Beispiel #1
0
def determine_image(prediction_model, input_path, logger, image_name):
    filepath = join(input_path, image_name)
    # Check image extension (it should be JPEG or PNG)
    try:
        check_mimetype(filepath)
    except WrongMimeTypeError:
        logger.info(
            f"{'*' * 50}\n{basename(image_name)} - unsupported_file\n{'*' * 50}"
        )
    try:
        image = Image.open(filepath)
        result = prediction_model.predict(image)
        logger.info(f"{'*' * 50}\n{image_name} - {result}\n{'*' * 50}")
    except PIL.UnidentifiedImageError as e:
        logger.info(
            f"{'*' * 50}\n{basename(image_name)} - cannot identify your image\n{'*' * 50}"
        )
Beispiel #2
0
def predict(prediction_model):
    predict_model = get_prediction_model(prediction_model)
    if predict_model:
        image = flask.request.files["image"]
        if flask.request.files.get("image"):
            try:
                # Check image extension (it should be JPEG or PNG)
                check_mimetype(flask.request.files.get("image"))
            except WrongMimeTypeError:
                return abort(400, "Unsupported file")
            image.seek(0)
            image = image.read()
            image = Image.open(io.BytesIO(image))
            result = predict_model().predict(image)
            resp = make_response({"data": result}, 200)
            return resp
        return abort(400, "There is no image to process")
    return abort(400, f"Prediction model with the name of the '{prediction_model}' does not exist")
Beispiel #3
0
def execute(predict_model, input_path):
    prediction_model = get_prediction_model(predict_model)
    if not prediction_model:
        raise Exception(
            f"Prediction model with the name of the '{predict_model}' does not exist"
        )

    if not exists(input_path):
        raise Exception(f"Images path does not exist")
    logger = init_logger(predict_model)
    prediction_model = prediction_model()
    if isdir(input_path):
        # Get all files from directory
        images = [
            f for f in os.listdir(input_path) if isfile(join(input_path, f))
        ]
        images.sort()
        for img in tqdm.tqdm(images, total=len(images)):
            determine_image(prediction_model, input_path, logger, img)
    else:
        try:
            check_mimetype(input_path)
            image = Image.open(input_path)
        except WrongMimeTypeError as e:
            logger.info(
                f"{'*' * 50}\n{basename(input_path)} - unsupported_file\n{'*' * 50}"
            )
            raise e
        except PIL.UnidentifiedImageError as e:
            logger.info(
                f"{'*' * 50}\n{basename(input_path)} - cannot identify your image\n{'*' * 50}"
            )
            raise e
        result = prediction_model.predict(image)
        logger.info(
            f"{'*' * 50}\n{basename(input_path)} - {result}\n{'*' * 50}")
 def test_check_mimetype_with_unsupported_type(self):
     image = "no_jpeg_no_png.svg"
     image_path = self.fixtures_dir + image
     with self.assertRaises(WrongMimeTypeError):
         check_mimetype(image_path)
 def test_check_mimetype_using_image_object(self):
     for image, result in FIXTURES.items():
         with open(self.fixtures_dir + image, "rb") as image:
             mime_type = check_mimetype(image)
             self.assertEqual(mime_type, result)
 def test_check_mimetype_using_filepath(self):
     for image, result in FIXTURES.items():
         image_path = self.fixtures_dir + image
         mime_type = check_mimetype(image_path)
         self.assertEqual(mime_type, result)