def quitapplication(): ok = messagebox.askokcancel("Quit", "Do you want to quit?") if ok: logger.info(messages.QUIT_START) #Clear put global variables global currtable global currdb global dbconn currtable = None currdb = None #Close the connection to the DB if open. No commit happens here though if dbconn != None: dbconn.close() print("Closed the DB connection, closing the App") dbconn = None #Backing up all the Databases present in Storage folder utils.backup(PROJECT_ROOT, SERVER, BACKUPS) #Shutdown the Logging instance logger.info(messages.LOGGER_SHUTDOWN) exitlogman(logger) window.destroy() window.quit()
def main(args): utils.main_load() outputfile = args.optf if args.optf else '{0:s}.sespacing.xvg'.format(args.grof) utils.backup(outputfile) outputf = open(outputfile, 'w') beginning_time = utils.write_header(outputf) # This line will be used when there is a better code design # if ARGS.atom_sel is None: # raise ValueError("atom_selection must be specified, check --atom_selection option!") # do calculation ijdist_dict = sequence_spacing(args.grof, args.xtcf, args.btime, args.etime, args.peptide_length, args.atom_sel) # cannot yield from sequence_spacing function because the result cannot be # calculated until all frames have been looped through # write headers outputf.write('# {0:8s}{1:20s}{2:20s}{3:10s}\n'.format('i-j', 'average', 'std', 'num_of_data_points')) # write results to the outputfile for k in sorted(ijdist_dict.keys()): data = np.array(ijdist_dict[k]) mean = data.mean() # mean of ijdist std = data.std() # standard deviation of ijdist num = len(data) # num of data in that ijdist outputf.write('{0:8d}{1:20.8f}{2:20.8f}{3:10d}\n'.format(k, mean, std, num)) # Do some logging at the end utils.write_footer(outputf, beginning_time) outputf.close()
def main(args): utils.main_load() # check the validity of output file name, do backup output = args.optf if output is None: outputfile = '{0:s}.output.xvg'.format(args.grof) else: outputfile = output utils.backup(outputfile) # Do some logging at the beginning outputf = open(outputfile, 'w') beginning_time = utils.write_header(outputf) # do calculation result = calc_dihedral(args.grof, args.xtcf, args.btime, args.etime) # write results to the outputfile for r in result: outputf.write(r) # Do some logging at the end utils.write_footer(outputf, beginning_time) outputf.close()
def populate_csv_file(): backup(csv_path) f_csv = CsvFile(csv_path, 'w') seen_courses = set() course_tags_soup = BeautifulSoup(open(html_path), 'html.parser') for course_tag in course_tags_soup.findAll('a'): displayed_course_information = course_tag.contents[0] department_and_level_regex = '[A-Zx0-9 \.\-]+' if re.match('%s \- ' % department_and_level_regex, displayed_course_information): department_and_level, title = displayed_course_information.split(' - ', 1) elif re.search(' \- %s($|\s)' % department_and_level_regex, displayed_course_information): title, department_and_level = displayed_course_information.rsplit(' - ', 1) else: title, department_and_level = displayed_course_information, '' url = course_tag.get('href') if (title, department_and_level) not in seen_courses: f_csv.add_row(title, department_and_level, url) seen_courses.add((title, department_and_level)) f_csv.close()
def main(args): utils.main_load() outputfile = args.optf if args.optf else '{0:s}.sespacing.xvg'.format( args.grof) utils.backup(outputfile) outputf = open(outputfile, 'w') beginning_time = utils.write_header(outputf) # This line will be used when there is a better code design # if ARGS.atom_sel is None: # raise ValueError("atom_selection must be specified, check --atom_selection option!") # do calculation ijdist_dict = sequence_spacing(args.grof, args.xtcf, args.btime, args.etime, args.peptide_length, args.atom_sel) # cannot yield from sequence_spacing function because the result cannot be # calculated until all frames have been looped through # write headers outputf.write('# {0:8s}{1:20s}{2:20s}{3:10s}\n'.format( 'i-j', 'average', 'std', 'num_of_data_points')) # write results to the outputfile for k in sorted(ijdist_dict.keys()): data = np.array(ijdist_dict[k]) mean = data.mean() # mean of ijdist std = data.std() # standard deviation of ijdist num = len(data) # num of data in that ijdist outputf.write('{0:8d}{1:20.8f}{2:20.8f}{3:10d}\n'.format( k, mean, std, num)) # Do some logging at the end utils.write_footer(outputf, beginning_time) outputf.close()
def dbBackup(self, table_list): backup(user=MySQL['user'], passwd=MySQL['passwd'], host=MySQL['host'], port=MySQL['port'], dbname=MySQL['db'], table_list=table_list) return self.respData(STATUS.OK, error='数据库备份成功~')
def save_pbxproj(self): import utils utils.backup(file_path=self.__pbx_project_path) with open(self.__pbx_project_path, mode='w') as fp: fp.write('// !$*UTF8*$!\n') fp.write( self.dump_pbxproj(note_enabled=True, json_format_enabled=False)) fp.write('\n')
def save(self, file_path: str = None): import utils if self.__buffer and isinstance(self.__buffer, io.BufferedReader): if not file_path or os.path.abspath( self.__buffer.name) == os.path.abspath(file_path): file_path = self.__buffer.name utils.backup(file_path) with open(file_path, mode='w') as fp: fp.write(self.dump())
def main(args): main_load() output = args.optf if output is None: outputfile = '{0:s}.output.xtc'.format(args.tprf) else: outputfile = output backup(outputfile) # do calculation trjcat_plus(args.xtcf, args.tprf, outputfile)
def backup_saves(path_ds_save: str, forced=False): try: for path_file_name in glob(path_ds_save): log.debug(f"Check: {path_file_name}") # Get timestamps save_timestamp = os.path.getmtime(path_file_name) now_timestamp = time.time() # Save backup. If less than 600 secs have passed since the last modification of the file is_modified = (now_timestamp - save_timestamp) < 600 ok = forced or is_modified log.debug( f"{'Need backup' if ok else 'Not need backup'}. " f"Reason: Forced={forced}, Is modified file save={is_modified}" ) if not ok: continue file_name_backup = backup(path_file_name, now_timestamp) log.debug(f"Saving backup: {file_name_backup}") except: print("ERROR:\n" + traceback.format_exc()) time.sleep(5 * 60)
def main(args): utils.main_load() outputfile = args.optf if args.optf else '{0:s}.unun.xvg'.format(args.grof) utils.backup(outputfile) outputf = open(outputfile, 'w') beginning_time = utils.write_header(outputf) result = count_interactions(args.grof, args.xtcf, args.btime, args.etime, args.cutoff) # write headers outputf.write('# {0:>10s}{1:>8s}\n'.format('time', 'num')) # write results to the outputfile for r in result: outputf.write(r) # Do some logging at the end utils.write_footer(outputf, beginning_time) outputf.close()
def main(args): U.main_load() outputfile = args.optf if args.optf else '{0:s}.rama.xvg'.format(args.grof) U.backup(outputfile) outputf = open(outputfile, 'w') beginning_time = U.write_header(outputf) result = calc_rama(args.grof, args.xtcf, args.btime, args.etime) # write headers outputf.write('# {0:>10s}{1:>8s}\n'.format('phi', 'psi', 'resname-resid')) # write results to the outputfile for r in result: outputf.write(r) # Do some logging at the end U.write_footer(outputf, beginning_time) outputf.close()
def testSpeedWithLibMinSub(): minSupports = [ 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.008, 0.005, 0.002, 0.001, 0.0008, 0.0005 ] lable = [1 / x for x in minSupports] fileBackup = 'compareMinSup/backup.json' transactions, items = loadBaseDataSet() target = [] optimizedLib = [] for min_support in minSupports: print(f'Running with {min_support}-min_support'.center(100, ' ')) min_confidence = 0.1 min_lift = 0.0 start1 = time.time() result1 = list( targetApriori(transactions=transactions, items=items, min_confidence=min_confidence, min_support=min_support, min_lift=min_lift, numReduce=0.1)) end1 = time.time() target.append(end1 - start1) start2 = time.time() result2 = list( pyLibOptimizedApriori(transactions, min_confidence=min_confidence, min_support=min_support, min_lift=min_lift)) end2 = time.time() optimizedLib.append(end2 - start2) print(len(result1)) print(len(result2)) print('Backing up...') backup(fileBackup, minSupports, target, optimizedLib) labels = ['target', 'optimizedLib'] labelD = {'y': 'Time (s)', 'x': '1/min_support'} backup(fileBackup, minSupports, target, optimizedLib) drawPlot(lable, [optimizedLib, target], labels, labelD).savefig('compareMinSup/reslut.png') print('Done!'.center(100, ' '))
def testSpeedWithLib(): numDatas = [ 1000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 200000, 400000, 600000, 800000, 1000000 ] fileBackup = 'compareLibApyori/backup.json' _, items = loadBaseDataSet() target = [] optimizedLib = [] for numData in numDatas: gTransactions = generateData(items, numData) transactions = gTransactions print(f'Running with {len(transactions)}-dataset'.center(100, ' ')) min_support = 0.02 min_confidence = 0.1 min_lift = 0.0 start1 = time.time() result1 = list( targetApriori(transactions=transactions, items=items, min_confidence=min_confidence, min_support=min_support, min_lift=min_lift, numReduce=5)) end1 = time.time() target.append(end1 - start1) start2 = time.time() result2 = list( pyLibOptimizedApriori(transactions, min_confidence=min_confidence, min_support=min_support, min_lift=min_lift)) end2 = time.time() optimizedLib.append(end2 - start2) print('Backing up...') backup(fileBackup, numDatas, target, optimizedLib) labels = ['target', 'optimizedLib'] labelD = {'y': 'Time (s)', 'x': 'Num Transactions'} backup(fileBackup, numDatas, target, optimizedLib) drawPlot(numDatas, [target, optimizedLib], labels, labelD).savefig('compareLibApyori/reslut.png') print('Done!'.center(100, ' '))
def backup_saves(path_ds_save: str): try: for path_file_name in glob(path_ds_save): file_name_backup = backup(path_file_name) log.debug(f"Saving backup: {file_name_backup}") beep() except: print("ERROR:\n" + traceback.format_exc()) time.sleep(5 * 60)
def populate_html_file(): backup(html_path) f_html = open(html_path, 'w') while harvard_course_catalog_url: opened_course_catalog = urllib2.urlopen(harvard_course_catalog_url) course_catalog_soup = BeautifulSoup(opened_course_catalog.read(), 'html.parser') for course_tag in course_catalog_soup.findAll(is_course_title): f_html.write('%s\n' % str(course_tag)) next_link_tag = course_catalog_soup.find(is_next_link) harvard_course_catalog_url = next_link_tag.get('href') if next_link_tag else None f_html.close()
def main(cmd_args): args = get_args(cmd_args) utils.main_load() output = args.optf if output is None: # it's a log since the results are written to the h5 file directly outputfile = '{0:s}.output.log'.format(args.grof) else: outputfile = output utils.backup(outputfile) outputf = open(outputfile, 'w') beginning_time = utils.write_header(outputf) A = args if not os.path.exists(A.h5): raise IOError('{0} does not exist'.format(A.h5)) # *10: convert to angstrom from nm result = count_interactions(A) path = os.path.join('/', os.path.dirname(A.xtcf)) tb_name = os.path.join(path, 'unun_map') h5 = tables.openFile(A.h5, mode='a') if h5.__contains__(tb_name): logger.info( 'found {0} already in {0}, replacing with new calculated values'. format(tb_name, A.h5)) _ = h5.getNode(tb_name) _.remove() h5.createArray(where=path, name='unun_map', object=result) h5.close() utils.write_footer(outputf, beginning_time) outputf.close()
def testSpeedWithNormal(): fileBackup = 'compareNormal/backup.json' _, items = loadBaseDataSet() numDatas = [1000, 1500, 2000, 2500, 3000, 4000, 5000] target = [] purePriori = [] for numData in numDatas: gTransactions = generateData(items, numData) transactions = gTransactions print(f'Running with {len(transactions)}-dataset'.center(100, ' ')) min_support = 0.02 min_confidence = 0.1 min_lift = 0.0 start1 = time.time() result1 = list( targetApriori(transactions=transactions, items=items, min_confidence=min_confidence, min_support=min_support, min_lift=min_lift, numReduce=5)) end1 = time.time() target.append(end1 - start1) start2 = time.time() result2 = list(pureApriori(transactions, min_support)) end2 = time.time() purePriori.append(end2 - start2) print('Backing up...') backup(fileBackup, numDatas, target, purePriori) labels = ['target', 'pureFuncion'] labelD = {'y': 'Time (s)', 'x': 'Num Transactions'} backup(fileBackup, numDatas, target, purePriori) drawPlot(numDatas, [target, purePriori], labels, labelD).savefig('compareNormal/reslut.png') print('Done!'.center(100, ' '))
def main(cmd_args): args = get_args(cmd_args) utils.main_load() output = args.optf if output is None: # it's a log since the results are written to the h5 file directly outputfile = '{0:s}.output.log'.format(args.grof) else: outputfile = output utils.backup(outputfile) outputf = open(outputfile, 'w') beginning_time = utils.write_header(outputf) A = args if not os.path.exists(A.h5): raise IOError('{0} does not exist'.format(A.h5)) # *10: convert to angstrom from nm result = count_interactions(A) path = os.path.join('/', os.path.dirname(A.xtcf)) tb_name = os.path.join(path, 'unun_map') h5 = tables.openFile(A.h5, mode='a') if h5.__contains__(tb_name): logger.info('found {0} already in {0}, replacing with new calculated values'.format(tb_name, A.h5)) _ = h5.getNode(tb_name) _.remove() h5.createArray(where=path, name='unun_map', object=result) h5.close() utils.write_footer(outputf, beginning_time) outputf.close()
}""" % (args.source, args.target)) # If yes, find the shortest path and convert for doable in job: if doable: print("Conversion available!\n=====================") # Find the conversions to update the model in minimum number of version upgrades conversions = find_conversions(args.source, args.target, versions_graph) # Loop through all the input models for model in args.models: print('\n\nUpdating {}...'.format(model)) # Create a model.bak backup(model) standardize_namespaces(model) # Execute all conversions for conversion in conversions: model_graph = Graph() model_graph.parse(model, format='turtle') print("Converting to {}...".format(conversion[1])) convert(conversion, model_graph) model_graph.serialize(model, format='turtle') bump_versions(model, conversion[0], conversion[1]) print('Output stored: {}'.format(model)) else: print("No conversions available from {} to {}.".format( args.source, args.target))
def save(self): import utils utils.backup(file_path=self.__file_path) with open(self.__file_path, mode='w') as fp: self.__buffer.seek(0) fp.write(self.__buffer.read())
import utils utils.backup(__file__)
from __future__ import division from pylab import * import random # there already is a sample in the namespace from numpy from random import sample as smpl import itertools import utils utils.backup(__file__) import synapses class AbstractSource(object): def __init__(self): """ Initialize all relevant variables. """ raise NotImplementedError def next(self): """ Returns the next input """ raise NotImplementedError def global_range(self): """ Returns the maximal global index of all inputs """ raise NotImplementedError def global_index(self):
metavar='PATH', help='path to source dir (default: "")') parser.add_argument('-d', '--dst', default='', type=str, metavar='PATH', help='path to destination dir (default: "")') parser.add_argument('-t', '--time', default=600, type=int, metavar='N', help='interval seconds to backup') def ignore(src, dst): return [ 'train.json', 'train.json.7z', 'test.json', 'test.json.7z', 'stinkbug.png', 'sample_submission.csv', 'sample_submission.csv.7z' ] if __name__ == '__main__': args = parser.parse_args() assert args.src, 'source dir is none' assert args.dst, 'distination dir is none' assert args.time > 0, 'interval should not be negative' utils.backup(args.src, args.dst, False, ignore, args.time)