def make_model(self):
    # Create placeholders.
    self._placeholders['target_values'] = tf.placeholder(tf.float32, [len(self._params['task_ids']), None], name='target_values')
    self._placeholders['target_mask'] = tf.placeholder(tf.float32, [len(self._params['task_ids']), None], name='target_mask')
    self._placeholders['num_graphs'] = tf.placeholder(tf.int64, [], name='num_graphs')
    self._placeholders['out_layer_dropout_keep_prob'] = tf.placeholder(tf.float32, [], name='out_layer_dropout_keep_prob')

    with tf.variable_scope('graph_model'):
      self.prepare_model()
      self._ops['final_node_representations'] = self.compute_final_node_representations()

    # Compute the squared loss and absolute difference for each prediction task.
    self._ops['losses'] = []
    for (internal_id, task_id) in enumerate(self._params['task_ids']):
      with tf.variable_scope('out_layer_task_%d' % task_id):
        task_target_mask = self._placeholders['target_mask'][internal_id, :]
        task_target_num = tf.reduce_sum(task_target_mask) + utils.SMALL_NUMBER
        if self._params['local_regression']:
          with tf.variable_scope('local_regression'):
            self._weights['local_regression_transform_task_%d' % task_id] = utils.MLP(
                self._params['hidden_size'], 1, [], self._placeholders['out_layer_dropout_keep_prob'])
          computed_values = self.local_regression(self._ops['final_node_representations'],
                                                  self._weights['local_regression_transform_task_%d' % task_id])
          # Computed values has shape [b, v].
          diff = computed_values - tf.expand_dims(self._placeholders['target_values'][internal_id, :], axis=-1)
          # TODO: Handle multiple tasks. Ignore this for now.
          self._ops['accuracy_task_%d' % task_id] = tf.reduce_sum(tf.reduce_mean(tf.abs(diff), axis=1)) / task_target_num
          task_loss = tf.reduce_sum(tf.reduce_mean(0.5 * tf.square(diff), axis=1)) / task_target_num
        else:
          with tf.variable_scope('regression_gate'):
            self._weights['regression_gate_task_%d' % task_id] = utils.MLP(
                2 * self._params['hidden_size'], 1, [], self._placeholders['out_layer_dropout_keep_prob'])
          with tf.variable_scope('regression'):
            self._weights['regression_transform_task_%d' % task_id] = utils.MLP(
                self._params['hidden_size'], 1, [], self._placeholders['out_layer_dropout_keep_prob'])
          computed_values = self.global_regression(self._ops['final_node_representations'],
                                                   self._weights['regression_gate_task_%d' % task_id],
                                                   self._weights['regression_transform_task_%d' % task_id])
          diff = computed_values - self._placeholders['target_values'][internal_id, :]
          diff = diff * task_target_mask  # Mask out unused values
          self._ops['accuracy_task_%d' % task_id] = tf.reduce_sum(tf.abs(diff)) / task_target_num
          task_loss = tf.reduce_sum(0.5 * tf.square(diff)) / task_target_num

        self._predictions = computed_values
        self._targets = self._placeholders['target_values'][internal_id, :]
        # Normalise loss to account for fewer task-specific examples in batch:
        task_loss = task_loss * (1.0 / (self._params['task_sample_ratios'].get(task_id) or 1.0))
        self._ops['losses'].append(task_loss)
    self._ops['loss'] = tf.reduce_sum(self._ops['losses'])
    def __init__(self, config):
        self.config = config

        hidden_size_orig = self.config['hidden_size_orig']
        h_size = self.config['gnn_h_size']
        num_edge_types = self.config['num_edge_types']

        self.weights = {}

        self.weights['mapping'] = utils.MLP(hidden_size_orig, h_size, self.config['embedding_layer']['mapping_dims'], 'relu', 'mapping')
Beispiel #3
0
 def __init__(self,
              hidden_sizes: Sequence[int],
              output_size: int,
              dropout: float,
              final_activation: Optional[Any] = None):
     super(_MlpWithProjector, self).__init__()
     self.mlp = utils.MLP(hidden_sizes,
                          dropout=dropout,
                          final_activation=final_activation)
     self.projector = tf.keras.layers.Dense(output_size)
Beispiel #4
0
    def __init__(self, config):
        self.config = config

        h_size = self.config['gnn_h_size']
        h_size_orig = self.config['hidden_size_orig']
        m_size = self.config['gnn_m_size']

        self.weights = {}

        if self.config['use_node_values'] == 1:
            self.weights['mlp_f_m'] = utils.MLP(
                h_size + 1, h_size * m_size,
                self.config['prediction_cell']['mlp_f_m_dims'],
                self.config['prediction_cell']['mlp_f_m_activation'],
                'mlp_regression_transform')
            self.weights['mlp_g_m'] = utils.MLP(
                h_size + 1 + h_size_orig, h_size * m_size,
                self.config['prediction_cell']['mlp_g_m_dims'],
                self.config['prediction_cell']['mlp_g_m_activation'],
                'mlp_regression_gate')
        else:
            self.weights['mlp_f_m'] = utils.MLP(
                h_size, h_size * m_size,
                self.config['prediction_cell']['mlp_f_m_dims'],
                self.config['prediction_cell']['mlp_f_m_activation'],
                'mlp_regression_transform')
            self.weights['mlp_g_m'] = utils.MLP(
                h_size + h_size_orig, h_size * m_size,
                self.config['prediction_cell']['mlp_g_m_dims'],
                self.config['prediction_cell']['mlp_g_m_activation'],
                'mlp_regression_gate')

        self.weights['mlp_reduce'] = utils.MLP(
            h_size * m_size, h_size * m_size,
            self.config['prediction_cell']['mlp_reduce_dims'],
            self.config['prediction_cell']['mlp_reduce_activation'],
            'mlp_reduce')

        offset = 0
        if config['with_aux_in'] == 1:
            offset = 2
        self.weights['mlp_reduce_after_aux_in_1'] = utils.MLP(
            h_size * m_size + offset, self.config['prediction_cell']
            ['mlp_reduce_after_aux_in_1_out_dim'],
            self.config['prediction_cell']['mlp_reduce_after_aux_in_1_dims'],
            self.config['prediction_cell']
            ['mlp_reduce_after_aux_in_1_activation'],
            'mlp_reduce_after_aux_in_1')

        self.weights['mlp_reduce_after_aux_in_2'] = utils.MLP(
            self.config['prediction_cell']
            ['mlp_reduce_after_aux_in_1_out_dim'],
            self.config['prediction_cell']
            ['mlp_reduce_after_aux_in_2_out_dim'],
            self.config['prediction_cell']['mlp_reduce_after_aux_in_2_dims'],
            self.config['prediction_cell']
            ['mlp_reduce_after_aux_in_2_activation'],
            'mlp_reduce_after_aux_in_2')
  def test_mlp_with_final_activitation(self):
    output_sizes = [5, 6]
    final_activation = tf.keras.layers.ReLU()
    test_model = utils.MLP(
        output_sizes=output_sizes, final_activation=final_activation)
    input_tensor = tf.keras.Input(shape=(8))
    output_tensor = test_model(input_tensor)

    expected_output_shape = [None, 6]
    self.assertEqual(expected_output_shape, output_tensor.shape.as_list())
    self.assertEqual(tf.float32, output_tensor.dtype)
Beispiel #6
0
    def __init__(
        self,
        hparams: Union[ModelParams, dict, None] = None,
        **kwargs,
    ):
        super().__init__()

        if hparams is None:
            hparams = self.params(**kwargs)
        elif isinstance(hparams, dict):
            hparams = self.params(**hparams, **kwargs)

        if isinstance(self.hparams, AttributeDict):
            self.hparams.update(AttributeDict(attr.asdict(hparams)))
        else:
            self.hparams = AttributeDict(attr.asdict(hparams))

        # Check for configuration issues
        if (hparams.gather_keys_for_queue and not hparams.shuffle_batch_norm
                and not hparams.encoder_arch.startswith("ws_")):
            warnings.warn(
                "Configuration suspicious: gather_keys_for_queue without shuffle_batch_norm or weight standardization"
            )

        some_negative_examples = hparams.use_negative_examples_from_batch or hparams.use_negative_examples_from_queue
        if hparams.loss_type == "ce" and not some_negative_examples:
            warnings.warn(
                "Configuration suspicious: cross entropy loss without negative examples"
            )

        # Create encoder model
        self.model = utils.get_encoder(hparams.encoder_arch,
                                       hparams.dataset_name)

        # Create dataset
        self.dataset = utils.get_moco_dataset(hparams)

        if hparams.use_lagging_model:
            # "key" function (no grad)
            self.lagging_model = copy.deepcopy(self.model)
            for param in self.lagging_model.parameters():
                param.requires_grad = False
        else:
            self.lagging_model = None

        self.projection_model = utils.MLP(
            hparams.embedding_dim,
            hparams.dim,
            hparams.mlp_hidden_dim,
            num_layers=hparams.projection_mlp_layers,
            normalization=get_mlp_normalization(hparams),
            weight_standardization=hparams.use_mlp_weight_standardization,
        )

        self.prediction_model = utils.MLP(
            hparams.dim,
            hparams.dim,
            hparams.mlp_hidden_dim,
            num_layers=hparams.prediction_mlp_layers,
            normalization=get_mlp_normalization(hparams, prediction=True),
            weight_standardization=hparams.use_mlp_weight_standardization,
        )

        if hparams.use_lagging_model:
            #  "key" function (no grad)
            self.lagging_projection_model = copy.deepcopy(
                self.projection_model)
            for param in self.lagging_projection_model.parameters():
                param.requires_grad = False
        else:
            self.lagging_projection_model = None

        # this classifier is used to compute representation quality each epoch
        self.sklearn_classifier = LogisticRegression(max_iter=100,
                                                     solver="liblinear")

        if hparams.use_negative_examples_from_queue:
            # create the queue
            self.register_buffer("queue", torch.randn(hparams.dim, hparams.K))
            self.queue = torch.nn.functional.normalize(self.queue, dim=0)
            self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
        else:
            self.queue = None
Beispiel #7
0
    def __init__(self, config: model_config.VanillaLinearVAECellConfig):
        self._gumbel_softmax_label_adjustment_multiplier = config.gumbel_softmax_label_adjustment_multiplier

        vocab_embeddings_initializer = None
        if config.shared_bert_embedding:
            shared_embedding_layer = _BERT(
                config.max_seq_length,
                bert_config=configs.BertConfig(
                    **config.shared_bert_embedding_config),
                trainable=config.trainable_embedding)
        else:
            # If word_embedding_path is specified, use the embedding size of the
            # pre-trained embeddings.
            if config.word_embedding_path:
                with tf.io.gfile.GFile(config.word_embedding_path,
                                       'rb') as embedding_file:
                    word_embedding = np.load(embedding_file)
                embedding_vocab_size, embed_size = word_embedding.shape
                if config.vocab_size != embedding_vocab_size:
                    raise ValueError(
                        'Expected consistent vocab size between vocab.txt and the '
                        'embedding, found {} and {}.'.format(
                            embedding_vocab_size, config.vocab_size))
                config.embed_size = embed_size
                vocab_embeddings_initializer = (
                    tf.keras.initializers.Constant(word_embedding))
            if config.shared_embedding:
                shared_embedding_layer = _Embedding(
                    INPUT_ID_NAME,
                    config.vocab_size,
                    config.embed_size,
                    embeddings_initializer=vocab_embeddings_initializer,
                    input_length=config.max_seq_length,
                    trainable=config.trainable_embedding)
            else:
                shared_embedding_layer = None

        encoder = DualRNNEncoder(
            vocab_size=config.vocab_size,
            embed_size=config.embed_size,
            max_seq_length=config.max_seq_length,
            hidden_size=config.encoder_hidden_size,
            num_layers=config.num_ecnoder_rnn_layers,
            dropout=config.dropout,
            cell_type=config.encoder_cell_type,
            embeddings_initializer=vocab_embeddings_initializer,
            shared_embedding_layer=shared_embedding_layer,
            trainable_embedding=config.trainable_embedding)
        sampler = utils.GumbelSoftmaxSampler(config.temperature, hard=False)

        decoder = DualRNNDecoder(
            vocab_size=config.vocab_size,
            embed_size=config.embed_size,
            max_seq_length=config.max_seq_length - 1,
            hidden_size=config.decoder_hidden_size,
            # Hardcoded to be 1 layer to align with pytorch version. Otherwise, we
            # need to define the initial state for each layer in
            # _prepare_decoder_initial_state and change _post_process_decoder_state
            num_layers=1,
            dropout=config.dropout,
            cell_type=config.decoder_cell_type,
            embeddings_initializer=vocab_embeddings_initializer,
            shared_embedding_layer=shared_embedding_layer,
            trainable_embedding=config.trainable_embedding,
            return_state=True)
        state_updater = _VanillaStateUpdater(config.state_updater_cell_type,
                                             config.num_states, config.dropout)

        self.encoder_output_projector = _VanillaEncoderOutputProjector(
            hidden_sizes=list(config.encoder_projection_sizes),
            output_size=config.num_states,
            dropout=config.dropout)
        self.sample_post_processor = utils.MLP(
            config.sampler_post_processor_output_sizes, dropout=config.dropout)
        self.shared_embedding_layer = shared_embedding_layer

        super(VanillaLinearVAECell, self).__init__(encoder=encoder,
                                                   sampler=sampler,
                                                   decoder=decoder,
                                                   state_updater=state_updater)
Beispiel #8
0
 def __init__(self, hidden_sizes: Sequence[int], output_size: int,
              dropout: float):
     super(_VanillaEncoderOutputProjector, self).__init__()
     self.mlp = utils.MLP(hidden_sizes, dropout=dropout)
     self.project_layer = tf.keras.layers.Dense(output_size)
Beispiel #9
0
def main(cfg):
    from omegaconf import OmegaConf
    attach_state = cfg.attach_state
    from_pixels = cfg.from_pixels
    encoder_type = cfg.encoder_type
    if cfg.user_config:
        print("+++++++++++++++++ Using user specified config")
        cfg = OmegaConf.load(cfg.user_config)
        cfg.attach_state = attach_state
        cfg.from_pixels = from_pixels
        cfg.encoder_type = encoder_type

    print("+++++++++++++++++ Configuration : \n", cfg)
    expert_path = home + "/pytorch_sac/expert/" + cfg.env + "_state"
    print("+++++++++++++++++ Expert Path : ", expert_path)
    actor_path = expert_path + "/actor.pt"

    env = utils.make_env(cfg)  # Make env based on cfg.
    #if cfg.frame_stack = True:
    #	self.env = utils.FrameStack(self.env, k=3)
    cfg.agent.params.obs_dim = env.observation_space.shape[0]
    if attach_state:
        cfg.agent.params.obs_dim += get_env_state_dim(cfg)
    cfg.agent.params.action_dim = env.action_space.shape[0]
    cfg.agent.params.action_range = [
        float(env.action_space.low.min()),
        float(env.action_space.high.max())
    ]
    agent = hydra.utils.instantiate(cfg.agent)
    print("Observation Dimension : ", cfg.agent.params.obs_dim)

    conf = OmegaConf.load(expert_path + '/config.yaml')
    assert conf.env == cfg.env
    conf.agent.params.action_dim = env.action_space.shape[0]
    conf.agent.params.action_range = [
        float(env.action_space.low.min()),
        float(env.action_space.high.max())
    ]
    conf.agent.params.obs_dim = get_env_state_dim(conf)

    agent_expert = hydra.utils.instantiate(conf.agent)
    agent_expert.actor.load_state_dict(torch.load(actor_path))
    #video_recorder = VideoRecorder(None)

    #print("DATASET CAPACITY : 1000000")
    start_ind = 0
    end_ind = 1000000
    load_start_time = time.time()
    data = torch.load(home + "/pytorch_sac/Data/" + cfg.env + "_" +
                      cfg.encoder_type + str(start_ind) + "_" + str(end_ind) +
                      ".pt")
    print(data[0].shape)
    print(data[1].shape)
    print(data[2].shape)
    print(data[3].shape)
    print("Time to load the data  : ", time.time() - load_start_time)
    dataset = Dataset((data[0].shape[1], ), (data[1].shape[1], ),
                      env.action_space.shape, int(end_ind - start_ind),
                      torch.device("cuda"))

    buffer_insert_start_time = time.time()
    for i in range(data[0].shape[0]):
        obs = data[0][i]
        state = data[1][i]
        action_expert = data[2][i]
        reward = data[3][i]
        done = data[4][i]

        dataset.add(obs, state, action_expert, reward, done)
    print("Time taken to add into buffer : ",
          time.time() - buffer_insert_start_time)

    recon_update_steps = 10000
    recon_batch_size = 1024
    recon_eval_freq = 100
    loss_fn = nn.MSELoss()
    model = utils.MLP(cfg.agent.params.obs_dim, 1024,
                      conf.agent.params.obs_dim, 2).to(cfg.device)
    print("Learning Rate : ", cfg.agent.params.actor_lr)
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=cfg.agent.params.actor_lr,
                                 betas=cfg.agent.params.actor_betas)

    recon_steps = 0
    start_recon_time = time.time()
    for i in range(recon_update_steps):
        obses, states, actions_expert, _, _ = dataset.sample(recon_batch_size)
        if attach_state:
            obses = torch.cat((obses, states), axis=1)
        if not cfg.from_pixels:
            obses = states
        loss = update_model_recon(model, obses, states, loss_fn, optimizer)
        recon_steps += 1
        if recon_steps % recon_eval_freq == 0:
            #average_ep_reward = evaluate(env, agent, cfg, attach_state)
            print("Step : ", recon_steps, " Loss : ", loss.data,
                  " Time taken : ",
                  time.time() - start_recon_time)
            #print("Average Episode Reward : ", average_ep_reward)
    print("Total time taken : ", time.time() - load_start_time)
    states, states_recon = evaluate(env, agent_expert, model, cfg,
                                    attach_state)
    states_np = np.array(states)
    states_recon_np = np.array(states_recon)
    print(states_np.shape)
    print(states_recon_np.shape)
    np.savetxt(home + "/pytorch_sac/images/" + cfg.env + "_" +
               cfg.encoder_type + "_" + 'State.csv',
               states_np,
               delimiter=',')
    np.savetxt(home + "/pytorch_sac/images/" + cfg.env + "_" +
               cfg.encoder_type + "_" + 'State_recon.csv',
               states_recon_np,
               delimiter=',')