Beispiel #1
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')
    
    # Process input_data so that it is ready to be sent to our model.
    data_X, data_len = convert_and_pad(model.word_dict, review_to_words(input_data))

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)
    
    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # Compute the result of applying the model to the input data.
    with torch.no_grad():
        output = model(data)
    result = np.round(output.numpy())

    return result
Beispiel #2
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')
    
    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    data_X, data_len = convert_and_pad(model.word_dict, review_to_words(input_data))

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)
    
    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0
    with torch.no_grad():
        output = model.forward(data)
        
    result = int(np.round(output.numpy()))
    
    return result
Beispiel #3
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # Process input_data so that it is ready to be sent to our model.
    #       It produces two variables:
    # data_X   - A sequence of length 500 which represents the converted review
    # data_len - The length of the review

    data_x, data_len = convert_and_pad(model.word_dict,
                                       review_to_words(input_data))

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Put the model into evaluation mode
    model.eval()

    # Compute the result of applying the model to the input data.
    result = np.array(round(model(data).item()))

    return result
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    words = review_to_words(input_data)
    data_X, data_len = convert_and_pad(model.word_dict, words)

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)
    model.eval()

    with torch.no_grad():
        output = model.forward(data)

    result = np.round(output.numpy()).astype(int)

    return result
Beispiel #5
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    data_X_to_words = review_to_words(input_data)

    # See function parameters for convert_and_pad from utils.py.
    # Function has 2 outputs. 1) Review itself, 2) Length of the review, without padding. We can extract both values using Python indexing.

    data_X = convert_and_pad(model.word_dict, data_X_to_words)[0]
    data_len = convert_and_pad(model.word_dict, data_X_to_words)[1]

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0

    # https://discuss.pytorch.org/t/model-eval-vs-with-torch-no-grad/19615/2
    # At the above link, you can find the discussion in a forum on why we should use torch.no_grad() in evaluation mode. HINT: It is much
    # faster and ligher on memory while making predictions.

    with torch.no_grad():
        output = model.forward(data)

    result = np.round(output.numpy())

    return result
def convert_and_pad_data(word_dict, data, pad=500):
    result = []
    lengths = []

    for sentence in data:
        converted, lengths = convert_and_pad(word_dict, sentence, pad)
        result.append(converted)
        lengths.append(lengths)

    return np.array(result), np.array(lengths)
Beispiel #7
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    test_X = review_to_words(
        input_data)  # converting to words and applying filters
    """
    We are only sending one review at a time, so we won't need to do it as we did during training
    data_X = []
    data_len = []
    
    for sentence in data:
        converted, leng = convert_and_pad(word_dict, sentence, pad)
        result.append(converted)
        lengths.append(leng)
        
    return np.array(result), np.array(lengths)
    """

    data_X, data_len = convert_and_pad(
        model.word_dict, test_X)  # converting to a 500 bow features

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0

    with torch.no_grad():
        output = model.forward(
            data)  # making forward pass through the trained network
        output = output.to(
            'cpu')  # switching to CPU to prevent deployment issue
        result = np.round(output.numpy())
        result = int(result)

    return result
Beispiel #8
0
def predict_fn(input_data, model):
    """Function to infer the sentiment of provided input data and 
    generate a prediction from the trained model.
            
    Args:
        input_data (str): unprocessed input data of IMDB reviews
        model (LSTMClassifier): type of input for deserialization
    
    Returns:
        Exception: thrown if content_type not equal to 'text/plain'
    
    """

    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # DONE: Process input_data so that it is ready to be sent to our model
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    data_X, data_len = convert_and_pad(model.word_dict,
                                       review_to_words(input_data))

    # Using data_X and data_len we construct an appropriate input tensor
    # Remember that our model expects input data of the form 'len, review[500]'
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # DONE: Compute the result of applying the model to the input data
    # The variable `result` should be a numpy array which contains a
    #   single integer which is either 1 or 0
    with torch.no_grad():
        output = model.forward(data)

    result = np.round(output.numpy())

    return result
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    print("Input data = {}".format(input_data))

    #First - convert to words
    sentence = review_to_words(input_data)
    print("Converted to words = {}".format(sentence))

    #Second - convert to int and pad to 500
    data_X, data_len = convert_and_pad(model.word_dict, sentence, 500)
    print("Converted to int array = {}".format(data_X))
    print("Length = {}".format(data_len))

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    print("Data formatted in a tensor = {}".format(data))

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0

    output = model(data)
    print("Model output = {}".format(output))

    # convert to int and put in numpy array
    result = output.detach().numpy().round().astype(int)
    print("Result = {}".format(result))

    return result
Beispiel #10
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review
    data_X, data_len = convert_and_pad(model.word_dict,
                                       review_to_words(input_data))
    data_X, data_len = np.array(data_X), np.array(data_len)

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0

    # Reference: https://knowledge.udacity.com/questions/23616
    # Reference: https://study-hall.udacity.com/rooms/community:nd101:633452-cohort-2455-project-2262/community:thread-271916691-456216?contextType=room
    # Reference: https://study-hall.udacity.com/rooms/community:nd101:633452-cohort-2455-project-2262/community:thread-u26834124-410140?contextType=room

    with torch.no_grad():
        # Take a forward path
        output = model.forward(data)

        # TO DO: Study why this is required? It is non-intuitive.
        # Move the result to cpu (this is a must if GPU was used)
        output = output.to('cpu')

        # TO DO: Study why this is required? It is non-intuitive.
        # Make the result an int (0 or 1)
        result = np.round(output.numpy())

    return result
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    converted, length = convert_and_pad(model.word_dict,
                                        review_to_words(input_data))

    data_X = converted
    data_len = length

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0

    # AdVo: source
    # https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#train-a-model-with-pytorch

    with torch.no_grad():
        result = model(data)

    # Convert the result from Tensor to numpy
    result = result.numpy()

    # Round the result and convert to int
    result = np.array(int(np.around(result)))

    return result
Beispiel #12
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review
    data_X, data_len = convert_and_pad(model.word_dict,
                                       review_to_words(input_data),
                                       pad=500)

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0

    output = model(data)
    #print(output)

    output = torch.round(output.squeeze())
    output_temp = torch.tensor(output, requires_grad=True)
    result = torch.round(output_temp.detach().numpy())

    #print(result)

    # Citations:
    # https://github.com/udacity/deep-learning-v2-pytorch/blob/master/sentiment-rnn/Sentiment_RNN_Solution.ipynb
    # https://stackoverflow.com/questions/55466298/pytorch-cant-call-numpy-on-variable-that-requires-grad-use-var-detach-num

    return result
Beispiel #13
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')
    
    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review
    
    # using imported functions that already do this:
    words_in_review = review_to_words(input_data)
    words_in_review, length = convert_and_pad(model.word_dict, words_in_review)
    data_X = words_in_review
    data_len = length

    
    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)
    
    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0
    
    #output = model(data).numpy()
    output = model(data).detach().cpu().numpy()
    #generates error without using detach! WHY?? //delete later
    print(output)
    
    result_real_rounded = np.round(output)

    result = result_real_rounded.astype(np.int)

    return result
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    data_X = None
    data_len = None
    data_X = review_to_words(input_data)
    data_X, data_len = convert_and_pad(model.word_dict, data_X)

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0

    result = None

    with torch.no_grad(
    ):  #This provides us memory efficient. We don't need to calculate gradient to backward.
        output = model.forward(data)
    output = output.to('cpu')

    result = int(np.round(output.numpy()))
    #.numpy() provides retrieve tensor object as numpy array. I have taken this information from below link.
    #https://discuss.pytorch.org/t/how-to-transform-variable-into-numpy/104

    return result
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    #data_X = None
    #data_len = None

    # As we did in the "More testing" section of the "Sage Maker Projec.ipynb"
    #test_review_words = review_to_words(test_review)
    input_data = review_to_words(input_data)
    #test_review_words, test_review_len = convert_and_pad(word_dict, test_review_words)

    # Check whether word_dict exist
    #print(list(model.word_dict)[:2])

    data_X, data_len = convert_and_pad(model.word_dict, input_data)

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0

    result = np.array(int(model(data).detach().round()))

    return result
Beispiel #16
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')
    
    # COMPLETED: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    words_predict = review_to_words(input_data)
    
    # convert_and_pad returns working_sentence, min(len(sentence), pad) 
    # default pad value is 500
    data_X, data_len = convert_and_pad(model.word_dict, words_predict)

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)
    
    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # COMPLETED: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0

    # deactivate autograd engine
    with torch.no_grad():
        outputs = model(data)
        
    # np.round() rounds the number 
    # .cpu() make sure the tensor is moved to memory accessible to the CPU
    # .numpy() turns the tensor into ndarray for ease of computation
    result = int(np.round(outputs.cpu().numpy()))

    return result
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    data_pack = np.hstack(
        convert_and_pad(model.word_dict, review_to_words(input_data))).reshape(
            (1, -1))

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    return int(np.round(model(data).detach().cpu().numpy()))
Beispiel #18
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    # First process the raw input data
    reviewed_words = review_to_words(input_data)
    word_dictionary = model.word_dict

    # Then use the convert_and_pad function providing it the word dictionary from the model object and the processed "rvw"
    data_X, data_len = convert_and_pad(word_dictionary, reviewed_words)

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0

    # Predict the Output by just passing the data into the model and calculating one forward step (prediction)
    with torch.no_grad():
        output = model.forward(data)

    # Round the data (so that we only have either 0 or 1 in it)
    output = output.numpy()
    rounded_output = output.round()

    return rounded_output
Beispiel #19
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    review_words = review_to_words(input_data)
    review_words, review_length = convert_and_pad(model.word_dict,
                                                  review_words)

    data_X = review_words
    data_len = review_length

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0
    prediction = model(data).detach().cpu().numpy()  #Move the value to cpu
    print(prediction)  #Printing the model's prediction

    #Convert the prediction
    result = np.asarray(prediction).astype(
        np.int
    )  #Converting the prediction into a numpy array and changing the data type to int

    return result
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

#      word_dict_path = os.path.join(model_dir, 'word_dict.pkl')
    processed_data = convert_and_pad(model.word_dict,
                                     review_to_words(input_data))

    #     print(input_data)
    #     processed_data=input_data
    data_X = processed_data[0]
    data_len = processed_data[1]

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which cntains a single integer which is either 1 or 0
    print("data input into the model is", data)

    output = model(data)
    print("output from the model is :", output)
    result = np.around(output.detach().numpy()).astype('int')

    return result
Beispiel #21
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    #       Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    #data_X = [review_to_words(review) for review in input_data]
    #data_X = convert_and_pad(word_dict, data_X, 500)
    #data_len = 500
    input_data = review_to_words(input_data)
    data_X, data_len = convert_and_pad(model.word_dict, input_data)

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # Compute the result of applying the model to the input data. The variable `result` should
    # be a numpy array which contains a single integer which is either 1 or 0

    result = float(model(data).detach().numpy())

    if result >= 0.5:
        result = 1
    else:
        result = 0

    return np.array(result)
Beispiel #22
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    tokens = review_to_words(input_data)

    data_X, data_len = convert_and_pad(model.word_dict, tokens)

    print(tokens)
    #print
    #reshape function
    data_pack = np.hstack((data_len, data_X))

    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)
    print(data)

    #final
    model.eval()
    #model.eval()

    with torch.no_grad():

        #print
        print(data)
        result = model(data).detach().numpy()

        print(result)

        return result
def input_handler(data, context):
    """ Pre-process request input before it is sent to TensorFlow Serving REST API
    Args:
        data (obj): the request data, in format of dict or string
        context (Context): an object containing request and configuration details
    Returns:
        (dict): a JSON-serializable dict that contains request body and headers
    """
    print("calling input_handler")
    print("data:", data)
    # print("dir(data):", dir(data))
    # print("data.read():", data.read().decode('utf-8'))
    print("context:", context)

    # Load the saved word_dict.
    # print(os.system('pwd'))
    # print(os.system('ls -Rla ./'))
    # print(os.system('ls -Rla /opt/ml/model'))
    word_dict_path = os.path.join(
        '/opt/ml/model', 'word_dict.pkl'
    )  # model is saved at /opt/ml/model of the deployed endpoint
    with open(word_dict_path, 'rb') as f:
        word_dict = pickle.load(f)

    print('word_dict:', word_dict)

    if context.request_content_type == 'application/json':
        d = data.read().decode('utf-8')

        print('Decoded data:', d)

        data_X, data_len = convert_and_pad(word_dict, review_to_words(d))
        data_X = np.array(data_X)[np.newaxis]
        data_X_json = json.dumps({'instances': data_X.tolist()})

        print('data_X_json:', data_X_json)

        return data_X_json

    raise ValueError('{{"error": "unsupported content type {}"}}'.format(
        context.request_content_type or "unknown"))
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    data_X, data_len = convert_and_pad(model.word_dict,
                                       review_to_words(input_data))

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0
    # result: b"tensor(0.9998, device='cuda:0')"
    # result: b"tensor(1.00000e-3 *\n 3.778, device='cuda:0')"
    re = str(model(data))
    res = re.split("(")
    if "*" in res[1]:
        result = np.asarray(0)
    else:
        tmp = [1 if float(res[1].split(",")[0]) > 0.50 else 0]
        result = np.asarray(tmp[0])

    return result
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    # from the imported utils, we get the list of sanetized words of the review, that is clean
    # from html tags, punctuation, removes stopping words, and returns all to lowercase
    words = review_to_words(review=input_data)

    # now from the imported utils, match the first 500 sanetized words to the word_dict of the model
    data_X, data_len = convert_and_pad(word_dict=model.word_dict,
                                       sentence=words,
                                       pad=500)

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0

    out = model.forward(data)
    result = np.array(round(float(out)))

    return result
Beispiel #26
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    data_X, data_len = convert_and_pad(model.word_dict,
                                       review_to_words(input_data))

    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)
    model.eval()

    with torch.no_grad():
        output = model.forward(data)

    return np.round(output.numpy())
def predict_fn(input_data, model):
    """
    Make prediction on input data thanks to model
    """

    # Begin predicting:
    print("Inferring sentiment of input data...")

    # Determine the device:
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Check model word dictionary presence:
    if model.word_dict is None:
        raise Exception("Model has not been loaded properly: no word_dict")

    # Process input_data so that it is ready to be sent to our model:
    data_x, data_len = convert_and_pad(model.word_dict,
                                       review_to_words(input_data))

    # Construct an appropriate input tensor:
    data_pack = np.hstack((data_len, data_x))
    data_pack = data_pack.reshape(1, -1)
    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode:
    model.eval()

    # Apply model to input tensor:
    output_data = model.forward(data)

    # Transform output into a numpy array which contains a single integer, 1 or 0:
    if torch.cuda.is_available():
        # NumPy doesn't support CUDA:
        output_data.to('cpu')
    result = int(np.round(output_data.detach().numpy()))

    # Return prediction:
    return result
Beispiel #28
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')
    
    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review
    
    words = review_to_words(input_data)
    data_X, data_len = convert_and_pad(model.word_dict, words)

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)
    
    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0
    # ideas from https://github.com/AAnoosheh/MNIST_test/blob/master/test.py
    # solution with detach() taken from CloudWatch logs
    # solution with numpy() found in https://stackoverflow.com/questions/34097281/how-can-i-convert-a-tensor-into-a-numpy-array-in-tensorflow 
    with torch.no_grad():
        output = model.forward(data).round().detach().numpy()
        
    result = int(float(output))   

    return result
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')
    
    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review
    
    input_data = review_to_words(input_data)
    data_X, data_len = convert_and_pad(model.word_dict, input_data)
    
    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)
    
    data = torch.from_numpy(data_pack)
    data = data.to(device)

    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0

    # Note: RuntimeError: Can't call numpy() on Variable that requires grad. Use var.detach().numpy() instead.
    # We need to remove grad in order to return a numpy array
    with torch.no_grad():
        result = model(data).numpy()

    result = np.round(result)
        
    return result
Beispiel #30
0
def predict_fn(input_data, model):
    print('Inferring sentiment of input data.')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if model.word_dict is None:
        raise Exception('Model has not been loaded properly, no word_dict.')

    # TODO: Process input_data so that it is ready to be sent to our model.
    #       You should produce two variables:
    #         data_X   - A sequence of length 500 which represents the converted review
    #         data_len - The length of the review

    # converts string into list of stemmed words with html syntax removed
    clean_list = review_to_words(input_data)

    #encodes list of words into a list of numbers, padded with zeros to standardize length

    data_X, data_len = convert_and_pad(model.word_dict, clean_list)

    # Using data_X and data_len we construct an appropriate input tensor. Remember
    # that our model expects input data of the form 'len, review[500]'.
    data_pack = np.hstack((data_len, data_X))
    data_pack = data_pack.reshape(1, -1)

    data = torch.from_numpy(data_pack)
    data = data.to(device)

    # Make sure to put the model into evaluation mode
    model.eval()

    # TODO: Compute the result of applying the model to the input data. The variable `result` should
    #       be a numpy array which contains a single integer which is either 1 or 0

    output = np.round(model(data).detach().numpy()).astype(np.int)

    return output