def generate_rectangle_sets(fname, r, p, q, max_side_length):

    trajectories = paths.read_dong_csv("/uusoc/scratch/raven4/dongx/trajectory_paper_code/data/samples/{}.tsv".format(fname))
    disc = utils.disc_to_func("disc")
    while True:
        red, blue, planted_reg, _ = pyscan.plant_full_square(trajectories, r, p, q, disc)
        print(planted_reg.upX() - planted_reg.lowX(), max_side_length)
        if planted_reg.upX() - planted_reg.lowX() < max_side_length:
            break
    return red, blue
def generate_disk_sets(fname, r, p, q, min_r, max_r):

    disc = utils.disc_to_func("disc")
    trajectories = paths.read_dong_csv("/uusoc/scratch/raven1/dongx/trajectory_paper_code/data/samples/{}.tsv".format(fname))

    while True:
        red, blue, planted_reg , planted_mx = pyscan.plant_full_disk(trajectories, r, p, q, disc)
        print(min_r, planted_reg.get_radius(), max_r)
        if min_r < planted_reg.get_radius() < max_r:
            break
    return red, blue
def plot_plane_full_trajectories(trajectories, r, p, q):
    disc = utils.disc_to_func("disc")
    red, blue, mx_plane, _ = pyscan.plant_full_halfplane(trajectories, r, p, q, disc)


    ax = plt.subplot()
    for traj in blue:
        plot_tuples(ax, traj, "b")
    for traj in red:
        plot_tuples(ax, traj, "r")

    xs = np.arange(0, 1, .01)
    ys = (-1 - mx_plane.get_coords()[0] * xs) * 1/ mx_plane.get_coords()[1]
    ax.plot(xs, ys, color="g")
    plt.show()
def plot_full_trajectories(trajectories, r, p, q):
    disc = utils.disc_to_func("disc")
    red, blue, mx_disk, _ = pyscan.plant_full_disk(trajectories, r, p, q, disc)


    ax = plt.subplot()
    for traj in blue:
        plot_tuples(ax, traj, "b")
    for traj in red:
        plot_tuples(ax, traj, "r")



    actor = plt.Circle((mx_disk.get_origin()[0], mx_disk.get_origin()[1]), mx_disk.get_radius())
    print(mx_disk.get_origin(), mx_disk.get_radius())
    ax.add_artist(actor)
    plt.show()
def plot_full_trajectories_intersection_rect(trajectories, r):
    disc = utils.disc_to_func("disc")
    red, blue, rect, _ = pyscan.plant_full_square(trajectories, r, 0.5, 0.5, disc)

    ax = plt.subplot()

    blue_c = 0
    for traj in trajectories:
        if rect.intersects_trajectory(traj):
            blue_c += 1
            plot_line(ax, traj, "b")
        else:
            plot_line(ax, traj, "r")
    print(blue_c / len(trajectories), r)

    actor = plt.Rectangle((rect.upX(), rect.upY()), rect.upX() - rect.lowX(), rect.upY() - rect.lowY())
    ax.add_artist(actor)
    plt.show()
def plot_full_trajectories_intersection_check(trajectories, r):
    disc = utils.disc_to_func("disc")
    red, blue, mx_disk, _ = pyscan.plant_full_disk(trajectories, r, .5, .5, disc)

    #mx_disk = pyscan.Disk(mx_disk.get_origin()[0], mx_disk.get_origin()[1],  .01)
    ax = plt.subplot()

    blue_c = 0
    for traj in trajectories:
        if pyscan.Trajectory(traj).intersects_disk(mx_disk):
            blue_c += 1
            plot_line(ax, traj, "b")
        else:
             plot_line(ax, traj, "r")
    print(blue_c / len(trajectories), r)

    actor = plt.Circle((mx_disk.get_origin()[0], mx_disk.get_origin()[1]), mx_disk.get_radius())
    print(mx_disk.get_origin(), mx_disk.get_radius())
    ax.plot(mx_disk.get_origin()[0], mx_disk.get_origin()[1], marker='o')
    ax.add_artist(actor)
    plt.show()
def plot_partial_trajectories(trajectories, r, p, q, eps_r):
    disc = utils.disc_to_func("disc")
    red, blue, mx_disk, _ = pyscan.plant_partial_disk(trajectories, r, p, q, eps_r, disc)

    ax = plt.subplot()
    rpts = list(itertools.chain.from_iterable([traj.get_pts() for traj in red]))
    rpts = random.sample(rpts, 500)

    plot_tuples(ax, list(rpts), "r")


    bpts = list(itertools.chain.from_iterable([traj.get_pts() for traj in blue]))
    bpts = random.sample(bpts, 500)
    plot_tuples(ax, bpts, "b")

    actor = plt.Circle((mx_disk.get_origin()[0], mx_disk.get_origin()[1]), mx_disk.get_radius(), edgecolor="k", linewidth=2, fill=False)
    ax.add_artist(actor)
    ax.set_xlim(0, 1.0)
    ax.set_ylim(0, 1.0)
    plt.tight_layout()
    plt.axis('off')
    plt.show()
Beispiel #8
0
def testing_flux_framework(output_file,
                           red,
                           blue,
                           l_s,
                           h_s,
                           count,
                           region_name="disk",
                           two_level_sample=True,
                           ham_sample=False,
                           max_time=None):

    fieldnames = [
        "disc", "region", "n", "s", "time", "m_disc", "m_disc_approx"
    ]
    with open(output_file, 'w') as f:
        writer = csv.DictWriter(f, fieldnames=fieldnames)
        writer.writeheader()

        for i in np.logspace(l_s, h_s, count):

            eps = i
            n = 1 / eps
            s = 1 / (2 * eps * eps)
            n = int(round(n) + .1)
            s = int(round(s) + .1)

            disc = utils.disc_to_func("disc")
            start_time = time.time()

            m_sample = [
                pyscan.WPoint(1.0, p[0], p[1], 1.0)
                for p in pyscan.my_sample(red, s)
            ]
            b_sample = [
                pyscan.WPoint(1.0, p[0], p[1], 1.0)
                for p in pyscan.my_sample(blue, s)
            ]

            if two_level_sample:
                net_set1 = pyscan.my_sample(m_sample, n)
                net_set2 = pyscan.my_sample(b_sample, n)
                if ham_sample:
                    s = int(1 / (2 * eps**(4.0 / 3)) *
                            math.log(1 / eps)**(2 / 3.0))

                    m_sample = pyscan.ham_tree_sample(m_sample, s)
                    b_sample = pyscan.ham_tree_sample(b_sample, s)
            else:
                net_set1 = [pyscan.Point(p[0], p[1], p[2]) for p in m_sample]
                net_set2 = [pyscan.Point(p[0], p[1], p[2]) for p in b_sample]
                n = s

            net_set1 = [pyscan.Point(p[0], p[1], p[2]) for p in net_set1]
            net_set2 = [pyscan.Point(p[0], p[1], p[2]) for p in net_set2]
            net_set = net_set1 + net_set2

            if region_name == "halfplane":
                reg, mx = pyscan.max_halfplane(net_set, m_sample, b_sample,
                                               disc)
            elif region_name == "disk":
                reg, mx = pyscan.max_disk(net_set, m_sample, b_sample, disc)
            elif region_name == "rectangle":
                grid = pyscan.Grid(n, m_sample, b_sample)
                s1 = pyscan.max_subgrid_linear(grid, -1.0, 1.0)
                s2 = pyscan.max_subgrid_linear(grid, 1.0, -1.0)
                if s1.fValue() > s2.fValue():
                    reg = grid.toRectangle(s1)
                    mx = s1.fValue()
                else:
                    reg = grid.toRectangle(s2)
                    mx = s2.fValue()
            else:
                return
            end_time = time.time()

            st = time.time()
            actual_mx = pyscan.evaluate_range(reg, red, blue, disc)
            et = time.time()
            print("Time to evaluate region {}".format(et - st))

            row = {
                "disc": "disc",
                "region": region_name,
                "n": n,
                "s": s,
                "time": end_time - start_time,
                "m_disc_approx": mx,
                "m_disc": actual_mx
            }
            writer.writerow(row)
            f.flush()
            print(row)
            if max_time is not None and end_time - start_time > max_time:
                return
def testing_full_framework(
        trajectories,
        l_s, h_s, count,
        vparam="eps",
        eps=.01,
        r=.04,
        p=0.5,
        q=.2,
        alpha=.01,
        planted_points=None,
        actual_mx=None,
        max_disk_r=.1,
        min_disk_r=.05,
        disc_name="disc",
        input_size=10000):

    """
    How do I convert the trajectories over?
    1) Just sample evenly from the length.
    2) Choose points evenly
    3) Choose
    :param trajectories:
    :param l_s:
    :param h_s:
    :param count:
    :param vparam:
    :param eps:
    :param eps_r:
    :param r:
    :param q:
    :param disc_name:
    :param region_name:
    :param input_size:
    :return:
    """
    output_file = "{0}_multi_disk_{1:.2f}_{2:.2f}_full_discrepancy.csv".format(disc_name,  min_disk_r, max_disk_r)

    fieldnames = ["vparam", "input_size", "region", "disc", "n", "s", "r", "p", "q", "alpha", "time",
                  "m_disc",
                  "m_disc_approx"]
    with open(output_file, 'w') as f:
        writer = csv.DictWriter(f, fieldnames=fieldnames)
        writer.writeheader()

        for i in np.logspace(l_s, h_s, count):

            if vparam == "eps":
                eps = i
            elif vparam == "r":
                r = i
            elif vparam == "q":
                q = i
            n = 1 / eps
            s = 1 / (2 * eps * eps)
            n = int(round(n) + .1)
            s = int(round(s) + .1)

            disc = utils.disc_to_func(disc_name)


            st = time.time()
            if planted_points is None:
                red, blue, _, actual_mx = pyscan.plant_full_disk(trajectories, r, p, q, disc)
            else:
                red, blue = planted_points

            red_sample = pyscan.my_sample(red, s)
            blue_sample = pyscan.my_sample(blue, s)
            red_net = pyscan.my_sample(red, n)
            blue_net = pyscan.my_sample(blue, n)
            net = red_net + blue_net

            et = time.time()
            print("Time to plant region {}".format(et - st))

            start_time = time.time()
            reg, mx = pyscan.max_disk_traj_grid(net, [pyscan.WTrajectory(1.0, traj) for traj in red_sample],
                                                    [pyscan.WTrajectory(1.0, traj) for traj in blue_sample], min_disk_r, max_disk_r, disc)
            end_time = time.time()

            row = {"vparam": vparam,
                   "input_size": input_size,
                   "disc": disc_name,
                   "region": "multi_disk",
                   "n": n, "s": s,
                   "r": r, "q": q,"p":p,
                   "alpha":alpha,
                   "time": end_time - start_time,
                   "m_disc_approx": mx,
                   "m_disc": actual_mx}
            writer.writerow(row)
            f.flush()
            print(row)
                   "alpha":alpha,
                   "time": end_time - start_time,
                   "m_disc_approx": mx,
                   "m_disc": actual_mx}
            writer.writerow(row)
            f.flush()
            print(row)


if __name__ == "__main__":

    trajectories = paths.read_geolife_files(10000)
    # print(len(trajectories))

    r = .05
    p = .5
    q = .8
    alpha = .01
    max_r = .05
    disc = utils.disc_to_func("disc")

    red, blue, _ ,actual_mx = pyscan.plant_full_disk(trajectories, r, p, q, disc)
    #
    for min_r in np.logspace(math.log(alpha, 10), math.log(max_r, 10), num=5, endpoint=False):
        print(min_r, max_r)
        testing_full_framework(trajectories, -1, -1.8, 20, r=r, q=q, p=p,
                       planted_points=(red,blue),
                        actual_mx=actual_mx,
                       min_disk_r = min_r,
                       max_disk_r = max_r)
def testing_partial_framework(red,
                              blue,
                              output_file,
                              l_s,
                              h_s,
                              count,
                              r=.04,
                              p=0.5,
                              q=.2,
                              error_thresh=3,
                              two_level_sample=True,
                              ham_sample=True,
                              disc_name="disc",
                              region_name="disk",
                              sample_method="block",
                              max_time=None):
    """
    How do I convert the trajectories over?
    1) Just sample evenly from the length.
    2) Choose points evenly
    3) Choose 
    :param trajectories:
    :param l_s:
    :param h_s:
    :param count:
    :param vparam:
    :param eps:
    :param eps_r:
    :param r:
    :param q:
    :param disc_name:
    :param region_name:
    :param input_size:
    :return:
    """
    fieldnames = [
        "disc", "region", "n", "s", "r", "p", "q", "time", "m_disc",
        "m_disc_approx", "sample_method"
    ]
    with open(output_file, 'w') as f:
        writer = csv.DictWriter(f, fieldnames=fieldnames)
        writer.writeheader()

        disc = utils.disc_to_func(disc_name)
        s_prime = int(10**(2 * error_thresh) + .5)
        m_sample_prime = pyscan.uniform_sample(red, s_prime, False)
        b_sample_prime = pyscan.uniform_sample(blue, s_prime, False)

        for i in np.logspace(l_s, h_s, count):
            eps = i
            n = 1 / eps
            s = 1 / (2 * eps * eps)
            n = int(round(n) + .1)
            s = int(round(s) + .1)

            start_time = time.time()
            if sample_method == "block":
                f_sample = pyscan.block_sample
            elif sample_method == "even":
                f_sample = pyscan.even_sample
            elif sample_method == "uniform":
                f_sample = pyscan.uniform_sample

            m_sample = f_sample(red, s, False)
            b_sample = f_sample(blue, s, False)
            m_sample = pyscan.to_weighted(m_sample)
            b_sample = pyscan.to_weighted(b_sample)

            if two_level_sample:
                net_set1 = pyscan.my_sample(m_sample, n)
                net_set2 = pyscan.my_sample(b_sample, n)
                if ham_sample:
                    s = int(1 / (2 * eps**(4.0 / 3)) *
                            math.log(1 / eps)**(2 / 3.0))

                    m_sample = pyscan.ham_tree_sample(m_sample, s)
                    b_sample = pyscan.ham_tree_sample(b_sample, s)
            else:
                net_set1 = [pyscan.Point(p[0], p[1], p[2]) for p in m_sample]
                net_set2 = [pyscan.Point(p[0], p[1], p[2]) for p in b_sample]
                n = s

            net_set1 = [pyscan.Point(p[0], p[1], p[2]) for p in net_set1]
            net_set2 = [pyscan.Point(p[0], p[1], p[2]) for p in net_set2]
            net_set = net_set1 + net_set2

            if region_name == "halfplane":
                reg, mx = pyscan.max_halfplane(net_set, m_sample, b_sample,
                                               disc)
            elif region_name == "disk":
                reg, mx = pyscan.max_disk(net_set, m_sample, b_sample, disc)
            elif region_name == "rectangle":
                grid = pyscan.Grid(n, m_sample, b_sample)
                s1 = pyscan.max_subgrid_linear(grid, -1.0, 1.0)
                s2 = pyscan.max_subgrid_linear(grid, 1.0, -1.0)
                if s1.fValue() > s2.fValue():
                    reg = grid.toRectangle(s1)
                    mx = s1.fValue()
                else:
                    reg = grid.toRectangle(s2)
                    mx = s2.fValue()
            else:
                return

            end_time = time.time()

            actual_mx = pyscan.evaluate_range(
                reg, pyscan.to_weighted(m_sample_prime),
                pyscan.to_weighted(b_sample_prime), disc)

            row = {
                "disc": disc_name,
                "region": region_name,
                "n": n,
                "s": s,
                "r": r,
                "q": q,
                "p": p,
                "time": end_time - start_time,
                "m_disc_approx": mx,
                "m_disc": actual_mx,
                "sample_method": sample_method
            }
            writer.writerow(row)
            print(row)
            f.flush()
            if max_time is not None and end_time - start_time > max_time:
                return
def testing_full_framework(
        red, blue,
        output_file,
        l_s, h_s, count,
        vparam="eps",
        eps=.01,
        alpha=.01,
        max_disk_r=None,
        min_disk_r=None,
        disc_name="disc",
        region_name="halfplane",
        sample_method="halfplane",
        fast_disk = True,
        two_level_sample=True,
        max_time=None):

    """
    How do I convert the trajectories over?
    1) Just sample evenly from the length.
    2) Choose points evenly
    3) Choose
    :param trajectories:
    :param l_s:
    :param h_s:
    :param count:
    :param vparam:
    :param eps:
    :param eps_r:
    :param r:
    :param q:
    :param disc_name:
    :param region_name:
    :param input_size:
    :return:
    """

    fieldnames = ["vparam", "disc", "region", "n", "s", "n_pts", "m_pts", "b_pts", "alpha", "time",
                  "m_disc", "m_disc_approx", "sample_method"]
    with open(output_file, 'w') as f:
        writer = csv.DictWriter(f, fieldnames=fieldnames)
        writer.writeheader()

        for i in np.logspace(l_s, h_s, count):

            if vparam == "eps":
                eps = i
            elif vparam == "alpha":
                alpha = i
            n = 1 / eps
            s = 1 / (2 * eps * eps)
            n = int(round(n) + .1)
            s = int(round(s) + .1)


            disc = utils.disc_to_func(disc_name)

            red_sample = pyscan.my_sample(red, s)
            blue_sample = pyscan.my_sample(blue, s)
            if two_level_sample:
                red_net = pyscan.my_sample(red, n)
                blue_net = pyscan.my_sample(blue, n)
            else:
                red_net = red_sample
                blue_net = blue_sample

            net = red_net + blue_net

            print("Running: {} {}".format(n, s))

            start_time = time.time()

            if region_name == "multiscale_disk":
                if max_disk_r is not None and alpha > max_disk_r:
                    print("Max Disk Radius is greater than alpha")
                    continue
                reg, mx = multiscale_disk(min_disk_r, max_disk_r, alpha, red_sample, blue_sample, net, disc, fast_disk)
                m_sample, b_sample, net_set = [], [], []
            else:
                if sample_method == "halfplane":
                    m_sample = [pyscan.halfplane_kernel([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj], alpha) for traj in red_sample]
                    b_sample = [pyscan.halfplane_kernel([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj], alpha) for traj in blue_sample]
                    pt_net = [pyscan.halfplane_kernel([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj], alpha) for traj in net]
                elif sample_method == "dp":
                    m_sample = [pyscan.dp_compress(traj, alpha) for traj in red_sample]
                    b_sample = [pyscan.dp_compress(traj, alpha) for traj in blue_sample]
                    pt_net = [pyscan.dp_compress(traj, alpha) for traj in net]
                elif sample_method == "hull":
                    m_sample = [pyscan.convex_hull([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj]) for traj in red_sample]
                    b_sample = [pyscan.convex_hull([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj]) for traj in blue_sample]
                    pt_net = [pyscan.convex_hull([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj]) for traj in net]
                elif sample_method is None:
                    #just takes the waypoints.
                    m_sample = [[pyscan.Point(pt[0], pt[1], 1.0) for pt in traj] for traj in red_sample]
                    b_sample = [[pyscan.Point(pt[0], pt[1], 1.0) for pt in traj] for traj in blue_sample]
                    pt_net = [[pyscan.Point(pt[0], pt[1], 1.0) for pt in traj] for traj in net]
                elif sample_method == "grid":
                    m_sample = [pyscan.grid_kernel(traj, alpha) for traj in red_sample]
                    b_sample = [pyscan.grid_kernel(traj, alpha) for traj in blue_sample]
                    pt_net = [pyscan.grid_kernel(traj, alpha) for traj in net]
                elif sample_method == "lifting":
                    m_sample = [pyscan.lifting_kernel(traj, alpha) for traj in red_sample]
                    b_sample = [pyscan.lifting_kernel(traj, alpha) for traj in blue_sample]
                    pt_net = [pyscan.lifting_kernel(traj, alpha) for traj in net]
                elif sample_method == "grid_direc":

                    if max_disk_r is not None and alpha > max_disk_r:
                        print("Max Disk Radius is greater than alpha")
                        continue
                    chord_l = math.sqrt(4 * alpha * max(min_disk_r, alpha) - 2 * alpha * alpha)
                    m_sample = [pyscan.grid_direc_kernel(pyscan.dp_compress(traj, alpha), chord_l, alpha) for traj in
                                red_sample]
                    b_sample = [pyscan.grid_direc_kernel(pyscan.dp_compress(traj, alpha), chord_l, alpha) for traj in
                                blue_sample]
                    pt_net = [pyscan.grid_direc_kernel(pyscan.dp_compress(traj, alpha), chord_l, alpha) for traj in net]
                elif sample_method == "even":
                    m_sample = [pyscan.even_sample_error(traj, alpha, False) for traj in red_sample]
                    b_sample = [pyscan.even_sample_error(traj, alpha, False) for traj in blue_sample]
                    pt_net = [pyscan.even_sample_error(traj, alpha, False) for traj in net]
                else:
                    return

                if region_name == "multiscale_disk_fixed":
                    m_sample = list(pyscan.trajectories_to_labels(m_sample))
                    b_sample = list(pyscan.trajectories_to_labels(b_sample))
                    net_set = list(pyscan.trajectories_to_labels(pt_net))
                    reg, mx = multiscale_disk_fixed(min_disk_r, max_disk_r, m_sample, b_sample, net_set, disc, fast_disk)
                else:
                    m_sample = list(pyscan.trajectories_to_labels(m_sample))
                    b_sample = list(pyscan.trajectories_to_labels(b_sample))
                    net_set = list(itertools.chain.from_iterable(pt_net))
                    if region_name == "halfplane":
                        reg, mx = pyscan.max_halfplane_labeled(net_set, m_sample, b_sample, disc)
                    elif region_name == "disk":
                        reg, mx = pyscan.max_disk_labeled(net_set, m_sample, b_sample, disc)
                    elif region_name == "rectangle":
                        reg, mx = pyscan.max_rect_labeled(n, 2 * max_disk_r, m_sample, b_sample, disc)
                    elif region_name == "rectangle_scale":
                        reg, mx = pyscan.max_rect_labeled_scale(n, 2 * max_disk_r, alpha, net_set, m_sample, b_sample, disc)
                    else:
                        return

            end_time = time.time()
            actual_mx = pyscan.evaluate_range_trajectory(reg, red, blue, disc)
            row = {"vparam": vparam,
                   "disc": disc_name,
                   "region": region_name,
                   "n": n, "s": s,
                   "n_pts": len(net_set), "m_pts":len(m_sample), "b_pts":len(b_sample),
                   "alpha":alpha,
                   "time": end_time - start_time,
                   "m_disc_approx": mx,
                   "m_disc": actual_mx,
                   "sample_method": sample_method}
            writer.writerow(row)
            f.flush()
            print(row)
            if max_time is not None and end_time - start_time > max_time:
                return
def generate_halfplane_sets(fname, r, p, q):
    disc = utils.disc_to_func("disc")
    trajectories = paths.read_dong_csv("/uusoc/scratch/raven1/dongx/trajectory_paper_code/data/samples/{}.tsv".format(fname))
    red, blue, planted_reg, planted_mx = pyscan.plant_full_halfplane(trajectories, r, p, q, disc)
    return red, blue