Beispiel #1
0
def ga_result1(out='result'):
    ''' アニメーション表示
    '''
    file = ut.fsort(glob.glob(os.path.join(out, f'epoch*.pickle')))[-1]
    optimizer = MOEAD.load(file=file)
    print('epoch:', len(optimizer))

    elite = optimizer.get_elite()
    print('elite:', len(elite))

    imax = len(optimizer) - 1

    for epoch in range(0, imax, 20):
        print(epoch, end='\n')
        # plt.cla()
        population = optimizer[epoch]
        # population = optimizer.calc_rank(population)

        front = [x for x in population]
        x, y = np.array([x.data.value for x in front]).T
        plt.scatter(x,
                    y,
                    color='blue',
                    alpha=epoch / imax,
                    label=f'epoch{epoch}')

        # plt.legend()
        plt.xlim((0, 50))
        # plt.ylim((0, 50))
        plt.pause(0.2)
    plt.show()
Beispiel #2
0
 def get_model():
     # モデル読み込み
     # model_cls = {'nsga2':NSGA2, 'moead':MOEAD}[model]
     files = ut.fsort(glob.glob(os.path.join(out, f'*epoch*.pkl')))
     for i, file in enumerate(files):
         print(f'[{i}]', file)
     print('select file')
     n = int(input())
     if n < 0:
         return
     file = files[n]
     print('file:', file)
     env, optimizer, history = ut.load(file)
     return env, optimizer, history
Beispiel #3
0
def ga_result14(model, out='result', show=False):
    ''' エリート個体数を数える
    '''
    # モデル読み込み
    model_cls = {'nsga2': NSGA2, 'moead': MOEAD}[model]
    files = ut.fsort(glob.glob(os.path.join(out, f'*epoch*.pickle')))
    for i, file in enumerate(files):
        print(f'[{i}]', file)
    print('select file')
    n = int(input())
    if n < 0:
        return
    file = files[n]
    print('file:', file)
    optimizer = model_cls.load(file=file)

    imax = len(optimizer)
    # imax = 100
    idx = 0

    cache = file.replace('.pickle', '_ndom.npy')
    if os.path.isfile(cache) and not force:
        data = np.load(cache)

    else:
        data = []

        for epoch in range(0, imax, 1):
            print(epoch, end='\r')
            # plt.cla()
            population = optimizer[epoch]
            population = optimizer.calc_rank(population)
            front = [x for x in population if x.rank == 1]

            indivs = [fit.get_indiv() for fit in population]

            if hasattr(population[0], 'id'):
                idx = max(*map(attrgetter('id'), population), idx)
            else:
                idx = max(*map(attrgetter('id'), indivs), idx)
            data.append([idx, len(front)])
        np.save(cache, data)
Beispiel #4
0
def ga_result2(out='result'):
    file = ut.fsort(glob.glob(os.path.join(out, f'epoch*.pickle')))[-1]
    optimizer = MOEAD.load(file=file)

    population = optimizer[-1]
    front = [x for x in population if x.rank == 1]
    front.sort(key=attrgetter('data.value'))

    for fit in front:
        # print(ind.value, ind.data.value)
        print(fit.get_indiv().get_gene().get_ivalue(), fit.value)

    crowdings = [ind.value[1] for ind in front]

    fig, axes = plt.subplots(2)
    axes[0].plot(crowdings)

    x, y = np.array([x.data.value for x in front]).T
    im = axes[1].scatter(x, y, c=crowdings, cmap='jet')
    # plt.xlim((0, 1))
    # plt.ylim((0, 1))
    fig.colorbar(im)
    plt.show()
Beispiel #5
0
def ga_result13(model, out='result', show=False):
    ''' HVプロット
    '''
    # モデル読み込み
    model_cls = {'nsga2': NSGA2, 'moead': MOEAD}[model]
    files = ut.fsort(glob.glob(os.path.join(out, f'*epoch*.pickle')))
    for i, file in enumerate(files):
        print(f'[{i}]', file)
    print('select file')
    n = int(input())
    if n < 0:
        return
    file = files[n]
    print('file:', file)
    optimizer = model_cls.load(file=file)

    ref_point = [100, 0]
    hypervolume = HyperVolume(ref=ref_point)

    # モデルパラメータ表示
    print('[PARAMS]')
    print('popsize:', optimizer.popsize)
    print('epoch:', len(optimizer))
    print('alternation:', optimizer.alternation)
    print('Indiv:', optimizer.indiv_type.__name__)
    optimizer.calc_rank(optimizer.population)
    elite = optimizer.get_elite()
    print('elite:', len(elite))

    imax = len(optimizer)
    # imax = 100
    idx = 0
    force = False

    cache = file.replace('.pickle', '_hv.npy')
    if os.path.isfile(cache) and not force:
        hvs = np.load(cache)

    else:
        hvs = []
        population = []
        for epoch in range(0, imax, 1):
            # print(epoch, end='\r')
            # plt.cla()
            population = optimizer[epoch] + population
            optimizer.calc_rank(population)
            population = [fit for fit in population if fit.rank == 1]
            hv = hypervolume(population)
            print('epoch:', epoch, 'HV=', hv)
            if hasattr(population[0], 'id'):
                idx = max(*map(attrgetter('id'), population), idx)
            else:
                idx = max(*map(attrgetter('id'), indivs), idx)
            hvs.append([idx, hv])
        np.save(cache, hvs)

    i, v = np.array(hvs).T
    fig, ax = plt.subplots()
    im = ax.plot(i, v, label=model)

    ax.legend()
    ax.set_xlabel('Evaluation Step')
    ax.set_ylabel('Hypervolume')

    if show:
        plt.show()
    else:
        basename = os.path.splitext(os.path.basename(file))[0]
        plt.savefig(os.path.join('result', f'front_{model}_{basename}_hv.png'))
Beispiel #6
0
def ga_result12(model, out='result', show=False):
    ''' 最適値プロット
    '''
    # モデル読み込み
    model_cls = {'nsga2': NSGA2, 'moead': MOEAD}[model]
    files = ut.fsort(glob.glob(os.path.join(out, f'*epoch*.pickle')))
    for i, file in enumerate(files):
        print(f'[{i}]', file)
    print('select file')
    n = int(input())
    if n < 0:
        return
    file = files[n]
    print('file:', file)
    optimizer = model_cls.load(file=file)

    # モデルパラメータ表示
    print('[PARAMS]')
    print('popsize:', optimizer.popsize)
    print('epoch:', len(optimizer))
    print('alternation:', optimizer.alternation)
    print('Indiv:', optimizer.indiv_type.__name__)
    optimizer.calc_rank(optimizer.population)
    elite = optimizer.get_elite()
    print('elite:', len(elite))

    imax = len(optimizer)
    # imax = 100
    idx = 0

    cache = file.replace('.pickle', '_data.npy')
    if os.path.isfile(cache) and not force:
        data = np.load(cache)

    else:
        data = []

        for epoch in range(0, imax, 1):
            print(epoch, end='\r')
            # plt.cla()
            population = optimizer[epoch]
            indivs = [fit.get_indiv() for fit in population]
            dv = min(map(itemgetter(0), indivs))
            rcs = max(map(itemgetter(1), indivs))
            if hasattr(population[0], 'id'):
                idx = max(*map(attrgetter('id'), population), idx)
            else:
                idx = max(*map(attrgetter('id'), indivs), idx)
            data.append([idx, dv, rcs])
        np.save(cache, data)

    i, x, y = np.array(data).T
    fig, ax = plt.subplots()
    # color_list = [(0, '#AADDFF'), (0.33, '#002288'), (0.66, '#EEDD22'), (1, '#CC0000')]
    # color_list = [(0, '#0022AA'), (0.3, '#11AA00'), (0.5, '#EEDD22'), (1, '#CC0000')]
    # color_list = [(0, 'blue'), (0.3, 'green'), (0.5, 'yellow'), (1, 'red')]
    # cmap = plc.LinearSegmentedColormap.from_list('custom_cmap', color_list, N=25)
    im = ax.plot(i, x)
    im = ax.plot(i, y * 100)

    print('min dV=', x.min())
    print('max RCS=', y.max())

    # plt.legend()
    # ax.set_xlabel('$\\Delta\\it{V}$, $km/s$')
    # ax.set_ylabel('$RCS$, $m^2$')

    # ax.set_xlim((0, 100))
    # ax.set_ylim((0, 0.45))

    # cbar = fig.colorbar(im, label='generation')

    if show:
        plt.show()
    else:
        basename = os.path.splitext(os.path.basename(file))[0]
        plt.savefig(os.path.join('result', f'front_{model}_{basename}.png'))
Beispiel #7
0
def ga_result11(model, out='result', show=False):
    ''' 一括表示
    '''
    # モデル読み込み
    model_cls = {'nsga2': NSGA2, 'moead': MOEAD}[model]
    files = ut.fsort(glob.glob(os.path.join(out, f'*epoch*.pickle')))
    for i, file in enumerate(files):
        print(f'[{i}]', file)
    print('select file')
    n = int(input())
    if n < 0:
        return
    file = files[n]
    print('file:', file)
    optimizer = model_cls.load(file=file)

    # モデルパラメータ表示
    print('[PARAMS]')
    print('popsize:', optimizer.popsize)
    print('epoch:', len(optimizer))
    print('alternation:', optimizer.alternation)
    if hasattr(optimizer, 'ksize'):
        print('ksize:', optimizer.ksize)
    print('Indiv:', optimizer.indiv_type.__name__)
    optimizer.calc_rank(optimizer.population)
    elite = optimizer.get_elite()
    print('elite:', len(elite))

    imax = len(optimizer)
    # imax = 51
    data = []

    for epoch in range(0, imax, 1):
        print(epoch, end='\r')
        # plt.cla()
        population = optimizer[epoch]
        front = [x for x in population]
        data.extend([[*x.data.value, epoch] for x in front])

    x, y, c = np.array(data).T
    fig, ax = plt.subplots()
    # color_list = [(0, '#AADDFF'), (0.33, '#002288'), (0.66, '#EEDD22'), (1, '#CC0000')]
    color_list = [(0, '#0022AA'), (0.3, '#11AA00'), (0.5, '#EEDD22'),
                  (1, '#CC0000')]
    color_list = [(0, 'blue'), (0.3, 'green'), (0.5, 'yellow'), (1, 'red')]
    cmap = plc.LinearSegmentedColormap.from_list('custom_cmap',
                                                 color_list,
                                                 N=25)
    im = ax.scatter(x, y, c=c, cmap=cmap, marker='o', alpha=1)

    print('min dV=', x.min())
    print('max RCS=', y.max())

    # plt.legend()
    ax.set_xlabel('$\\Delta\\it{V}$, $km/s$')
    ax.set_ylabel('$RCS$, $m^2$')

    ax.set_xlim((0, 100))
    ax.set_ylim((0, 0.45))

    # plt.pause(0.2)
    cbar = fig.colorbar(im, label='Generation')
    cbar.set_label('Generation', size=24)
    plt.tight_layout()

    # show or save
    if show:
        plt.show()
    else:
        basename = os.path.splitext(os.path.basename(file))[0]
        plt.savefig(os.path.join('result', f'front_{model}_{basename}.png'))