def sample_action(self, current_state, explore=True):

        # generate sensor data
        array_laser = utils.remapping_laser_data(current_state.laserScan)
        sensor = Variable(
            torch.FloatTensor(np.reshape(array_laser, (1, self.sensor_dim))))

        # generate target data
        target_polar = utils.target_transform(current_state)

        target = Variable(
            torch.FloatTensor(np.reshape(target_polar, (1, self.target_dim))))

        # generate action
        action = self.actor_ca(sensor=sensor, target=target).cpu().data.numpy()

        if explore and random.uniform(0, 1) > 0.7 and self.train_type is not 3:
            action = action + self.noise.sample()
            #action[0][0] = random.uniform(-1,1)
            #action[0][1] = random.uniform(-1,1)

        # constrain the action
        action[0][0] = utils.constrain_actions(action[0][0], 1)
        action[0][1] = utils.constrain_actions(action[0][1], 1)

        return action[0][0], action[0][1]
Beispiel #2
0
    def navigation(self, current_state):
        # generate sensor data
        array_laser = utils.remapping_laser_data(current_state.laserScan)
        sensor = Variable(torch.FloatTensor(np.reshape(array_laser, (1, self.sensor_dim))))

        # generate target data
        target_polar = utils.target_transform(current_state)
        target = Variable(torch.FloatTensor(np.reshape(target_polar, (1, self.target_dim))))
        
        # generate action
        target_driven_action = self.differential_driver.run(x=current_state.desired_x, y=current_state.desired_y)
        collision_avoidance_action = self.actor_ca(sensor=sensor, target=target).cpu().data.numpy()
        predict_state = self.evaluation_net.predict_state(array_laser.reshape(1, -1))

        # Collision avoidance ratio
        ratio = min(float(torch.kthvalue(sensor,1)[0]) / (-3.5), 1)
#        print ratio
        final_action = []
        for i in range(2):
            final_action.append((1.0 - ratio) * target_driven_action[0][i] + ratio * collision_avoidance_action[0][i] )
#        print final_action

        # constrain the action
        final_action[0] = utils.constrain_actions(final_action[0], 1)
        final_action[1] = utils.constrain_actions(final_action[1], 1)
#        print final_action

        return final_action[0], final_action[1]
Beispiel #3
0
 def sample_action(self, cx, cy, cow, cox, coy, coz, tx, ty, tow, tox, toy, toz, explore=True):
     state = Variable(torch.FloatTensor(np.transpose(np.reshape([cx,cy,cow,cox,coy,coz,tx,ty,tow,tox,toy,toz], [6*2, 1]))))
     action = self.actor(state).cpu().data.numpy()
     # add some noise to the action
     action[0][0] = utils.constrain_actions(action[0][0], 2)
     action[0][1] = utils.constrain_actions(action[0][1], 1)
     if explore:
         if random.uniform(0,1) > 0.7:
             #action = action + self.noise.sample()
             action[0][0] = random.uniform(0,2)
             action[0][1] = random.uniform(-1,1)
     return action[0][0], action[0][1]
Beispiel #4
0
    def sample_action(self, current_state, explore=True):

        # generate states
        cvx, cvy = utils.vector_normalization(current_state.target_x,
                                              current_state.target_y,
                                              current_state.current_x,
                                              current_state.current_y)

        # reshape is needed here, because single sample and batch sample should be both 2-dim
        state = Variable(
            torch.FloatTensor(
                np.transpose(
                    np.reshape([
                        cvx, cvy, current_state.orientation_w,
                        current_state.orientation_x,
                        current_state.orientation_y,
                        current_state.orientation_z
                    ], (self.state_dim, 1)))))
        '''
        state = Variable(torch.FloatTensor(np.transpose(np.reshape([current_state.current_x, current_state.current_y,
                                                                    current_state.target_x, current_state.target_y,
                                                                    current_state.orientation_w,current_state.orientation_x,
                                                                    current_state.orientation_y,current_state.orientation_z], 
                                                                    (self.state_dim, 1)))))
        '''

        # generate sensor data
        array_laser = np.array(current_state.laserScan)
        where_inf = np.isinf(array_laser)
        array_laser[where_inf] = 3.5
        sensor = Variable(
            torch.FloatTensor(np.reshape(array_laser, (1, self.sensor_dim))))

        # generate action
        action = self.actor(state=state, sensor=sensor).cpu().data.numpy()

        # amplify the linear speed
        #action[0][0] = 2*action[0][0]

        if explore:
            if random.uniform(0, 1) > 0.7:
                #action = action + self.noise.sample()
                action[0][0] = random.uniform(-1, 1)
                action[0][1] = random.uniform(-1, 1)

        # constrain the action
        action[0][0] = utils.constrain_actions(action[0][0], 1)
        action[0][1] = utils.constrain_actions(action[0][1], 1)

        return action[0][0], action[0][1]
    def sample_action(self, current_state, laser_data, explore=True):

        # reshape is needed here, because single sample and batch sample should be both 2-dim
        state = Variable(
            torch.FloatTensor(
                np.transpose(
                    np.reshape(
                        [current_state.desired_x, current_state.desired_y],
                        (self.state_dim, 1)))))
        # generate sensor data
        array_laser_1 = utils.remapping_laser_data(laser_data[0])
        array_laser_2 = utils.remapping_laser_data(laser_data[1])
        array_laser_3 = utils.remapping_laser_data(current_state.laserScan)

        sensor_1 = Variable(
            torch.FloatTensor(np.reshape(array_laser_1, (1, self.sensor_dim))))
        sensor_2 = Variable(
            torch.FloatTensor(np.reshape(array_laser_2, (1, self.sensor_dim))))
        sensor_3 = Variable(
            torch.FloatTensor(np.reshape(array_laser_3, (1, self.sensor_dim))))
        sensor = torch.cat([sensor_1, sensor_2, sensor_3], 1)

        # generate action
        if self.train_type == 1:
            action = self.actor_td(state=state).cpu().data.numpy()
        elif self.train_type == 2:
            action = self.actor_ca(sensor=sensor).cpu().data.numpy()
        else:
            action = self.differential_driver.run(x=current_state.desired_x,
                                                  y=current_state.desired_y)

        if explore and random.uniform(0, 1) > 0.7 and self.train_type is not 3:
            action = action + self.noise.sample()
            #action[0][0] = random.uniform(-1,1)
            #action[0][1] = random.uniform(-1,1)

        # constrain the action
        action[0][0] = utils.constrain_actions(action[0][0], 1)
        action[0][1] = utils.constrain_actions(action[0][1], 1)

        return action[0][0], action[0][1]