Beispiel #1
0
    def _load_train_original_coordinates(self):
        """
        Load the coordinates CSV for the training dataset.
        Turn it into a dictionary of lists of coordinates and labels.
        
        {image_id: [
                {
                    x_coord: n
                    y_coord: n
                    category: label
                }
            ]
        }

        :return: A dictionary of lists of coordinates and categories.
        """
        logger.debug('Loading train image coordinates')
        d = collections.defaultdict(list)
        with open(settings.TRAIN_COORDINATES_CSV, 'r') as file:
            [
                d[utils.get_file_name_part(row['filename'])].append(
                    utils.remove_key_from_dict(row, '', 'id', 'filename'))
                for row in csv.DictReader(file)
            ]
        return dict(d)
Beispiel #2
0
    def _load_sea_lion_crop_images(self):
        images = []
        crops_dir = settings.SEA_LION_CROPS_DIR

        # Get all images
        filenames = sorted(glob.glob(os.path.join(crops_dir, "*.jpg")))
        for filename in filenames:
            #adult_males_id923_1clions_at_1944-1425_197px
            #negative_id0_0clions_at_13-913_197px
            name = utils.get_file_name_part(filename)

            name_parts = name.split('_id')
            clss = name_parts[0]
            image_name = name_parts[1].split('_')[0]

            if image_name in self.train_original_mismatched:
                # Skip images marked as mismatched
                continue

            meta = {'full_name': name, 'filename': image_name}

            images.append({
                'x': (lambda filename: lambda: self.load(filename))(filename),
                'm':
                meta,
                'y':
                clss
            })
        return images
def generate_obms_fast2():
    cpus = 20

    def chunks(l, n):
        """Yield successive n-sized chunks from lr."""
        chunks = []
        chunk_size = int(len(l) / n)
        for i in range(n + 1):
            chunks.append(l[i * chunk_size:(i + 1) * chunk_size])
        return chunks

    import random
    #impaths = sorted(glob.glob(os.path.join(settings.TEST_DIR,'original','*')))
    lo = sorted(glob.glob(os.path.join(settings.TRAIN_HEATMAP_DIR, '*')))
    impaths = []
    print(len(lo))
    for impath in lo:
        filename = utils.get_file_name_part(impath)
        nclions = int(filename.split('clions')[0])
        if nclions == 0 and random.choice([0, 0, 1, 1, 1, 1, 1]):
            continue
        else:
            impaths.append(impath)
    print(len(impaths))

    impaths = np.array(impaths)
    impaths = chunks(impaths, cpus)
    print(999, len(impaths))
    for a in impaths:
        print(len(a))
        print(str(a)[:500])

    with Pool(cpus) as pool:
        pool.starmap(generate_obms2, zip(impaths))
 def plot_count_crops_statistics(self, crops_folder):
     #crops_folder = '/vol/tensusers/vgarciacazorla/MLP/noaa-sea-lion-count/output/crops/20170609T022425/heatmap'
     counts = []
     filepaths = glob.glob(os.path.join(crops_folder, '*.jpg'))
     for filepath in filepaths:
         filename = utils.get_file_name_part(filepath)
         counts.append(int(filename.split('clions')[0]))
     counts = sorted(counts)
     plt.figure()
     plt.plot(counts)
     plt.title("Including negative crops")
     plt.show()
     counts = [c for c in counts if c != 0]
     plt.figure()
     plt.plot(counts)
     plt.title("Excluding negative crops")
     plt.show()
     plt.figure()
Beispiel #5
0
    def _load_region_crop_images(self):
        images = []
        crops_dir = settings.REGION_CROPS_DIR

        # Get all images
        filenames_pos = sorted(
            glob.glob(os.path.join(crops_dir, 'pos', "*.jpg")))
        filenames_neg = sorted(
            glob.glob(os.path.join(crops_dir, 'neg', "*.jpg")))
        filenames = filenames_pos + filenames_neg
        for filename in filenames:
            #10clions_at40-1680_in66_400px
            #0clions_at0-2471_in579_400px
            name = utils.get_file_name_part(filename)
            #image_name = name.split('_')[1].split('d')[1]
            image_name = name.split('in')[1].split('_')[0]
            if image_name in self.train_original_mismatched:
                # Skip images marked as mismatched
                continue

            y = filename.split(os.path.sep)[-2]
            assert y in ['pos', 'neg']
            if y == 'pos':
                y = 'positive'
            else:
                y = 'negative'
            meta = {
                'full_name': name,
                'filename': image_name,
                'coordinates': name.split('_')[1][2:],
                'counts': int(name.split('clions')[0]),
            }

            images.append({
                'x': (lambda filename: lambda: self.load(filename))(filename),
                'm':
                meta,
                'y':
                y
            })
        return images
Beispiel #6
0
    def load_test_coordinates(self):
        """
        Load the coordinates CSV for the test dataset.
        Turn it into a dictionary of lists of coordinates.
        
        {image_id: [
                {
                    x_coord: n
                    y_coord: n
                }
            ]
        }

        :return: A dictionary of lists of coordinates.
        """
        logger.debug('Loading test image coordinates')
        d = collections.defaultdict(list)
        with open(settings.TEST_COORDINATES_CSV, 'r') as file:
            [
                d[utils.get_file_name_part(row['filename'])].append(
                    utils.remove_key_from_dict(row, '', 'filename'))
                for row in csv.DictReader(file)
            ]
        return dict(d)
def generate_overlap_masks():
    if not os.path.exists(settings.OVERLAP_MASKS_DIR):
        os.makedirs(settings.OVERLAP_MASKS_DIR)

    with open(settings.TRAIN_MISMATCHED_CSV, 'r') as file:
        mismatched = {row['train_id']: True for row in csv.DictReader(file)}

    n = 0
    filenames = sorted(
        glob.glob(os.path.join(settings.TRAIN_DOTTED_IMAGES_DIR, "*.jpg")))
    for filename in filenames:
        logger.debug('Generating overlap mask for image %s ...' % n)
        n += 1

        name = utils.get_file_name_part(filename)
        if name in mismatched:
            continue

        img = scipy.misc.imread(filename).astype("float32")
        mask = np.sum(img, 2) > 0

        maskname = os.path.join(settings.OVERLAP_MASKS_DIR, name + '.mask')
        with gzip.open(maskname, 'wb') as outfile:
            pickle.dump(mask, outfile)
def generate_obms2(impaths):
    data_type = 'original_test'
    #data_type = 'region_crops'
    prediction_class_type = 'odm'
    #prediction_class_type = 'single'
    validate = False
    class_balancing = False
    input_shape = (224, 224, 3)
    batch_size = 1
    crop_size = 400
    arch = 'xception'
    input_weights_name = 'xception-lay106-heatmap_crops-ep011-tloss0.0068-vloss0.0067.hdf5'
    tl = network.TransferLearningSeaLionHeatmap(
        data_type=data_type,
        input_shape=input_shape,
        prediction_class_type=prediction_class_type,
        class_balancing=class_balancing,
        mini_batch_size=batch_size,
        validate=validate)
    #tl = network.TransferLearningSeaLionOrNoSeaLion(data_type = data_type, input_shape = input_shape, prediction_class_type = prediction_class_type, class_balancing= class_balancing, mini_batch_size=mini_batch_size, validate = validate)
    tl.build(arch, input_shape=input_shape)
    tl.load_weights(input_weights_name)

    cnn_output_shape = tl.model.layers[-1].output_shape[1:-1]

    for impath in list(impaths):
        im = scipy.misc.imread(impath)
        im = im / im.max()
        im = np.expand_dims(im, axis=0)
        obm = tl.model.predict(im)
        filename = utils.get_file_name_part(impath)
        print(im.shape, im.mean(), obm.shape, obm.mean(), filename)
        nclions = int(filename.split('clions')[0])
        np.save(
            os.path.join(settings.OBMS_OUTPUT_DIR, 'train',
                         filename + '_obm_train'), obm)
Beispiel #9
0
    def load_original_images(self, dataset="train"):
        """
        Load the data
        """

        images = []

        if dataset == "train":
            logger.debug('Loading train set original images')

            # Get all train original images
            filenames = sorted(
                glob.glob(
                    os.path.join(settings.TRAIN_ORIGINAL_IMAGES_DIR, "*.jpg")))
            for filename in filenames:
                name = utils.get_file_name_part(filename)

                if name in self.train_original_mismatched:
                    # Skip images marked as mismatched
                    continue

                meta = {
                    'filename':
                    name,
                    'coordinates':
                    self.train_original_coordinates[name]
                    if name in self.train_original_coordinates else [],
                    'counts':
                    self.train_original_counts[name]
                }

                images.append({
                    'x':
                    (lambda filename: lambda: self.load(filename))(filename),
                    'm':
                    meta
                })

        elif dataset == "test_st1":
            logger.debug('Loading stage 1 test set original images')

            # Get all test original images
            filenames = sorted(
                glob.glob(
                    os.path.join(settings.TEST_ORIGINAL_IMAGES_DIR, "*.jpg")))
            for filename in filenames:
                name = utils.get_file_name_part(filename)

                #if name in self.train_original_mismatched:
                #    # Skip images marked as mismatched
                #    continue

                meta = {'filename': name}

                images.append({
                    'x':
                    (lambda filename: lambda: self.load(filename))(filename),
                    'm':
                    meta
                })
        return images
Beispiel #10
0
    def load_full_size_feature_images(self, dataset="train"):
        """
        Load full size density map features.

        The output is:

        [ # A list of dicts for each unique original image, containing all features corresponding to that image
            {
                'features': { # Feature bank; a dictionary that groups feature types together (e.g., all LOGs are grouped)
                    <feature name>: { # A dictionary mapping from specific feature type settings to feature images
                        <feature setting>: <function to load feature image>
                    }
                },
                'meta': {
                    'image_name': <image id>,

                    # train only:
                    'coordinates': [ # A list of sea lion coordinates within the original image
                        {
                            'x': <x coordinate>,
                            'y': <y coordinate>,
                            'category': <sea lion type>
                        }
                    ],
                    'counts': <total categorized count of sea lions in the image>
                }
            }
        ]
        """

        images = {}

        if dataset == "train":
            logger.debug("Loading train set full-size feature images")
            features_dir = settings.TRAIN_FEATURES_DIR
            train = True

        elif dataset == "test_st1":
            logger.debug("Loading test set full-size feature images")
            features_dir = settings.TEST_FEATURES_DIR
            train = False

        # Get all images
        filenames = glob.glob(os.path.join(features_dir, "*.png"))

        for filename in filenames:
            # <image id>_<feature name>-<feature setting>.jpg
            name = utils.get_file_name_part(filename)
            name_parts = name.split('_')

            image_id = name_parts[0]
            feature_parts = name_parts[1].split('-')

            feature_name = feature_parts[0]
            feature_setting = feature_parts[1]

            if image_id in self.train_original_mismatched:
                # Skip images marked as mismatched
                continue

            # Add base image if it does not exist yet
            if image_id not in images:
                if train:
                    meta = {
                        'image_name':
                        image_id,
                        'coordinates':
                        self.train_original_coordinates[name]
                        if name in self.train_original_coordinates else [],
                        'counts':
                        self.train_original_counts[name]
                    }
                else:
                    meta = {'image_name': image_id}

                images[image_id] = {'features': {}, 'meta': meta}

            # Add feature group if it does not exist yet
            if feature_name not in images[image_id]['features']:
                images[image_id]['features'][feature_name] = {}

            # Add feature
            images[image_id]['features'][feature_name][feature_setting] = (
                lambda filename: lambda: self.load(filename))(filename)

        # Turn into list
        images = [img for img in images.values()]
        images = sorted(images, key=lambda img: img['meta']['image_name'])

        return images
Beispiel #11
0
    def load_density_map_feature_crops(self):
        """
        Load density map feature patches.

        The output is:

        [ # A list of dicts for each unique image patch, containing all features corresponding to that patch
            {
                'features': { # Feature bank; a dictionary that groups feature types together (e.g., all LOGs are grouped)
                    <feature name>: { # A dictionary mapping from specific feature type settings to feature images
                        <feature setting>: <function to load feature image>
                    }
                },
                'meta': {
                    'image_name': <image id>,
                    'patch': { # Patch coordinates
                        'x': <left x coordinate>,
                        'y': <top y coordinate>,
                        'width': <width>,
                        'height': <height>
                    },
                    'coordinates': [ # A list of sea lion coordinates within the patch, with coordinates relative to the patch
                        {
                            'x': <x coordinate>,
                            'y': <y coordinate>,
                            'category': <sea lion type>
                        }
                    ]
                }
            }
        ]
        """

        logger.debug('Loading density map features')

        images = {}
        crops_dir = settings.DENSITY_MAP_FEATURE_CROPS_DIR

        # Get all images
        #filenames = sorted(glob.glob(os.path.join(crops_dir,"*.png")))
        filenames = sorted(
            [f for f in os.listdir(crops_dir) if f[-4:] == ".png"])
        n = 0
        for filename in filenames:
            # <image id>_<crop x coordinate>-<crop y coordinate>-<crop width>-<crop height>_<feature name>-<feature setting>.jpg
            name = utils.get_file_name_part(filename)
            name_parts = name.split('_')

            image_id = name_parts[0]
            coordinate_parts = name_parts[1].split('-')
            feature_parts = name_parts[2].split('-')

            bounding_box = {
                'x': 2 * int(coordinate_parts[0]),
                'y': 2 * int(coordinate_parts[1]),
                'width': 2 * int(coordinate_parts[2]),
                'height': 2 * int(coordinate_parts[3])
            }
            feature_name = feature_parts[0]
            feature_setting = feature_parts[1]

            key = str((image_id, bounding_box.values()))

            if image_id in self.train_original_mismatched:
                # Skip images marked as mismatched
                continue

            n += 1

            # Add image patch if it does not exist yet
            if key not in images:
                # Get coordinates of sea lions in the original full-size image
                orig_coordinates = self.train_original_coordinates[image_id] if image_id in self.train_original_coordinates else []

                # Get all sea lion coordinates that are within (or very close to) this patch and transform coordinates to the patch coordinate base
                coordinates = []
                for coord in orig_coordinates:
                    x = int(float(coord['x_coord']))
                    y = int(float(coord['y_coord']))
                    if (bounding_box['x'] - 150 <= x <
                            bounding_box['x'] + bounding_box['width'] + 150
                            and bounding_box['y'] - 150 <= y <
                            bounding_box['y'] + bounding_box['height'] + 150):
                        coordinates.append({
                            'x_coord': x - bounding_box['x'],
                            'y_coord': y - bounding_box['y'],
                            'category': coord['category']
                        })

                images[key] = {
                    'features': {},
                    'meta': {
                        'image_name': image_id,
                        'patch': bounding_box,
                        'coordinates': coordinates
                    }
                }

            # Add feature group if it does not exist yet
            if feature_name not in images[key]['features']:
                images[key]['features'][feature_name] = {}

            # Add feature
            images[key]['features'][feature_name][feature_setting] = (
                lambda filename: lambda: self.load(filename))(os.path.join(
                    crops_dir, filename))

        # Turn into list
        images = [img for img in images.values()]

        logger.debug('Loaded %s features for %s images' % (n, len(images)))

        return images
Beispiel #12
0
    def _load_heatmap_crop_images(self):
        import cropping
        """
        Loads the heatmap crops and generates the object densitiy maps (odm)
        """
        odm_original_size = 400
        odm_target_size = 80
        skip_pups = True
        i = 0
        #Build the type of marks for each type of sealion
        marks = {
            'adult_males': utils.get_gaussian_mark(3.),
            'subadult_males': utils.get_gaussian_mark(3.),
            'juveniles': utils.get_gaussian_mark(2.5),
            'pups': utils.get_gaussian_mark(0.7),
            'adult_females': utils.get_gaussian_mark(2.5)
        }
        images = []
        filepaths = glob.glob(os.path.join(settings.TRAIN_HEATMAP_DIR,
                                           '*.jpg'))
        if 0:
            #for debug
            filepaths = filepaths[:100000]
            settings.logger.warning("Not using all the crops")
        total = len(filepaths)
        logger.info("Generating object density maps of size " +
                    str(odm_target_size) + " for " + str(total) + " crops...")
        logger.warning("Skip_pups set to " + str(skip_pups))
        #Iterate over all the crops
        for filepath in filepaths:
            meta = {}
            meta['filepath'] = filepath
            meta['filename'] = utils.get_file_name_part(meta['filepath'])
            meta['count'] = int(meta['filename'].split('clions')[0])
            meta['coordinates'] = meta['filename'].split('_')[1][2:]
            meta['id'] = meta['filename'].split('in')[1].split('_')[0]
            if meta['count'] == 0 and random.choice([0, 0, 1, 1, 1]):
                #We skip 60% of the negatives
                total -= 1
                continue
            #Initialize the object density map matrix
            odm = np.zeros((odm_original_size, odm_original_size))
            #Fill the odm with marks where the sealions are
            for sealion in self.train_original_coordinates[meta['id']]:
                if sealion['category'] == 'pups' and skip_pups:
                    continue
                sealion['row'] = float(sealion['y_coord'])
                sealion['column'] = float(sealion['x_coord'])
                crop_ix = {
                    'row': float(meta['coordinates'].split('-')[1]),
                    'column': float(meta['coordinates'].split('-')[0])
                }
                if cropping.RegionCropper.is_inside(None, sealion, crop_ix,
                                                    odm_original_size):
                    sealion['column'] = sealion['column'] - crop_ix['column']
                    sealion['row'] = sealion['row'] - crop_ix['row']

                    row = int(sealion['row'])
                    column = int(sealion['column'])
                    mark = marks[sealion['category']]
                    radius = round(mark.shape[0] / 2.)
                    effective_mark = mark[max(0, radius - row):radius +
                                          odm_original_size - row,
                                          max(0, radius - column):radius +
                                          odm_original_size - column]
                    odm[max(0, row - radius):row + radius,
                        max(0, column - radius):column +
                        radius] += effective_mark
            #Resize to match the desired input shape of the network
            odm = scipy.misc.imresize(odm, (odm_target_size, odm_target_size))
            if odm.max() > 0:
                odm = odm / odm.max()
            #Add one dimension for the single channel
            odm = np.expand_dims(odm, axis=2)
            #print(odm.max(), odm.mean(),9999)
            images.append({
                'x': (lambda filepath: lambda: self.load(filepath))(
                    meta['filepath']),
                'm':
                meta,
                'y':
                odm
            })
            if i % 1000 == 0:
                logger.info(str(100 * i / total)[:5] + str("% completed"))
            i += 1
        return images
def generate_obms(impaths):
    data_type = 'original_test'
    #data_type = 'region_crops'
    prediction_class_type = 'odm'
    #prediction_class_type = 'single'
    validate = False
    class_balancing = False
    input_shape = (224, 224, 3)
    batch_size = 1
    crop_size = 400
    arch = 'xception'
    input_weights_name = 'xception-lay106-heatmap_crops-ep011-tloss0.0068-vloss0.0067.hdf5'
    tl = network.TransferLearningSeaLionHeatmap(
        data_type=data_type,
        input_shape=input_shape,
        prediction_class_type=prediction_class_type,
        class_balancing=class_balancing,
        mini_batch_size=batch_size,
        validate=validate)
    #tl = network.TransferLearningSeaLionOrNoSeaLion(data_type = data_type, input_shape = input_shape, prediction_class_type = prediction_class_type, class_balancing= class_balancing, mini_batch_size=mini_batch_size, validate = validate)
    tl.build(arch, input_shape=input_shape)
    tl.load_weights(input_weights_name)

    cnn_output_shape = tl.model.layers[-1].output_shape[1:-1]
    np.random.shuffle(impaths)
    #impaths = []
    #fixes = [1196, 1652, 7664]
    #for i in fixes:
    #    impaths.append('/vol/tensusers/vgarciacazorla/MLP/noaa-sea-lion-count/data/test_st1/original/'+str(i)+'.jpg')
    for impath in impaths:
        meta = {'filename': utils.get_file_name_part(impath)}
        if os.path.isfile(
                os.path.join(
                    os.path.join(settings.OBMS_OUTPUT_DIR,
                                 meta['filename'] + '_obm.npy'))):
            print("skipping")
            continue
        test_image_original = scipy.misc.imread(impath)
        t0 = time.time()
        #test_image_original, meta = iterator.__next__()
        #test_image_original = test_image_original[0]
        #meta = meta[0]
        test_image_original = test_image_original / test_image_original.max()
        aux_height = test_image_original.shape[
            0] - test_image_original.shape[0] % crop_size + int(
                1.5 * crop_size)
        aux_width = test_image_original.shape[
            1] - test_image_original.shape[1] % crop_size + int(
                1.5 * crop_size)
        padded = np.zeros((aux_height, aux_width, 3))
        padded[:test_image_original.shape[0], :test_image_original.
               shape[1], :] = test_image_original
        test_image_1 = padded[:aux_height - int(0.5 * crop_size), :aux_width -
                              int(0.5 * crop_size)]
        test_image_2 = padded[int(0.5 * crop_size):, int(0.5 * crop_size):]
        #print(test_image.mean())
        obms = []
        plot = 0
        nrows = int(test_image_1.shape[0] / crop_size)
        ncolumns = int(test_image_1.shape[1] / crop_size)
        total = float((nrows * ncolumns)) * 2
        for wa in [test_image_original, padded, test_image_1, test_image_2]:
            if plot:
                plt.figure()
                plt.imshow(wa)
                plt.show()
        settings.logger.info(
            "Going for image " + str(meta['filename'])
        )  #+" with shape "+str(test_image_original.shape),", padded ",str(padded.shape))
        count = 0.0
        for test_image in [test_image_1, test_image_2]:
            if plot:
                plt.figure()
                plt.imshow(test_image)
                plt.show()
            full_obm = []
            for row in range(nrows):
                row_obms = []
                for column in range(ncolumns):
                    if count % 15 == 0:
                        settings.logger.info(
                            str(100 * count / total)[:4] + "% completed of " +
                            meta['filename'])

                    crop = utils.crop_image(
                        test_image, (column * crop_size, row * crop_size),
                        crop_size)
                    if utils.get_blacked_out_perc(crop) > 0.85:
                        obm = np.zeros(cnn_output_shape)
                    else:
                        crop = scipy.misc.imresize(crop, input_shape)
                        if crop.max() > 0:
                            crop = crop / crop.max()

                        crop = np.expand_dims(crop, axis=0)
                        obm = tl.model.predict(crop)
                        obm = np.squeeze(obm)
                    row_obms.append(obm)
                    count += 1
                row_obms = np.hstack(row_obms)
                full_obm.append(row_obms)

            full_obm = np.vstack(full_obm)
            #print(full_obm.shape, full_obm.max(),full_obm.mean(),full_obm.min())
            if plot:
                plt.figure()
                plt.imshow(np.squeeze(full_obm), cmap='gray')
                plt.title(str(full_obm.sum()))
                plt.show()
            obms.append(full_obm)
        final_obm_1 = np.zeros(
            (obms[0].shape[0] + int(cnn_output_shape[0] / 2),
             obms[0].shape[1] + int(cnn_output_shape[1] / 2)))
        final_obm_2 = final_obm_1.copy()

        final_obm_1[:obms[0].shape[0], :obms[0].shape[1]] = obms[0]
        final_obm_2[int(cnn_output_shape[0] / 2):,
                    int(cnn_output_shape[0] / 2):] = obms[1]

        final_obm = (final_obm_2 + final_obm_1) / 2

        full_obm = final_obm

        trunc_img = padded  #[:crop_size*nrows,:crop_size*ncolumns]
        trunc_img = scipy.misc.imresize(
            trunc_img, (full_obm.shape[0], full_obm.shape[1], 3))
        trunc_img = trunc_img / trunc_img.max()
        red_obm = np.zeros((full_obm.shape[0], full_obm.shape[1], 3))
        red_obm[:, :, 0] = full_obm
        red_obm = red_obm / red_obm.max()
        obms.append(red_obm)
        img_sum = cv2.addWeighted(src1=trunc_img,
                                  alpha=1,
                                  src2=red_obm,
                                  beta=0.6,
                                  gamma=0.001)
        img_sum = img_sum / img_sum.max()
        scipy.misc.imsave(
            'image_samples/heatmaps/' + meta['filename'] + '_obm.jpg', img_sum)
        if plot:
            plt.figure()
            plt.imshow(img_sum)
            plt.show()

        np.save(
            os.path.join(settings.OBMS_OUTPUT_DIR, meta['filename'] + '_obm'),
            final_obm)
        settings.logger.info(meta['filename'] + " completed in " +
                             str(time.time() - t0) + " seconds")
Beispiel #14
0
model = get_model()
#weights_name = 'obm_regressor-ep001-tloss6.4490-vloss6.3203.hdf5'
weights_name = 'obm_regressor-ep016-tloss13.2885-vloss12.0621.hdf5'
weights_filepath = os.path.join(settings.WEIGHTS_DIR, weights_name)
model.load_weights(weights_filepath)

obm_paths = sorted(glob.glob(os.path.join(settings.OBMS_OUTPUT_DIR, '*')))
threshold = 0.3
window_size = 80
import pandas as pd
import numpy as np

np.random.shuffle(obm_paths)
for obm_path in obm_paths:
    #obm_path = '/vol/tensusers/vgarciacazorla/MLP/noaa-sea-lion-count/output/obms/16435_obm.h5.npy'
    fname = utils.get_file_name_part(obm_path)
    if os.path.isfile('image_samples/coords_images/' + fname.split('_')[0] +
                      '_test.jpg'):
        continue
    else:
        pass  #print("MISSING ",fname)
    if os.path.isfile(
            os.path.join(settings.CNN_COORDINATES_DIR,
                         fname.split('_')[0] + '_coords.csv')):
        #print("Skippppp",fname)
        pass
    print(1)
    test_image = scipy.misc.imread(
        os.path.join(settings.TRAIN_DIR, 'original',
                     fname.split('_')[0] + '.jpg'))
    print(2)