Beispiel #1
0
	def test_file_wav(self, file_name):
		"""
		Function to extract vocals from wav file.
		"""
		sess = tf.Session()
		self.load_model(sess, log_dir = config.log_dir)
		mix_stft = utils.file_to_stft(file_name)
		out_feats = self.process_file(mix_stft, sess)
Beispiel #2
0
    def test_model_yam(self):
        """
        Function to extract vocals from wav file.
        """
        sess = tf.Session()
        self.load_model(sess, log_dir=config.log_dir)
        voc_stft = utils.file_to_stft('./Bria_000_VoU67.wav')
        back_stft = utils.file_to_stft('./Bria_000_Back.wav')

        mix_stft = np.clip(
            (voc_stft[:len(back_stft)] + back_stft[:len(voc_stft)]) / 2, 0.0,
            1.0)
        feats = utils.input_to_feats('./Bria_000_VoU67.wav')
        out_feats = self.process_file(mix_stft, sess)
        self.plot_features(feats, out_feats)
        out_featss = np.concatenate(
            (out_feats[:feats.shape[0], :-2], feats[:out_feats.shape[0], -2:]),
            axis=-1)

        utils.feats_to_audio(out_featss[:3000], 'Bree_output')
Beispiel #3
0
def synth_file(file_name,
               file_path=config.wav_dir,
               show_plots=True,
               save_file=True):
    if file_name.startswith('ikala'):
        file_name = file_name[6:]
        file_path = config.wav_dir
        utils.write_ori_ikala(os.path.join(file_path, file_name), file_name)
        mode = 0
    elif file_name.startswith('mir'):
        file_name = file_name[4:]
        file_path = config.wav_dir_mir
        utils.write_ori_ikala(os.path.join(file_path, file_name), file_name)
        mode = 0
    elif file_name.startswith('med'):
        file_name = file_name[4:]
        file_path = config.wav_dir_med
        utils.write_ori_med(os.path.join(file_path, file_name), file_name)
        mode = 2
    else:
        mode = 1
        file_path = './'

    stat_file = h5py.File(config.stat_dir + 'stats.hdf5', mode='r')

    max_feat = np.array(stat_file["feats_maximus"])
    min_feat = np.array(stat_file["feats_minimus"])
    max_voc = np.array(stat_file["voc_stft_maximus"])
    min_voc = np.array(stat_file["voc_stft_minimus"])
    max_back = np.array(stat_file["back_stft_maximus"])
    min_back = np.array(stat_file["back_stft_minimus"])
    max_mix = np.array(max_voc) + np.array(max_back)

    with tf.Graph().as_default():

        input_placeholder = tf.placeholder(tf.float32,
                                           shape=(config.batch_size,
                                                  config.max_phr_len,
                                                  config.input_features),
                                           name='input_placeholder')

        with tf.variable_scope('First_Model') as scope:
            harm, ap, f0, vuv = modules.nr_wavenet(input_placeholder)

            # harmy = harm_1+harm

        if config.use_gan:
            with tf.variable_scope('Generator') as scope:
                gen_op = modules.GAN_generator(harm)
        # with tf.variable_scope('Discriminator') as scope:
        #     D_real = modules.GAN_discriminator(target_placeholder[:,:,:60],input_placeholder)
        #     scope.reuse_variables()
        #     D_fake = modules.GAN_discriminator(gen_op,input_placeholder)

        saver = tf.train.Saver(max_to_keep=config.max_models_to_keep)

        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())
        sess = tf.Session()

        sess.run(init_op)

        ckpt = tf.train.get_checkpoint_state(config.log_dir_m1)

        if ckpt and ckpt.model_checkpoint_path:
            print("Using the model in %s" % ckpt.model_checkpoint_path)
            saver.restore(sess, ckpt.model_checkpoint_path)

        mix_stft = utils.file_to_stft(os.path.join(file_path, file_name),
                                      mode=mode)

        targs = utils.input_to_feats(os.path.join(file_path, file_name),
                                     mode=mode)

        import pdb
        pdb.set_trace()

        # f0_sac = utils.file_to_sac(os.path.join(file_path,file_name))
        # f0_sac = (f0_sac-min_feat[-2])/(max_feat[-2]-min_feat[-2])

        in_batches, nchunks_in = utils.generate_overlapadd(mix_stft)
        in_batches = in_batches / max_mix
        # in_batches = utils.normalize(in_batches, 'mix_stft', mode=config.norm_mode_in)
        val_outer = []

        first_pred = []

        cleaner = []

        gan_op = []

        for in_batch in in_batches:
            val_harm, val_ap, val_f0, val_vuv = sess.run(
                [harm, ap, f0, vuv], feed_dict={input_placeholder: in_batch})
            if config.use_gan:
                val_op = sess.run(gen_op,
                                  feed_dict={input_placeholder: in_batch})

                gan_op.append(val_op)

            # first_pred.append(harm1)
            # cleaner.append(val_harm)
            val_harm = val_harm
            val_outs = np.concatenate((val_harm, val_ap, val_f0, val_vuv),
                                      axis=-1)
            val_outer.append(val_outs)

        val_outer = np.array(val_outer)
        val_outer = utils.overlapadd(val_outer, nchunks_in)
        val_outer[:, -1] = np.round(val_outer[:, -1])
        val_outer = val_outer[:targs.shape[0], :]
        val_outer = np.clip(val_outer, 0.0, 1.0)

        import pdb
        pdb.set_trace()

        #Test purposes only
        # first_pred = np.array(first_pred)
        # first_pred = utils.overlapadd(first_pred, nchunks_in)

        # cleaner = np.array(cleaner)
        # cleaner = utils.overlapadd(cleaner, nchunks_in)

        if config.use_gan:
            gan_op = np.array(gan_op)
            gan_op = utils.overlapadd(gan_op, nchunks_in)

        targs = (targs - min_feat) / (max_feat - min_feat)

        # first_pred = (first_pred-min_feat[:60])/(max_feat[:60]-min_feat[:60])
        # cleaner = (cleaner-min_feat[:60])/(max_feat[:60]-min_feat[:60])

        # ax1 = plt.subplot(311)
        # plt.imshow(targs[:,:60].T, origin='lower', aspect='auto')
        # # ax1.set_title("Harmonic Spectral Envelope", fontsize = 10)
        # ax2 = plt.subplot(312)
        # plt.imshow(targs[:,60:64].T, origin='lower', aspect='auto')
        # # ax2.set_title("Aperiodicity Envelope", fontsize = 10)
        # ax3 = plt.subplot(313)
        # plt.plot(targs[:,-2])
        # ax3.set_title("Fundamental Frequency Contour", fontsize = 10)
        if show_plots:

            # import pdb;pdb.set_trace()

            ins = val_outer[:, :60]
            outs = targs[:, :60]
            plt.figure(1)
            ax1 = plt.subplot(211)
            plt.imshow(ins.T, origin='lower', aspect='auto')
            ax1.set_title("Predicted Harm ", fontsize=10)
            ax2 = plt.subplot(212)
            plt.imshow(outs.T, origin='lower', aspect='auto')
            ax2.set_title("Ground Truth Harm ", fontsize=10)
            # ax1 = plt.subplot(413)
            # plt.imshow(first_pred.T, origin='lower', aspect='auto')
            # ax1.set_title("Initial Prediction ", fontsize = 10)
            # ax2 = plt.subplot(412)
            # plt.imshow(cleaner.T, origin='lower', aspect='auto')
            # ax2.set_title("Residual Added ", fontsize = 10)

            if config.use_gan:
                plt.figure(5)
                ax1 = plt.subplot(411)
                plt.imshow(ins.T, origin='lower', aspect='auto')
                ax1.set_title("Predicted Harm ", fontsize=10)
                ax2 = plt.subplot(414)
                plt.imshow(outs.T, origin='lower', aspect='auto')
                ax2.set_title("Ground Truth Harm ", fontsize=10)
                ax1 = plt.subplot(412)
                plt.imshow(gan_op.T, origin='lower', aspect='auto')
                ax1.set_title("GAN output ", fontsize=10)
                ax1 = plt.subplot(413)
                plt.imshow((gan_op[:ins.shape[0], :] + ins).T,
                           origin='lower',
                           aspect='auto')
                ax1.set_title("GAN output ", fontsize=10)

            plt.figure(2)
            ax1 = plt.subplot(211)
            plt.imshow(val_outer[:, 60:-2].T, origin='lower', aspect='auto')
            ax1.set_title("Predicted Aperiodic Part", fontsize=10)
            ax2 = plt.subplot(212)
            plt.imshow(targs[:, 60:-2].T, origin='lower', aspect='auto')
            ax2.set_title("Ground Truth Aperiodic Part", fontsize=10)

            plt.figure(3)

            f0_output = val_outer[:, -2] * (
                (max_feat[-2] - min_feat[-2]) + min_feat[-2])
            f0_output = f0_output * (1 - targs[:, -1])
            f0_output[f0_output == 0] = np.nan
            plt.plot(f0_output, label="Predicted Value")
            f0_gt = targs[:, -2] * (
                (max_feat[-2] - min_feat[-2]) + min_feat[-2])
            f0_gt = f0_gt * (1 - targs[:, -1])
            f0_gt[f0_gt == 0] = np.nan
            plt.plot(f0_gt, label="Ground Truth")
            f0_difference = np.nan_to_num(abs(f0_gt - f0_output))
            f0_greater = np.where(f0_difference > config.f0_threshold)
            diff_per = f0_greater[0].shape[0] / len(f0_output)
            plt.suptitle("Percentage correct = " +
                         '{:.3%}'.format(1 - diff_per))
            # import pdb;pdb.set_trace()

            # import pdb;pdb.set_trace()
            # uu = f0_sac[:,0]*(1-f0_sac[:,1])
            # uu[uu == 0] = np.nan
            # plt.plot(uu, label="Sac f0")
            plt.legend()
            plt.figure(4)
            ax1 = plt.subplot(211)
            plt.plot(val_outer[:, -1])
            ax1.set_title("Predicted Voiced/Unvoiced", fontsize=10)
            ax2 = plt.subplot(212)
            plt.plot(targs[:, -1])
            ax2.set_title("Ground Truth Voiced/Unvoiced", fontsize=10)
            plt.show()
        if save_file:

            val_outer = np.ascontiguousarray(val_outer *
                                             (max_feat - min_feat) + min_feat)
            targs = np.ascontiguousarray(targs * (max_feat - min_feat) +
                                         min_feat)

            # import pdb;pdb.set_trace()

            # val_outer = np.ascontiguousarray(utils.denormalize(val_outer,'feats', mode=config.norm_mode_out))
            try:
                utils.feats_to_audio(val_outer,
                                     file_name[:-4] + '_synth_pred_f0')
                print("File saved to %s" % config.val_dir + file_name[:-4] +
                      '_synth_pred_f0.wav')
            except:
                print("Couldn't synthesize with predicted f0")
            try:
                val_outer[:, -2:] = targs[:, -2:]
                utils.feats_to_audio(val_outer,
                                     file_name[:-4] + '_synth_ori_f0')
                print("File saved to %s" % config.val_dir + file_name[:-4] +
                      '_synth_ori_f0.wav')
            except:
                print("Couldn't synthesize with original f0")
def eval_file():
    file_path = config.wav_dir

    # log_dir = './log_ikala_notrain/'
    log_dir = config.log_dir

    mode = 0

    stat_file = h5py.File(config.stat_dir + 'stats.hdf5', mode='r')

    max_feat = np.array(stat_file["feats_maximus"])
    min_feat = np.array(stat_file["feats_minimus"])
    max_voc = np.array(stat_file["voc_stft_maximus"])
    min_voc = np.array(stat_file["voc_stft_minimus"])
    max_back = np.array(stat_file["back_stft_maximus"])
    min_back = np.array(stat_file["back_stft_minimus"])
    max_mix = np.array(max_voc) + np.array(max_back)

    with tf.Graph().as_default():

        input_placeholder = tf.placeholder(tf.float32,
                                           shape=(config.batch_size,
                                                  config.max_phr_len,
                                                  config.input_features),
                                           name='input_placeholder')

        with tf.variable_scope('First_Model') as scope:
            harm, ap, f0, vuv = modules.nr_wavenet(input_placeholder)

        saver = tf.train.Saver(max_to_keep=config.max_models_to_keep)

        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())
        sess = tf.Session()

        sess.run(init_op)

        ckpt = tf.train.get_checkpoint_state(log_dir)

        if ckpt and ckpt.model_checkpoint_path:
            print("Using the model in %s" % ckpt.model_checkpoint_path)
            # saver.restore(sess, ckpt.model_checkpoint_path)
            saver.restore(sess, './log/model.ckpt-59')

        # import pdb;pdb.set_trace()

        files = [
            x for x in os.listdir(config.wav_dir)
            if x.endswith('.wav') and not x.startswith('.')
        ]
        diffs = []
        count = 0
        for file_name in files:

            count += 1

            mix_stft = utils.file_to_stft(os.path.join(file_path, file_name),
                                          mode=mode)

            targs = utils.input_to_feats(os.path.join(file_path, file_name),
                                         mode=mode)

            # f0_sac = utils.file_to_sac(os.path.join(file_path,file_name))
            # f0_sac = (f0_sac-min_feat[-2])/(max_feat[-2]-min_feat[-2])

            in_batches, nchunks_in = utils.generate_overlapadd(mix_stft)
            in_batches = in_batches / max_mix
            # in_batches = utils.normalize(in_batches, 'mix_stft', mode=config.norm_mode_in)
            val_outer = []

            first_pred = []

            cleaner = []

            gan_op = []

            for in_batch in in_batches:
                val_harm, val_ap, val_f0, val_vuv = sess.run(
                    [harm, ap, f0, vuv],
                    feed_dict={input_placeholder: in_batch})
                if config.use_gan:
                    val_op = sess.run(gen_op,
                                      feed_dict={input_placeholder: in_batch})

                    gan_op.append(val_op)

                # first_pred.append(harm1)
                # cleaner.append(val_harm)
                val_harm = val_harm
                val_outs = np.concatenate((val_harm, val_ap, val_f0, val_vuv),
                                          axis=-1)
                val_outer.append(val_outs)

            val_outer = np.array(val_outer)
            val_outer = utils.overlapadd(val_outer, nchunks_in)
            val_outer[:, -1] = np.round(val_outer[:, -1])
            val_outer = val_outer[:targs.shape[0], :]
            val_outer = np.clip(val_outer, 0.0, 1.0)

            #Test purposes only
            # first_pred = np.array(first_pred)
            # first_pred = utils.overlapadd(first_pred, nchunks_in)

            # cleaner = np.array(cleaner)
            # cleaner = utils.overlapadd(cleaner, nchunks_in)

            f0_output = val_outer[:, -2] * (
                (max_feat[-2] - min_feat[-2]) + min_feat[-2])
            f0_output = f0_output * (1 - targs[:, -1])
            f0_output = utils.new_base_to_hertz(f0_output)
            f0_gt = targs[:, -2]
            f0_gt = f0_gt * (1 - targs[:, -1])
            f0_gt = utils.new_base_to_hertz(f0_gt)
            f0_outputs = []
            gt_outputs = []
            for i, f0_o in enumerate(f0_output):
                f0_outputs.append(
                    str(i * 0.00580498866 * 10000000) + ' ' + str(f0_o))

            for i, f0_o in enumerate(f0_gt):
                gt_outputs.append(
                    str(i * 0.00580498866 * 10000000) + ' ' + str(f0_o))

            utils.list_to_file(
                f0_outputs, './ikala_eval/net_out/' + file_name[:-4] + '.pv')
            utils.list_to_file(gt_outputs,
                               './ikala_eval/sac_gt/' + file_name[:-4] + '.pv')
            #     f0_difference = np.nan_to_num(abs(f0_gt-f0_output))
            #     f0_greater = np.where(f0_difference>config.f0_threshold)

            #     diff_per = f0_greater[0].shape[0]/len(f0_output)
            #     diffs.append(str(1-diff_per))
            utils.progress(count, len(files))
def synth_file(file_name,
               file_path=config.wav_dir,
               show_plots=True,
               save_file=True):
    debug = False
    if file_name.startswith('ikala'):
        file_name = file_name[6:]
        file_path = config.wav_dir
        utils.write_ori_ikala(os.path.join(file_path, file_name), file_name)
    elif file_name.startswith('mir'):
        file_name = file_name[4:]
        file_path = config.wav_dir_mir
        utils.write_ori_ikala(os.path.join(file_path, file_name), file_name)
    stat_file = h5py.File(config.stat_dir + 'stats.hdf5', mode='r')

    max_feat = np.array(stat_file["feats_maximus"])
    min_feat = np.array(stat_file["feats_minimus"])
    max_voc = np.array(stat_file["voc_stft_maximus"])
    min_voc = np.array(stat_file["voc_stft_minimus"])
    max_back = np.array(stat_file["back_stft_maximus"])
    min_back = np.array(stat_file["back_stft_minimus"])
    max_mix = np.array(max_voc) + np.array(max_back)

    with tf.Graph().as_default():

        input_placeholder = tf.placeholder(tf.float32,
                                           shape=(1, config.max_phr_len,
                                                  config.input_features),
                                           name='input_placeholder')
        tf.summary.histogram('conditioning', input_placeholder)
        input_placeholder_2 = tf.placeholder(tf.float32,
                                             shape=(1, config.max_phr_len,
                                                    config.output_features),
                                             name='input_placeholder')
        tf.summary.histogram('inputs', input_placeholder)

        output, vuv = modules.wavenet(input_placeholder_2, input_placeholder)

        saver = tf.train.Saver()

        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())
        sess = tf.Session()

        sess.run(init_op)

        ckpt = tf.train.get_checkpoint_state(config.log_dir)

        if ckpt and ckpt.model_checkpoint_path:
            print("Using the model in %s" % ckpt.model_checkpoint_path)
            saver.restore(sess, ckpt.model_checkpoint_path)

        mix_stft = utils.file_to_stft(os.path.join(file_path, file_name))

        mix_stft = mix_stft / max_mix

        lent = len(mix_stft)

        mix_stft_in = np.pad(mix_stft, [(0, config.max_phr_len), (0, 0)],
                             'constant')

        # import pdb;pdb.set_trace()

        targs = utils.input_to_feats(os.path.join(file_path, file_name))

        outputs = np.zeros((1, config.max_phr_len, config.output_features))

        opus = []

        i = 0

        for index in range(lent):
            inputs = mix_stft_in[index:index + config.max_phr_len, :]

            if outputs.shape[1] > config.max_phr_len:
                inpy = inputs.reshape(1, config.max_phr_len, -1)
                outpy = outputs[:, -config.max_phr_len:, :]
            else:
                inpy = inputs.reshape(1, config.max_phr_len, -1)
                outpy = outputs

            # import pdb;pdb.set_trace()
            op, vu = sess.run([output, vuv],
                              feed_dict={
                                  input_placeholder: inpy,
                                  input_placeholder_2: outpy
                              })
            op = np.concatenate((op, vu), axis=-1)
            if debug:
                plt.figure(1)
                plt.subplot(311)
                plt.imshow(np.log(inputs.T), aspect='auto', origin='lower')
                plt.subplot(312)
                plt.imshow(targs[index:index + config.max_phr_len, :].T,
                           aspect='auto',
                           origin='lower')
                plt.subplot(313)
                plt.imshow(outpy.reshape(config.max_phr_len, -1).T,
                           aspect='auto',
                           origin='lower')
                plt.show()
                import pdb
                pdb.set_trace()

            if index > config.max_phr_len:
                outputs = np.append(outputs, op[:, -1:, :], axis=1)
            else:
                outputs[:, :index, :] = op[:, :index, :]

        val_outer = outputs[0]
        val_outer[:, -1] = np.round(val_outer[:, -1])
        val_outer = val_outer[:targs.shape[0], :]
        val_outer = np.clip(val_outer, 0.0, 1.0)

        #Test purposes only

        # targs = utils.normalize(targs, 'feats', mode=config.norm_mode_out)
        targs = (targs - min_feat) / (max_feat - min_feat)

        if show_plots:

            # import pdb;pdb.set_trace()

            ins = val_outer[:, :60]
            outs = targs[:, :60]
            plt.figure(1)
            ax1 = plt.subplot(211)
            plt.imshow(ins.T, origin='lower', aspect='auto')
            ax1.set_title("Predicted Harm ", fontsize=10)
            ax2 = plt.subplot(212)
            plt.imshow(outs.T, origin='lower', aspect='auto')
            ax2.set_title("Ground Truth Harm ", fontsize=10)
            plt.figure(2)
            ax1 = plt.subplot(211)
            plt.imshow(val_outer[:, 60:-2].T, origin='lower', aspect='auto')
            ax1.set_title("Predicted Aperiodic Part", fontsize=10)
            ax2 = plt.subplot(212)
            plt.imshow(targs[:, 60:-2].T, origin='lower', aspect='auto')
            ax2.set_title("Ground Truth Aperiodic Part", fontsize=10)
            plt.figure(3)
            uu = val_outer[:, -2] * (1 - targs[:, -1])
            uu[uu == 0] = np.nan
            plt.plot(uu, label="Predicted Value")
            uu = targs[:, -2] * (1 - targs[:, -1])
            uu[uu == 0] = np.nan
            plt.plot(uu, label="Ground Truth")
            # uu = f0_sac[:,0]*(1-f0_sac[:,1])
            # uu[uu == 0] = np.nan
            # plt.plot(uu, label="Sac f0")
            plt.legend()
            plt.figure(4)
            ax1 = plt.subplot(211)
            plt.plot(val_outer[:, -1])
            ax1.set_title("Predicted Voiced/Unvoiced", fontsize=10)
            ax2 = plt.subplot(212)
            plt.plot(targs[:, -1])
            ax2.set_title("Ground Truth Voiced/Unvoiced", fontsize=10)
            plt.show()
        if save_file:

            val_outer = np.ascontiguousarray(val_outer *
                                             (max_feat - min_feat) + min_feat)
            targs = np.ascontiguousarray(targs * (max_feat - min_feat) +
                                         min_feat)

            # val_outer = np.ascontiguousarray(utils.denormalize(val_outer,'feats', mode=config.norm_mode_out))
            try:
                utils.feats_to_audio(val_outer,
                                     file_name[:-4] + '_synth_pred_f0')
                print("File saved to %s" % config.val_dir + file_name[:-4] +
                      '_synth_pred_f0.wav')
            except:
                print("Couldn't synthesize with predicted f0")
            try:
                val_outer[:, -2:] = targs[:, -2:]
                utils.feats_to_audio(val_outer,
                                     file_name[:-4] + '_synth_ori_f0')
                print("File saved to %s" % config.val_dir + file_name[:-4] +
                      '_synth_ori_f0.wav')
            except:
                print("Couldn't synthesize with original f0")