200
                       for start_epoch_str in FLAGS.lr_decay_epochs]
    lr_schedule = utils.LearningRateSchedule(
        steps_per_epoch,
        base_lr,
        decay_ratio=FLAGS.lr_decay_ratio,
        decay_epochs=lr_decay_epochs,
        warmup_epochs=FLAGS.lr_warmup_epochs)
    optimizer = tf.keras.optimizers.SGD(
        lr_schedule, momentum=0.9, nesterov=True)
    metrics = {
        'train/negative_log_likelihood': tf.keras.metrics.Mean(),
        'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'train/loss': tf.keras.metrics.Mean(),
        'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
        'test/negative_log_likelihood': tf.keras.metrics.Mean(),
        'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
    }
    if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense:
      metrics.update({
          'test/nll_poe':
              tf.keras.metrics.Mean(),
          'test/nll_moe':
              tf.keras.metrics.Mean(),
          'test/nll_unweighted_poe':
              tf.keras.metrics.Mean(),
          'test/nll_unweighted_moe':
              tf.keras.metrics.Mean(),
          'test/unweighted_gibbs_ce':
              tf.keras.metrics.Mean(),
          'test/ece_unweighted_moe':
              um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
          'test/accuracy_unweighted_moe':
              tf.keras.metrics.SparseCategoricalAccuracy(),
          'test/ece_poe':
              um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
          'test/accuracy_poe':
              tf.keras.metrics.SparseCategoricalAccuracy(),
          'test/ece_unweighted_poe':
              um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
          'test/accuracy_unweighted_poe':
              tf.keras.metrics.SparseCategoricalAccuracy(),
      })
      for idx in range(FLAGS.num_experts):
        metrics['test/dense_routing_weight_{}'.format(
            idx)] = tf.keras.metrics.Mean()
        metrics['test/dense_routing_weight_normalized_{}'.format(
            idx)] = tf.keras.metrics.Mean()

    if FLAGS.corruptions_interval > 0:
      corrupt_metrics = {}
      for intensity in range(1, max_intensity + 1):
        for corruption in corruption_types:
          dataset_name = '{0}_{1}'.format(corruption, intensity)
          corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
              tf.keras.metrics.Mean())
          corrupt_metrics['test/accuracy_{}'.format(dataset_name)] = (
              tf.keras.metrics.SparseCategoricalAccuracy())
          corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
              um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))
          corrupt_metrics['test/nll_weighted_moe_{}'.format(dataset_name)] = (
              tf.keras.metrics.Mean())
          corrupt_metrics['test/accuracy_weighted_moe_{}'.format(
              dataset_name)] = (
                  tf.keras.metrics.SparseCategoricalAccuracy())
          corrupt_metrics['test/ece_weighted_moe_{}'.format(dataset_name)] = (
              um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))

    checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
    latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
    initial_epoch = 0
    if latest_checkpoint:
      # checkpoint.restore must be within a strategy.scope() so that optimizer
      # slot variables are mirrored.
      checkpoint.restore(latest_checkpoint)
      logging.info('Loaded checkpoint %s', latest_checkpoint)
      initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

  def _process_3d_logits(logits, routing_weights, labels):
    routing_weights_3d = tf.expand_dims(routing_weights, axis=-1)
    weighted_logits = tf.math.reduce_mean(routing_weights_3d * logits, axis=1)
    unweighted_logits = tf.math.reduce_mean(logits, axis=1)

    probs = tf.nn.softmax(logits)
    unweighted_probs = tf.math.reduce_mean(probs, axis=1)
    weighted_probs = tf.math.reduce_sum(routing_weights_3d * probs, axis=1)

    labels_broadcasted = tf.tile(
        tf.reshape(labels, (-1, 1)), (1, FLAGS.num_experts))
    neg_log_likelihoods = tf.keras.losses.sparse_categorical_crossentropy(
        labels_broadcasted, logits, from_logits=True)
    unweighted_gibbs_ce = tf.math.reduce_mean(neg_log_likelihoods)
    weighted_gibbs_ce = tf.math.reduce_mean(
        tf.math.reduce_sum(routing_weights * neg_log_likelihoods, axis=1))
    return {
        'weighted_logits': weighted_logits,
        'unweighted_logits': unweighted_logits,
        'unweighted_probs': unweighted_probs,
        'weighted_probs': weighted_probs,
        'neg_log_likelihoods': neg_log_likelihoods,
        'unweighted_gibbs_ce': unweighted_gibbs_ce,
        'weighted_gibbs_ce': weighted_gibbs_ce
    }

  def _process_3d_logits_train(logits, routing_weights, labels):
    processing_results = _process_3d_logits(logits, routing_weights, labels)
    if FLAGS.loss == 'gibbs_ce':
      probs = processing_results['weighted_probs']
      negative_log_likelihood = processing_results['weighted_gibbs_ce']
    elif FLAGS.loss == 'unweighted_gibbs_ce':
      probs = processing_results['unweighted_probs']
      negative_log_likelihood = processing_results['unweighted_gibbs_ce']
    elif FLAGS.loss == 'moe':
      probs = processing_results['weighted_probs']
      negative_log_likelihood = tf.math.reduce_mean(
          tf.keras.losses.sparse_categorical_crossentropy(
              labels, probs, from_logits=False))
    elif FLAGS.loss == 'unweighted_moe':
      probs = processing_results['unweighted_probs']
      negative_log_likelihood = tf.math.reduce_mean(
          tf.keras.losses.sparse_categorical_crossentropy(
              labels, probs, from_logits=False))
    elif FLAGS.loss == 'poe':
      probs = tf.softmax(processing_results['weighted_logits'])
      negative_log_likelihood = tf.math.reduce_mean(
          tf.keras.losses.sparse_categorical_crossentropy(
              labels, processing_results['weighted_logits'], from_logits=True))
    elif FLAGS.loss == 'unweighted_poe':
      probs = tf.softmax(processing_results['unweighted_logits'])
      negative_log_likelihood = tf.math.reduce_mean(
          tf.keras.losses.sparse_categorical_crossentropy(
              labels, processing_results['unweighted_logits'],
              from_logits=True))
    return probs, negative_log_likelihood

  def _process_3d_logits_test(routing_weights, logits, labels):
    processing_results = _process_3d_logits(logits, routing_weights, labels)
    nll_poe = tf.math.reduce_mean(
        tf.keras.losses.sparse_categorical_crossentropy(
            labels, processing_results['weighted_logits'], from_logits=True))
    nll_unweighted_poe = tf.math.reduce_mean(
        tf.keras.losses.sparse_categorical_crossentropy(
            labels, processing_results['unweighted_logits'], from_logits=True))
    nll_moe = tf.math.reduce_mean(
        tf.keras.losses.sparse_categorical_crossentropy(
            labels, processing_results['weighted_probs'], from_logits=False))
    nll_unweighted_moe = tf.math.reduce_mean(
        tf.keras.losses.sparse_categorical_crossentropy(
            labels, processing_results['unweighted_probs'], from_logits=False))
    return {
        'nll_poe': nll_poe,
        'nll_moe': nll_moe,
        'nll_unweighted_poe': nll_unweighted_poe,
        'nll_unweighted_moe': nll_unweighted_moe,
        'unweighted_gibbs_ce': processing_results['unweighted_gibbs_ce'],
        'weighted_gibbs_ce': processing_results['weighted_gibbs_ce'],
        'weighted_probs': processing_results['weighted_probs'],
        'unweighted_probs': processing_results['unweighted_probs'],
        'weighted_logits': processing_results['weighted_logits'],
        'unweighted_logits': processing_results['unweighted_logits']
    }

  @tf.function
  def train_step(iterator):
    """Training StepFn."""

    def step_fn(inputs):
      """Per-Replica StepFn."""
      images, labels = inputs
      with tf.GradientTape() as tape:
        logits = model(images, training=True)
        if FLAGS.use_bfloat16:
          logits = tf.cast(logits, tf.float32)
        # if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense:
        if not isinstance(logits, tuple):
          raise ValueError('Logits are not a tuple.')
        # logits is a `Tensor` of shape [batch_size, num_experts, num_classes]
        logits, all_routing_weights = logits
        # routing_weights is a `Tensor` of shape [batch_size, num_experts]
        routing_weights = all_routing_weights[-1]
        if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense:
          probs, negative_log_likelihood = _process_3d_logits_train(
              logits, routing_weights, labels)
        else:
          probs = tf.nn.softmax(logits)
          # Prior to reduce_mean the NLLs are of the shape [batch, num_experts].
          negative_log_likelihood = tf.reduce_mean(
              tf.keras.losses.sparse_categorical_crossentropy(
                  labels, logits, from_logits=True))

        l2_loss = sum(model.losses)
        loss = negative_log_likelihood + l2_loss
        # Scale the loss given the TPUStrategy will reduce sum all gradients.
        scaled_loss = loss / strategy.num_replicas_in_sync

      grads = tape.gradient(scaled_loss, model.trainable_variables)
      optimizer.apply_gradients(zip(grads, model.trainable_variables))

      metrics['train/ece'].update_state(labels, probs)
      metrics['train/loss'].update_state(loss)
      metrics['train/negative_log_likelihood'].update_state(
          negative_log_likelihood)
      metrics['train/accuracy'].update_state(labels, probs)

    strategy.run(step_fn, args=(next(iterator),))

  @tf.function
  def test_step(iterator, dataset_name):
    """Evaluation StepFn."""

    def step_fn(inputs):
      """Per-Replica StepFn."""
      images, labels = inputs
      logits = model(images, training=False)
      if FLAGS.use_bfloat16:
        logits = tf.cast(logits, tf.float32)
      if not isinstance(logits, tuple):
        raise ValueError('Logits not a tuple')
      # logits is a `Tensor` of shape [batch_size, num_experts, num_classes]
      # routing_weights is a `Tensor` of shape [batch_size, num_experts]
      logits, all_routing_weights = logits
      routing_weights = all_routing_weights[-1]
      if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense:
        results = _process_3d_logits_test(routing_weights, logits, labels)
      else:
        probs = tf.nn.softmax(logits)
        negative_log_likelihood = tf.reduce_mean(
            tf.keras.losses.sparse_categorical_crossentropy(labels, probs))

      if dataset_name == 'clean':
        if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense:
          metrics['test/nll_poe'].update_state(results['nll_poe'])
          metrics['test/nll_moe'].update_state(results['nll_moe'])
          metrics['test/nll_unweighted_poe'].update_state(
              results['nll_unweighted_poe'])
          metrics['test/nll_unweighted_moe'].update_state(
              results['nll_unweighted_moe'])
          metrics['test/unweighted_gibbs_ce'].update_state(
              results['unweighted_gibbs_ce'])
          metrics['test/negative_log_likelihood'].update_state(
              results['weighted_gibbs_ce'])
          metrics['test/ece'].update_state(labels, results['weighted_probs'])
          metrics['test/accuracy'].update_state(labels,
                                                results['weighted_probs'])
          metrics['test/ece_unweighted_moe'].update_state(
              labels, results['unweighted_probs'])
          metrics['test/accuracy_unweighted_moe'].update_state(
              labels, results['unweighted_probs'])
          metrics['test/ece_poe'].update_state(labels,
                                               results['weighted_logits'])
          metrics['test/accuracy_poe'].update_state(labels,
                                                    results['weighted_logits'])
          metrics['test/ece_unweighted_poe'].update_state(
              labels, results['unweighted_logits'])
          metrics['test/accuracy_unweighted_poe'].update_state(
              labels, results['unweighted_logits'])
          # TODO(ghassen): summarize all routing weights not only last layer's.
          average_routing_weights = tf.math.reduce_mean(routing_weights, axis=0)
          routing_weights_sum = tf.math.reduce_sum(average_routing_weights)
          for idx in range(FLAGS.num_experts):
            metrics['test/dense_routing_weight_{}'.format(idx)].update_state(
                average_routing_weights[idx])
            metrics['test/dense_routing_weight_normalized_{}'.format(
                idx)].update_state(average_routing_weights[idx] /
                                   routing_weights_sum)
          # TODO(ghassen): add more metrics for expert utilization,
          # load loss and importance/balance loss.
        else:
          metrics['test/negative_log_likelihood'].update_state(
              negative_log_likelihood)
          metrics['test/accuracy'].update_state(labels, probs)
          metrics['test/ece'].update_state(labels, probs)
      else:
        # TODO(ghassen): figure out how to aggregate probs for the OOD case.
        if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense:
          corrupt_metrics['test/nll_{}'.format(dataset_name)].update_state(
              results['unweighted_gibbs_ce'])
          corrupt_metrics['test/accuracy_{}'.format(dataset_name)].update_state(
              labels, results['unweighted_probs'])
          corrupt_metrics['test/ece_{}'.format(dataset_name)].update_state(
              labels, results['unweighted_probs'])

          corrupt_metrics['test/nll_weighted_moe{}'.format(
              dataset_name)].update_state(results['weighted_gibbs_ce'])
          corrupt_metrics['test/accuracy_weighted_moe_{}'.format(
              dataset_name)].update_state(labels, results['weighted_probs'])
          corrupt_metrics['test/ece_weighted_moe{}'.format(
              dataset_name)].update_state(labels, results['weighted_probs'])
        else:
          corrupt_metrics['test/nll_{}'.format(dataset_name)].update_state(
              negative_log_likelihood)
          corrupt_metrics['test/accuracy_{}'.format(dataset_name)].update_state(
              labels, probs)
          corrupt_metrics['test/ece_{}'.format(dataset_name)].update_state(
              labels, probs)

    strategy.run(step_fn, args=(next(iterator),))

  metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

  train_iterator = iter(train_dataset)
  start_time = time.time()
  for epoch in range(initial_epoch, FLAGS.train_epochs):
    logging.info('Starting to run epoch: %s', epoch)
    for step in range(steps_per_epoch):
      train_step(train_iterator)

      current_step = epoch * steps_per_epoch + (step + 1)
      max_steps = steps_per_epoch * FLAGS.train_epochs
      time_elapsed = time.time() - start_time
      steps_per_sec = float(current_step) / time_elapsed
      eta_seconds = (max_steps - current_step) / steps_per_sec
      message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                 'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                     current_step / max_steps, epoch + 1, FLAGS.train_epochs,
                     steps_per_sec, eta_seconds / 60, time_elapsed / 60))
      if step % 20 == 0:
        logging.info(message)

    datasets_to_evaluate = {'clean': test_datasets['clean']}
    if (FLAGS.corruptions_interval > 0 and
        (epoch + 1) % FLAGS.corruptions_interval == 0):
      datasets_to_evaluate = test_datasets
    for dataset_name, test_dataset in datasets_to_evaluate.items():
      test_iterator = iter(test_dataset)
      logging.info('Testing on dataset %s', dataset_name)
      for step in range(steps_per_eval):
        if step % 20 == 0:
          logging.info('Starting to run eval step %s of epoch: %s', step, epoch)
        test_start_time = time.time()
        test_step(test_iterator, dataset_name)
        ms_per_example = (time.time() - test_start_time) * 1e6 / batch_size
        metrics['test/ms_per_example'].update_state(ms_per_example)

      logging.info('Done with testing on %s', dataset_name)

    corrupt_results = {}
    if (FLAGS.corruptions_interval > 0 and
        (epoch + 1) % FLAGS.corruptions_interval == 0):
      corrupt_results = utils.aggregate_corrupt_metrics(corrupt_metrics,
                                                        corruption_types,
                                                        max_intensity)

    logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                 metrics['train/loss'].result(),
                 metrics['train/accuracy'].result() * 100)
    logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                 metrics['test/negative_log_likelihood'].result(),
                 metrics['test/accuracy'].result() * 100)
    total_results = {name: metric.result() for name, metric in metrics.items()}
    total_results.update(corrupt_results)
    with summary_writer.as_default():
      for name, result in total_results.items():
        tf.summary.scalar(name, result, step=epoch + 1)

    for metric in metrics.values():
      metric.reset_states()

    if (FLAGS.checkpoint_interval > 0 and
        (epoch + 1) % FLAGS.checkpoint_interval == 0):
      checkpoint_name = checkpoint.save(
          os.path.join(FLAGS.output_dir, 'checkpoint'))
      logging.info('Saved checkpoint to %s', checkpoint_name)
  final_checkpoint_name = checkpoint.save(
      os.path.join(FLAGS.output_dir, 'checkpoint'))
  logging.info('Saved last checkpoint to %s', final_checkpoint_name)
Beispiel #12
0
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    train_batch_size = (FLAGS.per_core_batch_size * FLAGS.num_cores //
                        FLAGS.batch_repetitions)
    test_batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    steps_per_epoch = APPROX_IMAGENET_TRAIN_IMAGES // train_batch_size
    steps_per_eval = IMAGENET_VALIDATION_IMAGES // test_batch_size

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.TPUStrategy(resolver)

    builder = utils.ImageNetInput(data_dir=FLAGS.data_dir,
                                  use_bfloat16=FLAGS.use_bfloat16)
    train_dataset = builder.as_dataset(split=tfds.Split.TRAIN,
                                       batch_size=train_batch_size)
    test_dataset = builder.as_dataset(split=tfds.Split.TEST,
                                      batch_size=test_batch_size)
    train_dataset = strategy.experimental_distribute_dataset(train_dataset)
    test_dataset = strategy.experimental_distribute_dataset(test_dataset)

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    with strategy.scope():
        logging.info('Building Keras ResNet-50 model')
        model = ub.models.resnet50_mimo(
            input_shape=(FLAGS.ensemble_size, 224, 224, 3),
            num_classes=NUM_CLASSES,
            ensemble_size=FLAGS.ensemble_size,
            width_multiplier=FLAGS.width_multiplier)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Scale learning rate and decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * train_batch_size / 256
        lr_schedule = [  # (multiplier, epoch to start) tuples
            (1.0, FLAGS.lr_warmup_epochs),
            (0.1, int(FLAGS.lr_decay_epochs[0])),
            (0.01, int(FLAGS.lr_decay_epochs[1])),
            (0.001, int(FLAGS.lr_decay_epochs[2]))
        ]
        learning_rate = utils.LearningRateSchedule(steps_per_epoch, base_lr,
                                                   FLAGS.train_epochs,
                                                   lr_schedule)
        optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
        }

        for i in range(FLAGS.ensemble_size):
            metrics['test/nll_member_{}'.format(i)] = tf.keras.metrics.Mean()
            metrics['test/accuracy_member_{}'.format(i)] = (
                tf.keras.metrics.SparseCategoricalAccuracy())
        test_diversity = {
            'test/disagreement': tf.keras.metrics.Mean(),
            'test/average_kl': tf.keras.metrics.Mean(),
            'test/cosine_similarity': tf.keras.metrics.Mean(),
        }
        logging.info('Finished building Keras ResNet-50 model')

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            batch_size = tf.shape(images)[0]
            main_shuffle = tf.random.shuffle(
                tf.tile(tf.range(batch_size), [FLAGS.batch_repetitions]))
            to_shuffle = tf.cast(
                tf.cast(tf.shape(main_shuffle)[0], tf.float32) *
                (1. - FLAGS.input_repetition_probability), tf.int32)
            shuffle_indices = [
                tf.concat([
                    tf.random.shuffle(main_shuffle[:to_shuffle]),
                    main_shuffle[to_shuffle:]
                ],
                          axis=0) for _ in range(FLAGS.ensemble_size)
            ]
            images = tf.stack([
                tf.gather(images, indices, axis=0)
                for indices in shuffle_indices
            ],
                              axis=1)
            labels = tf.stack([
                tf.gather(labels, indices, axis=0)
                for indices in shuffle_indices
            ],
                              axis=1)

            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)

                negative_log_likelihood = tf.reduce_mean(
                    tf.reduce_sum(
                        tf.keras.losses.sparse_categorical_crossentropy(
                            labels, logits, from_logits=True),
                        axis=1))
                filtered_variables = []
                for var in model.trainable_variables:
                    # Apply l2 on the weights. This excludes BN parameters and biases, but
                    # pay caution to their naming scheme.
                    if 'kernel' in var.name or 'bias' in var.name:
                        filtered_variables.append(tf.reshape(var, (-1, )))

                l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss(
                    tf.concat(filtered_variables, axis=0))
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                loss = negative_log_likelihood + l2_loss
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            probs = tf.nn.softmax(tf.reshape(logits, [-1, NUM_CLASSES]))
            flat_labels = tf.reshape(labels, [-1])
            metrics['train/ece'].update_state(flat_labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(flat_labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            images = tf.tile(tf.expand_dims(images, 1),
                             [1, FLAGS.ensemble_size, 1, 1, 1])
            logits = model(images, training=False)
            if FLAGS.use_bfloat16:
                logits = tf.cast(logits, tf.float32)
            probs = tf.nn.softmax(logits)

            per_probs = tf.transpose(probs, perm=[1, 0, 2])
            diversity_results = um.average_pairwise_diversity(
                per_probs, FLAGS.ensemble_size)
            for k, v in diversity_results.items():
                test_diversity['test/' + k].update_state(v)

            for i in range(FLAGS.ensemble_size):
                member_probs = probs[:, i]
                member_loss = tf.keras.losses.sparse_categorical_crossentropy(
                    labels, member_probs)
                metrics['test/nll_member_{}'.format(i)].update_state(
                    member_loss)
                metrics['test/accuracy_member_{}'.format(i)].update_state(
                    labels, member_probs)

            # Negative log marginal likelihood computed in a numerically-stable way.
            labels_tiled = tf.tile(tf.expand_dims(labels, 1),
                                   [1, FLAGS.ensemble_size])
            log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy(
                labels_tiled, logits, from_logits=True)
            negative_log_likelihood = tf.reduce_mean(
                -tf.reduce_logsumexp(log_likelihoods, axis=[1]) +
                tf.math.log(float(FLAGS.ensemble_size)))
            probs = tf.math.reduce_mean(probs, axis=1)  # marginalize

            metrics['test/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['test/accuracy'].update_state(labels, probs)
            metrics['test/ece'].update_state(labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        test_iterator = iter(test_dataset)
        for step in range(steps_per_eval):
            if step % 20 == 0:
                logging.info('Starting to run eval step %s of epoch: %s', step,
                             epoch)
            test_start_time = time.time()
            test_step(test_iterator)
            ms_per_example = (time.time() -
                              test_start_time) * 1e6 / test_batch_size
            metrics['test/ms_per_example'].update_state(ms_per_example)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        for i in range(FLAGS.ensemble_size):
            logging.info(
                'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i,
                metrics['test/nll_member_{}'.format(i)].result(),
                metrics['test/accuracy_member_{}'.format(i)].result() * 100)

        total_metrics = metrics.copy()
        total_metrics.update(test_diversity)
        total_results = {
            name: metric.result()
            for name, metric in total_metrics.items()
        }
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for _, metric in total_metrics.items():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)

    final_save_name = os.path.join(FLAGS.output_dir, 'model')
    model.save(final_save_name)
    logging.info('Saved model to %s', final_save_name)
Beispiel #13
0
def main(argv):
    del argv  # unused arg
    tf.enable_v2_behavior()
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)

    def train_input_fn(ctx):
        """Sets up local (per-core) dataset batching."""
        dataset = utils.load_distributed_dataset(
            split=tfds.Split.TRAIN,
            name=FLAGS.dataset,
            batch_size=FLAGS.per_core_batch_size // FLAGS.num_models,
            drop_remainder=True,
            use_bfloat16=FLAGS.use_bfloat16,
            proportion=FLAGS.train_proportion)
        if ctx and ctx.num_input_pipelines > 1:
            dataset = dataset.shard(ctx.num_input_pipelines,
                                    ctx.input_pipeline_id)
        return dataset

    # No matter what percentage of training proportion, we still evaluate the
    # model on the full test dataset.
    def test_input_fn(ctx):
        """Sets up local (per-core) dataset batching."""
        dataset = utils.load_distributed_dataset(
            split=tfds.Split.TEST,
            name=FLAGS.dataset,
            batch_size=FLAGS.per_core_batch_size // FLAGS.num_models,
            drop_remainder=True,
            use_bfloat16=FLAGS.use_bfloat16)
        if ctx and ctx.num_input_pipelines > 1:
            dataset = dataset.shard(ctx.num_input_pipelines,
                                    ctx.input_pipeline_id)
        return dataset

    train_dataset = strategy.experimental_distribute_datasets_from_function(
        train_input_fn)
    test_dataset = strategy.experimental_distribute_datasets_from_function(
        test_input_fn)
    ds_info = tfds.builder(FLAGS.dataset).info

    batch_size = ((FLAGS.per_core_batch_size // FLAGS.num_models) *
                  FLAGS.num_cores)
    # Train_proportion is a float so need to convert steps_per_epoch to int.
    steps_per_epoch = int(
        (ds_info.splits['train'].num_examples * FLAGS.train_proportion) //
        batch_size)
    steps_per_eval = ds_info.splits['test'].num_examples // batch_size

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building Keras ResNet-32 model')
        model = batchensemble_model.ensemble_resnet_v1(
            input_shape=ds_info.features['image'].shape,
            depth=32,
            num_classes=ds_info.features['label'].num_classes,
            width_multiplier=4,
            num_models=FLAGS.num_models,
            random_sign_init=FLAGS.random_sign_init,
            dropout_rate=FLAGS.dropout_rate,
            l2=FLAGS.l2)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        base_lr = FLAGS.base_learning_rate * batch_size / 128
        lr_decay_epochs = [
            np.floor(FLAGS.train_epochs / 200 * start_epoch)
            for start_epoch in FLAGS.lr_decay_epochs
        ]
        lr_schedule = utils.LearningRateSchedule(
            steps_per_epoch,
            base_lr,
            decay_ratio=FLAGS.lr_decay_ratio,
            decay_epochs=lr_decay_epochs,
            warmup_epochs=FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        }
        for i in range(FLAGS.num_models):
            metrics['test/nll_member_{}'.format(i)] = tf.keras.metrics.Mean()
            metrics['test/accuracy_member_{}'.format(i)] = (
                tf.keras.metrics.SparseCategoricalAccuracy())

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            if FLAGS.version2:
                images = tf.tile(images, [FLAGS.num_models, 1, 1, 1])
                labels = tf.tile(labels, [FLAGS.num_models])

            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                negative_log_likelihood = tf.reduce_mean(
                    tf.keras.losses.sparse_categorical_crossentropy(
                        labels, logits, from_logits=True))
                l2_loss = sum(model.losses)
                loss = negative_log_likelihood + l2_loss
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)

            # Separate learning rate implementation.
            if FLAGS.fast_weight_lr_multiplier != 1.0:
                grads_and_vars = []
                for grad, var in zip(grads, model.trainable_variables):
                    # Apply different learning rate on the fast weight approximate
                    # posterior/prior parameters. This is excludes BN and slow weights,
                    # but pay caution to the naming scheme.
                    if ('batch_norm' not in var.name
                            and 'kernel' not in var.name):
                        grads_and_vars.append(
                            (grad * FLAGS.fast_weight_lr_multiplier, var))
                    else:
                        grads_and_vars.append((grad, var))
                optimizer.apply_gradients(grads_and_vars)
            else:
                optimizer.apply_gradients(zip(grads,
                                              model.trainable_variables))

            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)

        strategy.experimental_run_v2(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            images = tf.tile(images, [FLAGS.num_models, 1, 1, 1])
            logits = model(images, training=False)
            if FLAGS.use_bfloat16:
                logits = tf.cast(logits, tf.float32)
            probs = tf.nn.softmax(logits)
            per_probs = tf.split(probs,
                                 num_or_size_splits=FLAGS.num_models,
                                 axis=0)
            for i in range(FLAGS.num_models):
                member_probs = per_probs[i]
                member_loss = tf.keras.losses.sparse_categorical_crossentropy(
                    labels, member_probs)
                metrics['test/nll_member_{}'.format(i)].update_state(
                    member_loss)
                metrics['test/accuracy_member_{}'.format(i)].update_state(
                    labels, member_probs)

            probs = tf.reduce_mean(per_probs, axis=0)
            negative_log_likelihood = tf.reduce_mean(
                tf.keras.losses.sparse_categorical_crossentropy(labels, probs))
            metrics['test/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['test/accuracy'].update_state(labels, probs)

        strategy.experimental_run_v2(step_fn, args=(next(iterator), ))

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        test_iterator = iter(test_dataset)
        for step in range(steps_per_eval):
            if step % 20 == 0:
                logging.info('Starting to run eval step %s of epoch: %s', step,
                             epoch)
            test_step(test_iterator)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        for i in range(FLAGS.num_models):
            logging.info(
                'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i,
                metrics['test/nll_member_{}'.format(i)].result(),
                metrics['test/accuracy_member_{}'.format(i)].result() * 100)
        with summary_writer.as_default():
            for name, metric in metrics.items():
                tf.summary.scalar(name, metric.result(), step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (epoch + 1) % 20 == 0:
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)

    train_input_fn = utils.load_input_fn(
        split=tfds.Split.TRAIN,
        name=FLAGS.dataset,
        batch_size=FLAGS.per_core_batch_size // FLAGS.ensemble_size,
        use_bfloat16=FLAGS.use_bfloat16)
    clean_test_input_fn = utils.load_input_fn(
        split=tfds.Split.TEST,
        name=FLAGS.dataset,
        batch_size=FLAGS.per_core_batch_size // FLAGS.ensemble_size,
        use_bfloat16=FLAGS.use_bfloat16)
    train_dataset = strategy.experimental_distribute_datasets_from_function(
        train_input_fn)
    test_datasets = {
        'clean':
        strategy.experimental_distribute_datasets_from_function(
            clean_test_input_fn),
    }
    if FLAGS.corruptions_interval > 0:
        if FLAGS.dataset == 'cifar10':
            load_c_input_fn = utils.load_cifar10_c_input_fn
        else:
            load_c_input_fn = functools.partial(utils.load_cifar100_c_input_fn,
                                                path=FLAGS.cifar100_c_path)
        corruption_types, max_intensity = utils.load_corrupted_test_info(
            FLAGS.dataset)
        for corruption in corruption_types:
            for intensity in range(1, max_intensity + 1):
                input_fn = load_c_input_fn(
                    corruption_name=corruption,
                    corruption_intensity=intensity,
                    batch_size=FLAGS.per_core_batch_size //
                    FLAGS.ensemble_size,
                    use_bfloat16=FLAGS.use_bfloat16)
                test_datasets['{0}_{1}'.format(corruption, intensity)] = (
                    strategy.experimental_distribute_datasets_from_function(
                        input_fn))

    ds_info = tfds.builder(FLAGS.dataset).info
    batch_size = ((FLAGS.per_core_batch_size // FLAGS.ensemble_size) *
                  FLAGS.num_cores)
    train_dataset_size = ds_info.splits['train'].num_examples
    steps_per_epoch = train_dataset_size // batch_size
    test_dataset_size = ds_info.splits['test'].num_examples
    steps_per_eval = test_dataset_size // batch_size
    num_classes = ds_info.features['label'].num_classes

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building Keras model')
        model = ub.models.wide_resnet_rank1(
            input_shape=ds_info.features['image'].shape,
            depth=28,
            width_multiplier=10,
            num_classes=num_classes,
            alpha_initializer=FLAGS.alpha_initializer,
            gamma_initializer=FLAGS.gamma_initializer,
            alpha_regularizer=FLAGS.alpha_regularizer,
            gamma_regularizer=FLAGS.gamma_regularizer,
            use_additive_perturbation=FLAGS.use_additive_perturbation,
            ensemble_size=FLAGS.ensemble_size,
            random_sign_init=FLAGS.random_sign_init,
            dropout_rate=FLAGS.dropout_rate,
            prior_mean=FLAGS.prior_mean,
            prior_stddev=FLAGS.prior_stddev)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Linearly scale learning rate and the decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 128
        lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200
                           for start_epoch_str in FLAGS.lr_decay_epochs]
        lr_schedule = utils.LearningRateSchedule(
            steps_per_epoch,
            base_lr,
            decay_ratio=FLAGS.lr_decay_ratio,
            decay_epochs=lr_decay_epochs,
            warmup_epochs=FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/kl': tf.keras.metrics.Mean(),
            'train/kl_scale': tf.keras.metrics.Mean(),
            'train/elbo': tf.keras.metrics.Mean(),
            'train/loss': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/kl': tf.keras.metrics.Mean(),
            'test/elbo': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
        }
        if FLAGS.ensemble_size > 1:
            for i in range(FLAGS.ensemble_size):
                metrics['test/nll_member_{}'.format(
                    i)] = tf.keras.metrics.Mean()
                metrics['test/accuracy_member_{}'.format(i)] = (
                    tf.keras.metrics.SparseCategoricalAccuracy())
        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/kl_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/elbo_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    def compute_l2_loss(model):
        filtered_variables = []
        for var in model.trainable_variables:
            # Apply l2 on the BN parameters and bias terms. This
            # excludes only fast weight approximate posterior/prior parameters,
            # but pay caution to their naming scheme.
            if ('kernel' in var.name or 'batch_norm' in var.name
                    or 'bias' in var.name):
                filtered_variables.append(tf.reshape(var, (-1, )))
        l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss(
            tf.concat(filtered_variables, axis=0))
        return l2_loss

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            if FLAGS.ensemble_size > 1:
                images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])
                labels = tf.tile(labels, [FLAGS.ensemble_size])

            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                negative_log_likelihood = tf.reduce_mean(
                    tf.keras.losses.sparse_categorical_crossentropy(
                        labels, logits, from_logits=True))
                l2_loss = compute_l2_loss(model)
                kl = sum(model.losses) / train_dataset_size
                kl_scale = tf.cast(optimizer.iterations + 1, kl.dtype)
                kl_scale /= steps_per_epoch * FLAGS.kl_annealing_epochs
                kl_scale = tf.minimum(1., kl_scale)
                kl_loss = kl_scale * kl

                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                loss = negative_log_likelihood + l2_loss + kl_loss
                scaled_loss = loss / strategy.num_replicas_in_sync
                elbo = -(negative_log_likelihood + l2_loss + kl)

            grads = tape.gradient(scaled_loss, model.trainable_variables)

            # Separate learning rate implementation.
            if FLAGS.fast_weight_lr_multiplier != 1.0:
                grads_and_vars = []
                for grad, var in zip(grads, model.trainable_variables):
                    # Apply different learning rate on the fast weight approximate
                    # posterior/prior parameters. This is excludes BN and slow weights,
                    # but pay caution to the naming scheme.
                    if ('kernel' not in var.name
                            and 'batch_norm' not in var.name
                            and 'bias' not in var.name):
                        grads_and_vars.append(
                            (grad * FLAGS.fast_weight_lr_multiplier, var))
                    else:
                        grads_and_vars.append((grad, var))
                optimizer.apply_gradients(grads_and_vars)
            else:
                optimizer.apply_gradients(zip(grads,
                                              model.trainable_variables))

            probs = tf.nn.softmax(logits)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/kl'].update_state(kl)
            metrics['train/kl_scale'].update_state(kl_scale)
            metrics['train/elbo'].update_state(elbo)
            metrics['train/loss'].update_state(loss)
            metrics['train/accuracy'].update_state(labels, probs)
            metrics['train/ece'].update_state(labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            if FLAGS.ensemble_size > 1:
                images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])
            logits = tf.reshape([
                model(images, training=False)
                for _ in range(FLAGS.num_eval_samples)
            ], [FLAGS.num_eval_samples, FLAGS.ensemble_size, -1, num_classes])
            if FLAGS.use_bfloat16:
                logits = tf.cast(logits, tf.float32)
            probs = tf.nn.softmax(logits)

            if FLAGS.ensemble_size > 1:
                per_probs = tf.reduce_mean(probs,
                                           axis=0)  # marginalize samples
                for i in range(FLAGS.ensemble_size):
                    member_probs = per_probs[i]
                    member_loss = tf.keras.losses.sparse_categorical_crossentropy(
                        labels, member_probs)
                    metrics['test/nll_member_{}'.format(i)].update_state(
                        member_loss)
                    metrics['test/accuracy_member_{}'.format(i)].update_state(
                        labels, member_probs)

            # Negative log marginal likelihood computed in a numerically-stable way.
            labels_broadcasted = tf.broadcast_to(
                labels,
                [FLAGS.num_eval_samples, FLAGS.ensemble_size, labels.shape[0]])
            log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy(
                labels_broadcasted, logits, from_logits=True)
            negative_log_likelihood = tf.reduce_mean(
                -tf.reduce_logsumexp(log_likelihoods, axis=[0, 1]) +
                tf.math.log(float(FLAGS.num_eval_samples *
                                  FLAGS.ensemble_size)))
            probs = tf.math.reduce_mean(probs, axis=[0, 1])  # marginalize

            l2_loss = compute_l2_loss(model)
            kl = sum(model.losses) / test_dataset_size
            elbo = -(negative_log_likelihood + l2_loss + kl)

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/kl'].update_state(kl)
                metrics['test/elbo'].update_state(elbo)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            else:
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/kl_{}'.format(
                    dataset_name)].update_state(kl)
                corrupt_metrics['test/elbo_{}'.format(
                    dataset_name)].update_state(elbo)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)

        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_step(test_iterator, dataset_name)
            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types, max_intensity)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        if FLAGS.ensemble_size > 1:
            for i in range(FLAGS.ensemble_size):
                logging.info(
                    'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i,
                    metrics['test/nll_member_{}'.format(i)].result(),
                    metrics['test/accuracy_member_{}'.format(i)].result() *
                    100)
        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)

    final_checkpoint_name = checkpoint.save(
        os.path.join(FLAGS.output_dir, 'checkpoint'))
    logging.info('Saved last checkpoint to %s', final_checkpoint_name)
Beispiel #15
0
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.TPUStrategy(resolver)

    ds_info = tfds.builder(FLAGS.dataset).info
    batch_size = (FLAGS.per_core_batch_size * FLAGS.num_cores //
                  FLAGS.num_dropout_samples_training)
    test_batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    num_classes = ds_info.features['label'].num_classes

    aug_params = {
        'augmix': FLAGS.augmix,
        'aug_count': FLAGS.aug_count,
        'augmix_depth': FLAGS.augmix_depth,
        'augmix_prob_coeff': FLAGS.augmix_prob_coeff,
        'augmix_width': FLAGS.augmix_width,
        'ensemble_size': 1,
        'mixup_alpha': FLAGS.mixup_alpha,
    }
    validation_proportion = 1. - FLAGS.train_proportion
    use_validation_set = validation_proportion > 0.
    train_dataset = data_utils.load_dataset(
        split=tfds.Split.TRAIN,
        name=FLAGS.dataset,
        batch_size=batch_size,
        use_bfloat16=FLAGS.use_bfloat16,
        aug_params=aug_params,
        validation_set=use_validation_set,
        validation_proportion=validation_proportion)
    train_sample_size = ds_info.splits[
        'train'].num_examples * FLAGS.train_proportion
    val_sample_size = ds_info.splits['train'].num_examples - train_sample_size
    if use_validation_set:
        validation_dataset = data_utils.load_dataset(
            split=tfds.Split.VALIDATION,
            name=FLAGS.dataset,
            batch_size=batch_size,
            use_bfloat16=FLAGS.use_bfloat16,
            aug_params=aug_params,
            validation_set=use_validation_set,
            validation_proportion=validation_proportion)
        validation_dataset = strategy.experimental_distribute_dataset(
            validation_dataset)
        steps_per_val = steps_per_epoch = int(val_sample_size / batch_size)
    clean_test_dataset = utils.load_dataset(split=tfds.Split.TEST,
                                            name=FLAGS.dataset,
                                            batch_size=test_batch_size,
                                            use_bfloat16=FLAGS.use_bfloat16)

    train_sample_size = ds_info.splits[
        'train'].num_examples * FLAGS.train_proportion
    steps_per_epoch = int(train_sample_size / batch_size)
    steps_per_epoch = ds_info.splits['train'].num_examples // batch_size
    steps_per_eval = ds_info.splits['test'].num_examples // batch_size
    train_dataset = strategy.experimental_distribute_dataset(train_dataset)
    test_datasets = {
        'clean': strategy.experimental_distribute_dataset(clean_test_dataset),
    }
    if FLAGS.corruptions_interval > 0:
        if FLAGS.dataset == 'cifar10':
            load_c_dataset = utils.load_cifar10_c
        else:
            load_c_dataset = functools.partial(utils.load_cifar100_c,
                                               path=FLAGS.cifar100_c_path)
        corruption_types, max_intensity = utils.load_corrupted_test_info(
            FLAGS.dataset)
        for corruption in corruption_types:
            for intensity in range(1, max_intensity + 1):
                dataset = load_c_dataset(corruption_name=corruption,
                                         corruption_intensity=intensity,
                                         batch_size=test_batch_size,
                                         use_bfloat16=FLAGS.use_bfloat16)
                test_datasets['{0}_{1}'.format(corruption, intensity)] = (
                    strategy.experimental_distribute_dataset(dataset))

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building ResNet model')
        if FLAGS.use_spec_norm:
            logging.info('Use Spectral Normalization with norm bound %.2f',
                         FLAGS.spec_norm_bound)
        if FLAGS.use_gp_layer:
            logging.info('Use GP layer with hidden units %d',
                         FLAGS.gp_hidden_dim)

        model = ub.models.wide_resnet_sngp(
            input_shape=ds_info.features['image'].shape,
            batch_size=batch_size,
            depth=28,
            width_multiplier=10,
            num_classes=num_classes,
            l2=FLAGS.l2,
            use_mc_dropout=FLAGS.use_mc_dropout,
            use_filterwise_dropout=FLAGS.use_filterwise_dropout,
            dropout_rate=FLAGS.dropout_rate,
            use_gp_layer=FLAGS.use_gp_layer,
            gp_input_dim=FLAGS.gp_input_dim,
            gp_hidden_dim=FLAGS.gp_hidden_dim,
            gp_scale=FLAGS.gp_scale,
            gp_bias=FLAGS.gp_bias,
            gp_input_normalization=FLAGS.gp_input_normalization,
            gp_random_feature_type=FLAGS.gp_random_feature_type,
            gp_cov_discount_factor=FLAGS.gp_cov_discount_factor,
            gp_cov_ridge_penalty=FLAGS.gp_cov_ridge_penalty,
            use_spec_norm=FLAGS.use_spec_norm,
            spec_norm_iteration=FLAGS.spec_norm_iteration,
            spec_norm_bound=FLAGS.spec_norm_bound)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Linearly scale learning rate and the decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 128
        lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200
                           for start_epoch_str in FLAGS.lr_decay_epochs]
        lr_schedule = utils.LearningRateSchedule(
            steps_per_epoch,
            base_lr,
            decay_ratio=FLAGS.lr_decay_ratio,
            decay_epochs=lr_decay_epochs,
            warmup_epochs=FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/stddev': tf.keras.metrics.Mean(),
        }
        if use_validation_set:
            metrics.update({
                'val/negative_log_likelihood':
                tf.keras.metrics.Mean(),
                'val/accuracy':
                tf.keras.metrics.SparseCategoricalAccuracy(),
                'val/ece':
                um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
                'val/stddev':
                tf.keras.metrics.Mean(),
            })
        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))
                    corrupt_metrics['test/stddev_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    @tf.function
    def train_step(iterator, step):
        """Training StepFn."""
        def step_fn(inputs, step):
            """Per-Replica StepFn."""
            images, labels = inputs

            if tf.equal(step, 0) and FLAGS.gp_cov_discount_factor < 0:
                # Resetting covaraince estimator at the begining of a new epoch.
                model.layers[-1].reset_covariance_matrix()

            if FLAGS.augmix and FLAGS.aug_count >= 1:
                # Index 0 at augmix preprocessing is the unperturbed image.
                images = images[:, 1, ...]
                # This is for the case of combining AugMix and Mixup.
                if FLAGS.mixup_alpha > 0:
                    labels = tf.split(labels, FLAGS.aug_count + 1, axis=0)[1]
            images = tf.tile(images,
                             [FLAGS.num_dropout_samples_training, 1, 1, 1])
            if FLAGS.mixup_alpha > 0:
                labels = tf.tile(labels,
                                 [FLAGS.num_dropout_samples_training, 1])
            else:
                labels = tf.tile(labels, [FLAGS.num_dropout_samples_training])

            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if isinstance(logits, tuple):
                    # If model returns a tuple of (logits, covmat), extract logits
                    logits, _ = logits
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                if FLAGS.mixup_alpha > 0:
                    negative_log_likelihood = tf.reduce_mean(
                        tf.keras.losses.categorical_crossentropy(
                            labels, logits, from_logits=True))
                else:
                    negative_log_likelihood = tf.reduce_mean(
                        tf.keras.losses.sparse_categorical_crossentropy(
                            labels, logits, from_logits=True))

                l2_loss = sum(model.losses)
                loss = negative_log_likelihood + l2_loss
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            probs = tf.nn.softmax(logits)
            if FLAGS.mixup_alpha > 0:
                labels = tf.argmax(labels, axis=-1)
            metrics['train/ece'].update_state(labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)

        strategy.run(step_fn, args=(next(iterator), step))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs

            logits_list = []
            stddev_list = []
            for _ in range(FLAGS.num_dropout_samples):
                logits = model(images, training=False)
                if isinstance(logits, tuple):
                    # If model returns a tuple of (logits, covmat), extract both
                    logits, covmat = logits
                else:
                    covmat = tf.eye(FLAGS.per_core_batch_size)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                logits = ed.layers.utils.mean_field_logits(
                    logits,
                    covmat,
                    mean_field_factor=FLAGS.gp_mean_field_factor)
                stddev = tf.sqrt(tf.linalg.diag_part(covmat))

                stddev_list.append(stddev)
                logits_list.append(logits)

            # Logits dimension is (num_samples, batch_size, num_classes).
            logits_list = tf.stack(logits_list, axis=0)
            stddev_list = tf.stack(stddev_list, axis=0)

            stddev = tf.reduce_mean(stddev_list, axis=0)
            probs_list = tf.nn.softmax(logits_list)
            probs = tf.reduce_mean(probs_list, axis=0)

            labels_broadcasted = tf.broadcast_to(
                labels, [FLAGS.num_dropout_samples, labels.shape[0]])
            log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy(
                labels_broadcasted, logits_list, from_logits=True)
            negative_log_likelihood = tf.reduce_mean(
                -tf.reduce_logsumexp(log_likelihoods, axis=[0]) +
                tf.math.log(float(FLAGS.num_dropout_samples)))

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
                metrics['test/stddev'].update_state(stddev)
            elif dataset_name == 'val':
                metrics['val/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['val/accuracy'].update_state(labels, probs)
                metrics['val/ece'].update_state(labels, probs)
                metrics['val/stddev'].update_state(stddev)
            else:
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/stddev_{}'.format(
                    dataset_name)].update_state(stddev)

        strategy.run(step_fn, args=(next(iterator), ))

    metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

    step_variable = tf.Variable(0, dtype=tf.int32)
    train_iterator = iter(train_dataset)
    start_time = time.time()

    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            step_variable.assign(step)
            # Pass `step` as a tf.Variable to train_step to prevent the tf.function
            # train_step() re-compiling itself at each function call.
            train_step(train_iterator, step_variable)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if use_validation_set:
            datasets_to_evaluate['val'] = validation_dataset
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            steps_per_eval = steps_per_val if dataset_name == 'val' else steps_per_eval
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_start_time = time.time()
                test_step(test_iterator, dataset_name)
                ms_per_example = (time.time() -
                                  test_start_time) * 1e6 / batch_size
                metrics['test/ms_per_example'].update_state(ms_per_example)

            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types, max_intensity)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        if use_validation_set:
            logging.info('Val NLL: %.4f, Accuracy: %.2f%%',
                         metrics['val/negative_log_likelihood'].result(),
                         metrics['val/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)

    final_checkpoint_name = checkpoint.save(
        os.path.join(FLAGS.output_dir, 'checkpoint'))
    logging.info('Saved last checkpoint to %s', final_checkpoint_name)

    final_save_name = os.path.join(FLAGS.output_dir, 'model')
    model.save(final_save_name)
    logging.info('Saved model to %s', final_save_name)
Beispiel #16
0
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.TPUStrategy(resolver)

    ds_info = tfds.builder(FLAGS.dataset).info
    batch_size = (FLAGS.per_core_batch_size * FLAGS.num_cores //
                  FLAGS.num_dropout_samples_training)
    test_batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    steps_per_epoch = ds_info.splits['train'].num_examples // batch_size
    steps_per_eval = ds_info.splits['test'].num_examples // test_batch_size
    num_classes = ds_info.features['label'].num_classes

    train_dataset = utils.load_dataset(split=tfds.Split.TRAIN,
                                       name=FLAGS.dataset,
                                       batch_size=batch_size,
                                       use_bfloat16=FLAGS.use_bfloat16)
    clean_test_dataset = utils.load_dataset(split=tfds.Split.TEST,
                                            name=FLAGS.dataset,
                                            batch_size=test_batch_size,
                                            use_bfloat16=FLAGS.use_bfloat16)
    train_dataset = strategy.experimental_distribute_dataset(train_dataset)
    test_datasets = {
        'clean': strategy.experimental_distribute_dataset(clean_test_dataset),
    }
    if FLAGS.corruptions_interval > 0:
        if FLAGS.dataset == 'cifar10':
            load_c_dataset = utils.load_cifar10_c
        else:
            load_c_dataset = functools.partial(utils.load_cifar100_c,
                                               path=FLAGS.cifar100_c_path)
        corruption_types, max_intensity = utils.load_corrupted_test_info(
            FLAGS.dataset)
        for corruption in corruption_types:
            for intensity in range(1, max_intensity + 1):
                dataset = load_c_dataset(corruption_name=corruption,
                                         corruption_intensity=intensity,
                                         batch_size=test_batch_size,
                                         use_bfloat16=FLAGS.use_bfloat16)
                test_datasets['{0}_{1}'.format(corruption, intensity)] = (
                    strategy.experimental_distribute_dataset(dataset))

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building ResNet model')
        model = ub.models.wide_resnet_dropout(
            input_shape=ds_info.features['image'].shape,
            depth=28,
            width_multiplier=10,
            num_classes=num_classes,
            l2=FLAGS.l2,
            dropout_rate=FLAGS.dropout_rate,
            residual_dropout=FLAGS.residual_dropout,
            filterwise_dropout=FLAGS.filterwise_dropout)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Linearly scale learning rate and the decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 128
        lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200
                           for start_epoch_str in FLAGS.lr_decay_epochs]
        lr_schedule = utils.LearningRateSchedule(
            steps_per_epoch,
            base_lr,
            decay_ratio=FLAGS.lr_decay_ratio,
            decay_epochs=lr_decay_epochs,
            warmup_epochs=FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
        }
        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            images = tf.tile(images,
                             [FLAGS.num_dropout_samples_training, 1, 1, 1])
            labels = tf.tile(labels, [FLAGS.num_dropout_samples_training])
            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                negative_log_likelihood = tf.reduce_mean(
                    tf.keras.losses.sparse_categorical_crossentropy(
                        labels, logits, from_logits=True))
                l2_loss = sum(model.losses)
                loss = negative_log_likelihood + l2_loss
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            probs = tf.nn.softmax(logits)
            metrics['train/ece'].update_state(labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs

            logits_list = []
            for _ in range(FLAGS.num_dropout_samples):
                logits = model(images, training=False)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                logits_list.append(logits)

            # Logits dimension is (num_samples, batch_size, num_classes).
            logits_list = tf.stack(logits_list, axis=0)
            probs_list = tf.nn.softmax(logits_list)
            probs = tf.reduce_mean(probs_list, axis=0)

            labels_broadcasted = tf.broadcast_to(
                labels, [FLAGS.num_dropout_samples, labels.shape[0]])
            log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy(
                labels_broadcasted, logits_list, from_logits=True)
            negative_log_likelihood = tf.reduce_mean(
                -tf.reduce_logsumexp(log_likelihoods, axis=[0]) +
                tf.math.log(float(FLAGS.num_dropout_samples)))

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            else:
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_start_time = time.time()
                test_step(test_iterator, dataset_name)
                ms_per_example = (time.time() -
                                  test_start_time) * 1e6 / batch_size
                metrics['test/ms_per_example'].update_state(ms_per_example)

            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types, max_intensity)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)
    final_checkpoint_name = checkpoint.save(
        os.path.join(FLAGS.output_dir, 'checkpoint'))
    logging.info('Saved last checkpoint to %s', final_checkpoint_name)
Beispiel #17
0
def main(argv):
    del argv  # unused arg
    tf.enable_v2_behavior()
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)

    def train_input_fn(ctx):
        """Sets up local (per-core) dataset batching."""
        dataset = utils.load_distributed_dataset(
            split=tfds.Split.TRAIN,
            name=FLAGS.dataset,
            batch_size=FLAGS.per_core_batch_size,
            drop_remainder=True,
            use_bfloat16=FLAGS.use_bfloat16,
            normalize=True)
        if ctx and ctx.num_input_pipelines > 1:
            dataset = dataset.shard(ctx.num_input_pipelines,
                                    ctx.input_pipeline_id)
        return dataset

    def test_input_fn(ctx):
        """Sets up local (per-core) dataset batching."""
        dataset = utils.load_distributed_dataset(
            split=tfds.Split.TEST,
            name=FLAGS.dataset,
            batch_size=FLAGS.per_core_batch_size,
            drop_remainder=True,
            use_bfloat16=FLAGS.use_bfloat16,
            normalize=True)
        if ctx and ctx.num_input_pipelines > 1:
            dataset = dataset.shard(ctx.num_input_pipelines,
                                    ctx.input_pipeline_id)
        return dataset

    train_dataset = strategy.experimental_distribute_datasets_from_function(
        train_input_fn)
    test_dataset = strategy.experimental_distribute_datasets_from_function(
        test_input_fn)
    ds_info = tfds.builder(FLAGS.dataset).info

    batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    steps_per_epoch = ds_info.splits['train'].num_examples // batch_size
    steps_per_eval = ds_info.splits['test'].num_examples // batch_size

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building ResNet model')
        model = wide_resnet(input_shape=ds_info.features['image'].shape,
                            depth=28,
                            width_multiplier=10,
                            num_classes=ds_info.features['label'].num_classes,
                            l2=FLAGS.l2,
                            version=2)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Linearly scale learning rate and the decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 128
        lr_decay_epochs = [(start_epoch * FLAGS.train_epochs) // 200
                           for start_epoch in FLAGS.lr_decay_epochs]
        lr_schedule = utils.LearningRateSchedule(
            steps_per_epoch,
            base_lr,
            decay_ratio=FLAGS.lr_decay_ratio,
            decay_epochs=lr_decay_epochs,
            warmup_epochs=FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        }

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                negative_log_likelihood = tf.reduce_mean(
                    tf.keras.losses.sparse_categorical_crossentropy(
                        labels, logits, from_logits=True))
                l2_loss = sum(model.losses)
                loss = negative_log_likelihood + l2_loss
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)

        strategy.experimental_run_v2(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            logits = model(images, training=False)
            if FLAGS.use_bfloat16:
                logits = tf.cast(logits, tf.float32)
            probs = tf.nn.softmax(logits)
            negative_log_likelihood = tf.reduce_mean(
                tf.keras.losses.sparse_categorical_crossentropy(labels, probs))
            metrics['test/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['test/accuracy'].update_state(labels, probs)

        strategy.experimental_run_v2(step_fn, args=(next(iterator), ))

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        test_iterator = iter(test_dataset)
        for step in range(steps_per_eval):
            if step % 20 == 0:
                logging.info('Starting to run eval step %s of epoch: %s', step,
                             epoch)
            test_step(test_iterator)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        with summary_writer.as_default():
            for name, metric in metrics.items():
                tf.summary.scalar(name, metric.result(), step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (epoch + 1) % 20 == 0:
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)