def _modify_problem(f_problem, f_out, tr_outfiles): """Modify the problem by writing it to a new file. Return the name of the new problem file.""" f_init_states = tr_outfiles["init_states"] f_axioms = tr_outfiles["axioms"] # the problem problem = get_contents(f_problem) problem_tree = LispParser.get_tree(problem) # the preferences init_states = get_contents(f_init_states) init_states_tree = LispParser.get_tree(init_states) TreeHanger.add_init_state_prefs(problem_tree, init_states_tree) # the axioms axioms = get_contents(f_axioms) axiom_tree = LispParser.get_tree(axioms) TreeHanger.add_metric_functions(problem_tree, axiom_tree) # write to the new problem file fp = open(f_out, "w") fp.write(problem_tree.to_lisp()) fp.close() return f_out
def _modify_problem(f_problem, f_out, tr_outfiles): '''Modify the problem by writing it to a new file. Return the name of the new problem file.''' f_init_states = tr_outfiles["init_states"] f_axioms = tr_outfiles["axioms"] # the problem problem = get_contents(f_problem) problem_tree = LispParser.get_tree(problem) # the preferences init_states = get_contents(f_init_states) init_states_tree = LispParser.get_tree(init_states) TreeHanger.add_init_state_prefs(problem_tree, init_states_tree) # the axioms axioms = get_contents(f_axioms) axiom_tree = LispParser.get_tree(axioms) TreeHanger.add_metric_functions(problem_tree, axiom_tree) # write to the new problem file fp = open(f_out, "w") fp.write(problem_tree.to_lisp()) fp.close() return f_out
def _modify_domain(f_domain, f_out, tr_outfiles): """Create a new domain file. Return the name of the new file.""" f_add_effects = tr_outfiles["add_effects"] f_del_effects = tr_outfiles["del_effects"] f_axioms = tr_outfiles["axioms"] # the domain domain = get_contents(f_domain) domain_tree = LispParser.get_tree(domain) # add and del effects add_effects_tree = LispParser.get_tree(get_contents(f_add_effects)) del_effects_tree = LispParser.get_tree(get_contents(f_del_effects)) TreeHanger.add_add_del_effects(domain_tree, add_effects_tree, del_effects_tree) # domain prefs axioms = get_contents(f_axioms) axiom_tree = LispParser.get_tree(axioms) TreeHanger.add_domain_prefs(domain_tree, axiom_tree) # write to the new domain file fp = open(f_out, "w") fp.write(domain_tree.to_lisp()) fp.close() return f_out
def _modify_domain(f_domain, f_out, tr_outfiles): '''Create a new domain file. Return the name of the new file.''' f_add_effects= tr_outfiles["add_effects"] f_del_effects= tr_outfiles["del_effects"] f_axioms = tr_outfiles["axioms"] # the domain domain = get_contents(f_domain) domain_tree = LispParser.get_tree(domain) # add and del effects add_effects_tree = LispParser.get_tree(get_contents(f_add_effects)) del_effects_tree = LispParser.get_tree(get_contents(f_del_effects)) TreeHanger.add_add_del_effects(domain_tree, add_effects_tree, del_effects_tree) # domain prefs axioms = get_contents(f_axioms) axiom_tree = LispParser.get_tree(axioms) TreeHanger.add_domain_prefs(domain_tree, axiom_tree) # write to the new domain file fp = open(f_out, "w") fp.write(domain_tree.to_lisp()) fp.close() return f_out
def get(request): resp = Response() contents = get_contents(request) if contents: acct_id = contents.get('id', None) acct_email = contents.get('email', None) try: if acct_id: AccountProfile.objects.get(id=acct_id) resp.passed() resp.add_param('result', True) elif acct_email: AccountProfile.objects.get(company_email__icontains=acct_email) resp.passed() resp.add_param('result', True) except AccountProfile.DoesNotExist: resp.passed() resp.add_param('result', False) except AccountProfile.MultipleObjectsReturned: resp.passed() resp.add_param('result', False) else: resp.failed() resp.add_message('Missing parameters!') return HttpResponse(resp.get_response(), content_type="application/json")
def get(request, qry_type): resp = Response() contents = get_contents(request) if contents: qry_id = contents.get('id', None) qry_email = contents.get('email', None) try: accnt = None if qry_type == 'id': accnt = AccountProfile.objects.get(id=qry_id) elif qry_type == 'email': accnt = AccountProfile.objects.get(company_email__icontains=qry_email) a_obj = {'id': accnt.id, 'name': accnt.name, 'email': accnt.company_email, 'mobile': str(accnt.company_phone), 'address_info': accnt.company_address.address_info, 'country': accnt.company_address.country.name, 'city': accnt.company_address.city.name} resp.passed() resp.add_param('result', a_obj) except AccountProfile.DoesNotExist: resp.failed() resp.add_message('AccountProfile with ID/Email does not exist') except AccountProfile.MultipleObjectsReturned: resp.failed() resp.add_message('Multiple AccountProfiles matches the Id/Email') return HttpResponse(resp.get_response(), content_type="application/json")
def create(fname): """Create a PDDL Tree out of the given PDDL file.""" pddl_list = PDDL_Tree._get_pddl_list(get_contents(fname)) pddl_tree = PDDL_Tree._make_tree(pddl_list) PDDL_Tree._alter_tree(pddl_tree) return pddl_tree
def compare(f_baseline, f_generated): '''Compare the given generated file to the baseline file.''' baseline_tokens = LispParser().get_tokens(get_contents(f_baseline)) generated_tokens = LispParser().get_tokens(get_contents(f_generated)) i = j = 0 len_match = token_match = True if len(baseline_tokens) != len(generated_tokens): print "different amount of tokens" len_match = False while i < len(baseline_tokens) and j < len(generated_tokens): if baseline_tokens[i] != generated_tokens[j]: token_match = False print "==> difference" print "Context for baseline:" print " ".join(baseline_tokens[i - LispDiff.CONTEXT_WINDOW : i + LispDiff.CONTEXT_WINDOW]) print "Context for generated:" print " ".join(generated_tokens[j - LispDiff.CONTEXT_WINDOW : j + LispDiff.CONTEXT_WINDOW]) # here we need a way to try to line them up again for ii in range(-1 - LispDiff.ALIGN_WINDOW, 1 + LispDiff.ALIGN_WINDOW): if ii == 0: continue if baseline_tokens[i + ii : i + ii + LispDiff.MATCH_WINDOW + 1] == generated_tokens[j : j + LispDiff.MATCH_WINDOW + 1]: if ii > 0: print "===> roll forward %d chars" % ii else: print "===> roll back %d chars" % (-1 * ii) i += ii break i += 1 j += 1 if token_match and not len_match: print "Tokens all match even though lengths are different" print len(baseline_tokens) print len(generated_tokens) return len_match and token_match
def post(request): resp = Response() contents = get_contents(request) validation = validate_signup_composite(contents, resp) if validation: # Update Account update_client_account(contents, resp) return HttpResponse(resp.get_response(), content_type="application/json")
def post(request, accnt_type): resp = Response() contents = get_contents(request) validation = validate_signup_composite(contents, resp) if validation: # Create signup composite create_signup_composite(contents, accnt_type, resp) return HttpResponse(resp.get_response(), content_type="application/json")
def post(request): resp = Response() contents = get_contents(request) enquiry_form = SiteEnquiryForm(contents) if enquiry_form.is_valid(): enquiry_form.save() resp.passed() resp.add_message("Thank you. We received your enquiry and we'll get in touch soonest.") else: resp.failed() resp.add_param('errors', compile_form_errors(enquiry_form)) return HttpResponse(resp.get_response(), content_type="application/json")
def get(request): resp = Response() contents = get_contents(request) contents = get_contents(request) if contents: search_string = contents.get('pattern', None) if search_string: try: results = UserProfile.objects.filter(active=True, account_manager=True, name__icontains=search_string).order_by('id').values('id', 'name') matches = [x for x in results] resp.passed() resp.add_param('matches', matches) except Exception as err: resp.failed() resp.add_message(str(err)) else: resp.failed() resp.add_message('Missing request parameters.') return HttpResponse(resp.get_response(), content_type="application/json")
def benchmark_seek_all(): tree = Parser().get_tree(get_contents('samples/gripper-domain.pddl')) print "==> generator:" start = time.time() #for i in xrange(1): tree.seek_all([':action']) print(time.time() - start) #* 1000 print "==> list" start = time.time() #for i in xrange(1): tree.seek_all_list([':action']) print(time.time() - start) #* 1000
def benchmark_seek_all(): tree = Parser().get_tree(get_contents('samples/gripper-domain.pddl')) print "==> generator:" start = time.time() #for i in xrange(1): tree.seek_all([':action']) print (time.time() - start) #* 1000 print "==> list" start = time.time() #for i in xrange(1): tree.seek_all_list([':action']) print (time.time() - start) #* 1000
def post(self, request, **kwargs): customer_type = kwargs.get('account_type', None) contents = get_contents(request) resp = Response() if contents: _pageSize = contents.get('pageSize', 10) _pageIndex = contents.get('pageIndex', 1) _filter = contents.get('filters', []) _sort = contents.get('sort', None) kwargs = build_query_filter(_filter) pager = build_pagination_markers(_pageIndex, _pageSize) # Run Query accounts = None if customer_type == 'pod': kwargs['account_type__name__iexact'] = 'pod' elif customer_type == 'streamz': kwargs['account_type__name__iexact'] = 'streamz' result_size = AccountProfile.objects.filter(**kwargs).count() results = AccountProfile.objects.filter(**kwargs)[pager['lm']:pager['um']] try: accounts = [{'id': x.id, 'name': x.name, 'account_code': x.account_code, 'company_email': x.company_email, 'account_officer': {'id': x.account_officer.id, 'label': x.account_officer.name} if x.account_officer is not None else {'id': "",'label': ""}, 'industry': {'id': x.industry.id, 'label': x.industry.name}, 'company_address': {'address_info': x.company_address.address_info, 'city': {'id': x.company_address.city.id, 'label': x.company_address.city.name}, 'country': {'id': x.company_address.country.id, 'label': x.company_address.country.name} }, 'company_phone': {'country_code': x.company_phone.country_code, 'phone_number': x.company_phone.phone_number}, 'contact_person': {'first_name': x.contact_person.first_name, 'last_name': x.contact_person.last_name}} for x in results] resp.passed() resp.add_param('result', accounts) resp.add_param('result_size', result_size) except Exception as err: resp.failed() resp.add_message(str(err)) return HttpResponse(resp.get_response(), content_type="application/json")
def profile_tree(fname): '''Run the PDDL parser on the given file. Extract and show meaningful information.''' contents = get_contents(fname) parser = Parser() tree = parser.get_tree(contents) print "==> tree-type:", t = tree.get_type() print "'%s'" % t print "==> domain: '%s'" % tree.get_domain() if t == "problem": print "==> problem: '%s'" % tree.get_problem() print "==> objects:" print tree.get_objects() print "==> init state:" print tree.get_init_state() print "==> goal:" print tree.get_goal() else: print "==> predicates:" print tree.get_predicates() print "==> actions:" for a in tree.get_actions(): print "==> action: '%s'" % a.get_action_name() #a.print_tree() print "==> parameters: " print a.get_parameters() print "==> preconditions: " print a.get_preconditions() print "==> effects" print a.get_effects()
def main(): title = sys.argv[1] client = HttpClient() params = { 'action': 'query', 'format': 'json', 'prop': 'revisions', 'rvprop': 'content', 'titles': title, } data = client.get(URL, params) if data is not None: contents = get_contents(data) entities = get_entities(contents) pprint(entities) print('=' * 72) print('\nカテゴリのみを出力') for category in filter(lambda x: x.startswith('Category:'), entities): print(category)
def synthesizeAllImages(self, image_number): self.bg_img_list = utils.getBackgroundListFromDir( self.args['background_image_dir']) self.font_list = utils.getFontListFromDir(self.args['fonts_dir']) start_index = self.restoreFromPartImageDir() for i in tqdm.tqdm(range(start_index, image_number)): content, content_index = utils.get_contents( self.id_character_dict, self.args['characters_length_tuple']) background_image_path, font_path = map( utils.getRandomOneFromList, [self.bg_img_list, self.font_list]) image, points = self.putContent2Image(content, background_image_path, font_path, self.args['add_rectangle']) if self.args['save_full_image']: self.saveImage(image, i) part_images, roi_points = utils.cropImageByPoints(image, points) self.saveImage(part_images, i, is_part=1) self.saveAnnotation(content_index, points, i) return
def Iop_Add64(self, left, right): return utils.mask(left + right) def Iop_Add32(self, left, right): return utils.mask(left + right, 32) def Iop_Add8(self, left, right): return utils.mask(left + right, 8) def Iop_Sub64(self, left, right): return utils.mask(left - right) def Iop_Sub32(self, left, right): return utils.mask(left - right, 32) def Iop_Shl64(self, left, right): return utils.mask(left << right) def Iop_Shl32(self, left, right): return utils.mask(left << right, 32) def Iop_CmpEQ64(self, left, right): return 1 if utils.mask(left, 64) == utils.mask(right, 64) else 0 def Iop_CmpEQ32(self, left, right): return 1 if utils.mask(left, 32) == utils.mask(right, 32) else 0 def Iop_CmpNE64(self, left, right): return 1 if utils.mask(left, 64) != utils.mask(right, 64) else 0 def Iop_CmpNE32(self, left, right): return 1 if utils.mask(left, 32) != utils.mask(right, 32) else 0 if __name__ == "__main__": import sys if len(sys.argv) < 3: print "Usage: classifier.py architecture filename [-v]" sys.exit(1) arch = archinfo.arch_from_id(sys.argv[1]).__class__ code = utils.get_contents(sys.argv[2]) classifier = GadgetClassifier(arch, log_level = logging.DEBUG if len(sys.argv) > 3 else logging.WARNING) gadgets = classifier.create_gadgets_from_instructions(code, 0x40000) for g in gadgets: print g
for v_index, vocab_count in enumerate(vocab_count_list): score += vocab_count * math.log( vocab_count_matrix[c_index][v_index]) score_list.append(score) class_result.append(score_list.index(max(score_list)) + 1) return class_result file_indices = get_file_indices('training.txt') stopword_list = get_stopword_list('stopwords.txt') contents_list = [] for i in range(CLASSES): content_by_class = get_contents(file_indices[i]) contents_list.append(content_by_class) # length is 13 # further processing for contents updated_contents_list = [] for contents in contents_list: updated_contents = process_content(stopword_list, contents) updated_contents_list.append(updated_contents) vocab_list = get_vocab_list('vocabs.txt') vocab_prob_matrix = train_multinomial_model(vocab_list, updated_contents_list) doc_list = get_contents(list(range(1, 1096))) updated_doc_list = process_content(stopword_list, doc_list) class_result = test_multinomial_model(vocab_prob_matrix, vocab_list, updated_doc_list)
# There, we only load a pair of images. one is style image, the other is content image. content_img = image.imread(os.path.join(args.image_root, "tubingen.jpg")) style_img = image.imread(os.path.join(args.image_root, "the_scream.jpg")) # image.imread(): load a image, return NDArray. data format is BGR, w.t. HWC. # imshow ''' plt.imshow(style_img.asnumpy()) # use asnumpy() transform to numpy ndarray. plt.show() plt.imshow(content_img.asnumpy()) plt.show() ''' # generate content image and features. content_x, content_y = utils.get_contents( net=net, ctx=ctx, content_img=content_img, image_shape=args.image_shape, content_layers=args.content_layers, style_layers=args.style_layers) # content_x is the content image, content_y is the features of content image(list of features). # Our need is content_y. Features. # content_x is NDArray. # generate style image and features. style_x, style_y = utils.get_styles(net=net, ctx=ctx, style_img=style_img, image_shape=args.image_shape, content_layers=args.content_layers, style_layers=args.style_layers) # style_x is the style image, style_y is the features of style image(list of features).
final_vocabs = [] for vocabs in vocab_list: for vocab in vocabs: final_vocabs.append(vocab[0]) final_vocabs = list(set(final_vocabs))[:500] with open(vocabs_file, 'w') as f: for vocab in final_vocabs: f.write(vocab + '\n') file_indices = get_file_indices('training.txt') stopword_list = get_stopword_list('stopwords.txt') contents_list = [] terms_list = [] for i in range(CLASSES): content_by_class = get_contents(file_indices[i]) contents_list.append(content_by_class) # length is 13 terms_by_class = generate_terms(content_by_class, stopword_list) terms_list.append(terms_by_class) # length is 13 # further processing for contents updated_contents_list = [] for contents in contents_list: updated_contents = process_content(stopword_list, contents) updated_contents_list.append(updated_contents) total_LLR_list = feature_selection(updated_contents_list, terms_list) generate_vocabs(total_LLR_list, 'vocabs.txt')
return utils.mask(left >> right, 8) def Iop_CmpEQ64(self, left, right): return 1 if utils.mask(left, 64) == utils.mask(right, 64) else 0 def Iop_CmpEQ32(self, left, right): return 1 if utils.mask(left, 32) == utils.mask(right, 32) else 0 def Iop_CmpNE64(self, left, right): return 1 if utils.mask(left, 64) != utils.mask(right, 64) else 0 def Iop_CmpNE32(self, left, right): return 1 if utils.mask(left, 32) != utils.mask(right, 32) else 0 if __name__ == "__main__": import sys if len(sys.argv) < 3: print "Usage: classifier.py architecture filename [-v]" sys.exit(1) arch = archinfo.arch_from_id(sys.argv[1]).__class__ code = utils.get_contents(sys.argv[2]) classifier = GadgetClassifier( arch, log_level=logging.DEBUG if len(sys.argv) > 3 else logging.WARNING) gadgets = classifier.create_gadgets_from_instructions(code, 0x40000) for g in gadgets: print g