Beispiel #1
0
def document_message(msg):
    logger.info("{:s}: [DOCUMENT] {:s}".format(msg.from_user.first_name,
                                               msg.document.file_id))

    try:
        os.makedirs("./documents")
    except FileExistsError:
        pass

    file_info = bot.get_file(msg.document.file_id)
    utils.file_download(file_info, './documents/')
Beispiel #2
0
def send_message(message):
    if message.text:
        if message.text.find('/cancel') != -1:
            bot.send_message(message.chat.id,
                             ru_strings.CANCEL_MESSAGE['strings'][0],
                             parse_mode='Markdown')
        else:
            bot.send_message(config.send_chat_id,
                             message.text,
                             parse_mode='Markdown')
            logger.info("Sending message {:s} to chat {:d}".format(
                message.text, config.send_chat_id))
            bot.send_message(message.chat.id,
                             ru_strings.SEND_MSG_MESSAGE['strings'][1],
                             parse_mode='Markdown')
    elif message.photo:

        try:
            os.makedirs("./photos")
        except FileExistsError:
            pass

        file_id = message.photo[len(message.photo) - 1].file_id
        file_info = bot.get_file(file_id)
        file_patch = utils.file_download(file_info, './photos/')
        with open(file_patch, 'rb') as photo:
            bot.send_photo(config.send_chat_id, photo)

        logger.info("Sending photo {:s} to chat {:d}".format(
            file_id, config.send_chat_id))
        bot.send_message(message.chat.id,
                         ru_strings.SEND_MSG_MESSAGE['strings'][1],
                         parse_mode='Markdown')
Beispiel #3
0
def photo_receive(message):
    '''
    Recognizes photos with the comment "персик"
    Ban for NSFW
    '''

    file_id = message.photo[len(message.photo) - 1].file_id

    if message.caption and message.forward_from is None:
        if re.match('(?i)(\W|^).*?!п[eеэ][pр][cс](и|ч[eеи]к).*?(\W|$)',
                    message.caption):
            bot.reply_to(message,
                         "".join([
                             message.from_user.first_name,
                             picturedetect.reply_get_concept_msg(file_id)
                         ]),
                         parse_mode='Markdown')

    logger.info("Photo by Username @{:s} | ID {:s}".format(
        (message.from_user.username or "NONE"), file_id))

    try:
        os.makedirs("./photos")
    except FileExistsError:
        pass

    file_patch = './photos/{:s}.jpg'.format(file_id)
    _file = Path(file_patch)
    if _file.is_file() is not True:
        file_info = bot.get_file(file_id)
        file_patch = utils.file_download(file_info, './photos/')

    if file_patch is None:
        logger.error("File download error!'")

        bot.reply_to(message,
                     ru_strings.SOME_ERROR_MESSAGE['strings'],
                     parse_mode='Markdown')
        bot.send_sticker(message.chat.id,
                         ru_strings.SOME_ERROR_MESSAGE['stickers'][0])

        return

    if not allow_nsfw:
        if picturedetect.nsfw_test(file_patch, 0.75):
            bot.delete_message(message.chat.id, message.message_id)

            bot.send_message(
                message.chat.id,
                "*{} уходит в бан на {} {}! Причина: NSFW*".format(
                    message.from_user.first_name, 2, 'мин.'),
                parse_mode='Markdown')
            ban_user(message.chat.id, message.from_user.id, 2 * 60)
Beispiel #4
0
    def load_submission(self, event):
        #global student_track, backing_track, reference_track
        sound_id = self.submissions_listbox.get(tk.ANCHOR)
        #LOGGER.info(" download files", sound_id)
        #submissions = utils.get_submissions_in_exercise(exercise)
        submission = utils.get_student_submission_by_sound_id(
            sound_id, self.submissions)
        #LOGGER.info(submission)
        if submission is not None:
            #print(submissions_listbox.)
            #sub_ind = [item for item in submissions_listbox]
            #submissions_listbox.itemconfig(sub_ind, {'bg':'red'})
            version = submission['version']
            self.backing_track = utils.get_backing_track(
                self.exercise, version)
            self.reference_track = utils.get_reference_track(
                self.exercise, version)
            #LOGGER.info(version, self.backing_track['download_url'], self.reference_track['download_url'])
            self.student_track = utils.file_download(
                download_url=submission['download_url'],
                filetype='submissions')
            self.backing_track = utils.file_download(
                download_url=self.backing_track['download_url'],
                filetype='backing_tracks')
            self.reference_track = utils.file_download(
                download_url=self.reference_track['download_url'],
                filetype='reference_tracks')
            #play(reference_track, backing_track, student_track)
            # image_file = os.path.join('performance_feedback',str(sound_id)+'.png')
            image_file = os.path.join(
                PLOTS_PATH,
                os.path.basename(self.student_track)[:-4] + '.png')
            render = ImageTk.PhotoImage(Image.open(image_file))
            self.img.configure(image=render)
            self.img.image = render
            # figure = self.visualizer(version)
            # line = FigureCanvasTkAgg(figure, self.fig)
            # line.get_tk_widget().pack(side=tk.LEFT, fill=tk.BOTH)

        return
def extract_submission_features(exercise, submission_sound, plots_path=None):
    version = submission_sound['version']
    ref_annotation_file = os.path.join(
        'reference_tracks',
        exercise['name'] + '_' + version + '_ref_segments.csv')
    reference_track = utils.get_reference_track(exercise, version)
    ref_audio_file = utils.file_download(
        download_url=reference_track['download_url'],
        filetype='reference_tracks')

    std_audio_file = utils.file_download(
        download_url=submission_sound['download_url'], filetype='submissions')

    features = notes_singing.get_features_from_student_audio(
        ref_audio_file,
        std_audio_file,
        ref_annotation_file,
        plots_path=plots_path,
        method='MAST')
    features['file_name'] = std_audio_file

    return features
Beispiel #6
0
def reply_get_concept_msg(photo_id):
    try:
        os.makedirs("./photos")
    except FileExistsError:
        pass

    file_patch = './photos/{:s}.jpg'.format(photo_id)
    _file = Path(file_patch)
    if not _file.is_file():
        file_info = utils.bot.get_file(photo_id)
        file_patch = utils.file_download(file_info, './photos/')

    concepts = itertools.islice(analise_photo(file_patch), config.CONCEPTS_COUNT)

    message, word_sets = process_concepts(concepts)

    logger.info("[WHATISTHIS] Photo ID {} - [{}]".format(photo_id, "|".join(word_sets)))
    return message
print(len(annotated_files))
for f in annotated_files:
    sound_id = os.path.basename(f).split('_')[0]
    # print(sound_id)
    for af in audio_files:
        # print(af)
        if sound_id in os.path.basename(af)[:4]:
            audio_file = os.path.basename(af)
            # print(sub_ref_map[audio_file])
            break
    # print(audio_file)
    try:
        exercise = utils.get_exercise_by_name(sub_ref_map[audio_file]['exercise_name'], exercises)
        version = sub_ref_map[audio_file]['version']
        ref = utils.get_reference_track(exercise, version)
        ref = utils.file_download(ref['download_url'], filetype='reference_tracks')
        # print(ref)
        std = os.path.join('submissions', audio_file)


        ref_audio = analysis.load_audio(ref)
        std_audio = analysis.load_audio(std)

        
        if series == 'hpcp':
            params = {'normalize_method':HPCP_NORMALIZE,'hpcp_size':HPCP_SIZE, 'dist_function':DIST_FUNCTION}
            ref_series = analysis.hpcp_extract(ref_audio,params['normalize_method'],params['hpcp_size'])
            std_series = analysis.hpcp_extract(std_audio,params['normalize_method'],params['hpcp_size'])
        
        if series =='pitch':
            params = {'dist_function':DIST_FUNCTION}
Beispiel #8
0
def extract_submission_features(exercise, submission):
    version = submission['version']
    segmentAnnotationFile = os.path.join(
        'reference_tracks',
        exercise['name'] + '_' + version + '_ref_segments.csv')
    #print(segmentAnnotationFile)

    reference_track = utils.get_reference_track(exercise, version)
    ref_audio_file = utils.file_download(
        download_url=reference_track['download_url'],
        filetype='reference_tracks')
    # print(ref_audio_file)

    ref_audio = analysis.load_audio(audio_file=ref_audio_file)

    # thresholding
    # ref_energy_mask = analysis.energy_mask(ref_audio, REF_ENERGY_THRESH)
    # # ref_audio = ref_audio * ref_energy_mask
    # ref_energy = analysis.short_time_energy(ref_audio)
    # ref_energy = ref_energy/np.max(ref_energy)
    # mean_ref_energy = np.mean(ref_energy)
    # ref_energy[np.where(ref_energy > 0.01*mean_ref_energy)] = 1
    # ref_energy[np.where(ref_energy <= 0.01*mean_ref_energy)] = 0

    ref_hpcp_vector = analysis.hpcp_extract(audio=ref_audio,
                                            normalize_method=HPCP_NORMALIZE,
                                            hpcp_size=HPCP_SIZE)
    # ref_hpcp_vector = analysis.hpcp_extract(audio=ref_audio,hpcp_size=HPCP_SIZE)

    #ref_hpcp_vector = np.array([ref_hpcp_vector[i] * ref_energy[i] for i in range(len(ref_hpcp_vector))], dtype='float32')

    # ref_hpcp_vector[np.where(ref_energy < REF_ENERGY_THRESH)]=0
    # # ref_hpcp_vector = np.array([(np.convolve(ref_hpcp_vector[:,i], np.ones(MOV_AVG_SIZE), 'valid')/MOV_AVG_SIZE) for i in range(HPCP_SIZE)]).T

    ref_pitch, ref_conf = analysis.pitch_extractor(ref_audio)

    # ref_pitch_mask = np.zeros(len(ref_pitch))
    # ref_pitch_mask[np.where(ref_pitch > 0)] = 1
    # ref_pitch_mask = ref_pitch_mask[:len(ref_hpcp_vector)]

    #ref_hpcp_vector = np.array([ref_hpcp_vector[i] * ref_energy_mask[i] for i in range(len(ref_hpcp_vector))], dtype='float32')
    #ref_hpcp_vector = ref_hpcp_vector * ref_energy_mask

    submission_sound = submission['sounds'][0]
    sound_id = str(submission_sound['id'])
    std_audio_file = utils.file_download(
        download_url=submission_sound['download_url'], filetype='submissions')
    print(std_audio_file)

    std_audio = analysis.load_audio(audio_file=std_audio_file)
    std_pitch, std_conf = analysis.pitch_extractor(std_audio)

    # std_energy_mask = analysis.energy_mask(std_audio, STD_ENERGY_THRESH)
    # std_audio = std_audio * std_energy_mask
    # std_energy = analysis.short_time_energy(std_audio)
    # std_energy = std_energy/np.max(std_energy)
    # mean_std_energy = np.mean(std_energy)
    # std_energy[np.where(std_energy > 0.01*mean_std_energy)] = 1
    # std_energy[np.where(std_energy <= 0.01*mean_std_energy)] = 0

    std_hpcp_vector = analysis.hpcp_extract(audio=std_audio,
                                            normalize_method=HPCP_NORMALIZE,
                                            hpcp_size=HPCP_SIZE)
    # std_hpcp_vector = analysis.hpcp_extract(audio=std_audio,hpcp_size=HPCP_SIZE)

    #std_hpcp_vector = np.array([std_hpcp_vector[i] * std_energy[i] for i in range(len(std_hpcp_vector))], dtype='float32')
    # std_hpcp_vector[np.where(std_energy < STD_ENERGY_THRESH)]=0

    # std_pitch_mask = np.zeros(len(std_pitch))
    # std_pitch_mask[np.where(std_pitch > 0)] = 1
    # std_pitch_mask = std_pitch_mask[:len(std_hpcp_vector)]

    # std_hpcp_vector = np.array([std_hpcp_vector[i] * std_pitch_mask[i] for i in range(len(std_hpcp_vector))], dtype='float32')

    #std_hpcp_vector = np.array([(np.convolve(std_hpcp_vector[:,i], np.ones(MOV_AVG_SIZE), 'valid')/MOV_AVG_SIZE) for i in range(HPCP_SIZE)]).T

    # std_pitch_mask = np.zeros(len(std_pitch))
    # std_pitch_mask[np.where(std_pitch > 0)] = 1
    # std_pitch_mask = std_pitch_mask[:len(std_hpcp_vector)]

    #std_hpcp_vector = np.array([std_hpcp_vector[i] * std_energy_mask[i] for i in range(len(std_hpcp_vector))], dtype='float32')
    #std_hpcp_vector = std_hpcp_vector * std_energy_mask

    #plotter.plot_pitch_contour(ref_pitch, save_file_name=Path(std_audio_file).stem)

    #cost, path, matrix = analysis.audio_align(ref_energy, std_energy)
    cost, path, matrix = analysis.audio_align(ref_hpcp_vector, std_hpcp_vector)
    #cost, path = fastdtw.fastdtw(ref_hpcp_vector, std_hpcp_vector, dist=dist_cosine)
    # ref_ser =np.append(ref_hpcp_vector.T, [ref_energy], axis=0).T
    # std_ser =np.append(std_hpcp_vector.T, [std_energy], axis=0).T

    # cost, path = fastdtw.fastdtw(ref_ser, std_ser, dist=dist_combination)

    #cost, path = fastdtw.fastdtw(ref_hpcp_vector, std_hpcp_vector, dist=dist_cos_W)
    #path = np.array(path)

    plotter.plot_dtw_alignment(ref_audio,
                               std_audio,
                               path,
                               save_file_name=Path(std_audio_file).stem)

    ref_time_ticks = analysis.get_annotation(segmentAnnotationFile)
    std_time_ticks_dtw = analysis.get_std_time_ticks_dtw(ref_time_ticks, path)

    figure = plotter.performance_visualize(analysis, ref_audio, std_audio,
                                           ref_pitch, std_pitch,
                                           ref_time_ticks, std_time_ticks_dtw)
    figure.savefig(fname=os.path.join(image_save_path, sound_id))
    plt.close()
    try:
        features = analysis.features_extract(segmentAnnotationFile, path,
                                             ref_pitch, std_pitch)
        if sound_id in grades:
            features['grade'] = grades[sound_id]
        else:
            features['grade'] = '0'
        features['sound_id'] = sound_id
        #print(features)
        all_features.append(features)

    except:
        print(sound_id)

    gc.collect()
    return
import settings
import utils
import mcclient
import json

#context_id = settings.CONTEXT_ID
exercises = mcclient.get_full_context(settings.CONTEXT_ID)['exercises']
with open('data_{}.json'.format(settings.CONTEXT_ID), 'w') as fp:
    json.dump(exercises, fp)
#print(len(exercises), type(exercises))

for exercise in exercises:
    for backing_track in exercise['backing_tracks']:
        utils.file_download(download_url=backing_track['download_url'],
                            filetype='backing_tracks')

    for reference_track in exercise['reference_tracks']:
        utils.file_download(download_url=reference_track['download_url'],
                            filetype='reference_tracks')

    submissions = utils.get_submissions_in_exercise(exercise)
    #print(len(submissions), type(submissions))
    for submission in submissions:
        sound_files = submission['sounds']
        # print(sound_files)
        for sound_file in sound_files:
            # print(sound_file['download_url'])
            utils.file_download(download_url=sound_file['download_url'],
                                filetype='submissions')