def extract_features_img(img, colorspaces, spatial_size, bin_channel,
                        hist_bins, hist_range, hist_channel,
                        orient, pix_per_cell, cell_per_block, hog_channel,
                        spatial_feat, hist_feat, hog_feat):    
    #1) Define an empty list to receive features
    img_features = []
    if spatial_feat == True or hist_feat == True:
        #2) Apply color conversion if other than 'RGB'
        feature_image = get_feature_image(img, colorspaces[0])
        #3) Compute spatial features if flag is set
        if spatial_feat == True:
            spatial_features = bin_spatial(feature_image, size=spatial_size, bin_channel=bin_channel)
            #4) Append features to list
            img_features.append(spatial_features)
        #5) Compute histogram features if flag is set
        if hist_feat == True:
            hist_features = color_hist(feature_image, nbins=hist_bins, bins_range=hist_range, hist_channel=hist_channel)
            #6) Append features to list
            img_features.append(hist_features)
    #7) Compute HOG features if flag is set
    if hog_feat == True:
        feature_image = get_feature_image(img, colorspaces[1])
        hog_features = []
        if hog_channel == 'ALL':
            for i in range(feature_image.shape[2]):
                hog_features.append(get_hog_features(feature_image[:,:,i], orient, pix_per_cell, cell_per_block, feature_vec=True))
            hog_features = np.ravel(hog_features)
        else:
            hog_features = get_hog_features(feature_image[:,:,hog_channel], orient, pix_per_cell, cell_per_block, feature_vec=True)
        #8) Append features to list
        img_features.append(hog_features)

    #9) Return concatenated array of features
    #return img_features
    return np.concatenate(img_features)
Beispiel #2
0
def find_cars(img, ystart, ystop, scale, clf, X_scaler, cspace, spatial_size, hist_bins,
              orient, pix_per_cell, cell_per_block, hog_channel):
    '''Detect vehicles and return containing boxes'''
    img = img.astype(np.float32)/255
    img_tosearch = img[ystart:ystop, :, :]
    ctrans_tosearch = convert_color(img_tosearch, cspace=cspace)
    if scale != 1:
        imshape = ctrans_tosearch.shape
        ctrans_tosearch = cv2.resize(ctrans_tosearch, (np.int(imshape[1]/scale), np.int(imshape[0]/scale)))
    ch1 = ctrans_tosearch[:, :, 0]
    ch2 = ctrans_tosearch[:, :, 1]
    ch3 = ctrans_tosearch[:, :, 2]
    # Define blocks and steps as above
    nxblocks = (ch1.shape[1] // pix_per_cell) - cell_per_block + 1
    nyblocks = (ch1.shape[0] // pix_per_cell) - cell_per_block + 1
    # 64 was the orginal sampling rate, with 8 cells and 8 pix per cell
    window = 64
    nblocks_per_window = (window // pix_per_cell) - cell_per_block + 1
    cells_per_step = 2  # Instead of overlap, define how many cells to step
    nxsteps = (nxblocks - nblocks_per_window) // cells_per_step + 1
    nysteps = (nyblocks - nblocks_per_window) // cells_per_step + 1
    # Compute individual channel HOG features for the entire image
    if hog_channel == 'ALL':
        hog1 = get_hog_features(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False)
        hog2 = get_hog_features(ch2, orient, pix_per_cell, cell_per_block, feature_vec=False)
        hog3 = get_hog_features(ch3, orient, pix_per_cell, cell_per_block, feature_vec=False)
    else:
        channels = [ch1, ch2, ch3]
        hog = get_hog_features(channels[hog_channel], orient, pix_per_cell, cell_per_block, feature_vec=False)
    boxes = []
    for xb in range(nxsteps):
        for yb in range(nysteps):
            ypos = yb*cells_per_step
            xpos = xb*cells_per_step
            # Extract HOG for this patch
            if hog_channel == 'ALL':
                hog_feat1 = hog1[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
                hog_feat2 = hog2[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
                hog_feat3 = hog3[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
                hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3))
            else:
                hog_features = hog[ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()
            xleft = xpos*pix_per_cell
            ytop = ypos*pix_per_cell
            # Extract the image patch
            subimg = cv2.resize(ctrans_tosearch[ytop:ytop+window, xleft:xleft+window], (64, 64))
            # Get color features
            spatial_features = bin_spatial(subimg, size=spatial_size)
            hist_features = color_hist(subimg, nbins=hist_bins)
            # Scale features and make a prediction
            test_features = X_scaler.transform(np.hstack((spatial_features, hist_features, hog_features)).reshape(1, -1))
            test_prediction = clf.predict(test_features)
            if test_prediction == 1:
                xbox_left = np.int(xleft*scale)
                ytop_draw = np.int(ytop*scale)
                win_draw = np.int(window*scale)
                boxes.append(((xbox_left, ytop_draw+ystart), (xbox_left+win_draw, ytop_draw+win_draw+ystart)))
    return boxes
Beispiel #3
0
def extract_features_from_files(img_files, **kwargs):
    """
    extract features from a list of images
    :param img_files:
    :param kwargs:
    :return:
    """

    color_conversion = kwargs.get("color_conversion", 'RGB2YCrCb')
    orient = kwargs.get("orient", 9)
    pix_per_cell = kwargs.get("pix_per_cell", 8)
    cell_per_block = kwargs.get("cell_per_block", 2)
    hog_channel = kwargs.get("hog_channel", 0)
    spatial_size = kwargs.get("spatial_size", (32, 32))
    hist_bins = kwargs.get("hist_bins", 32)

    # Create a list to append feature vectors to
    features = []
    # Iterate through the list of images
    for file in img_files:
        image = mpimg.imread(file)
        # apply color conversion if other than 'RGB'
        feature_image = convert_color(image, conv=color_conversion)

        # Call get_hog_features() with vis=False, feature_vec=True
        if hog_channel == 'ALL':
            hog_features = []
            for channel in range(feature_image.shape[2]):
                hog_features.append(
                    get_hog_features(feature_image[:, :, channel],
                                     orient,
                                     pix_per_cell,
                                     cell_per_block,
                                     visualize=False,
                                     feature_vec=True))
            hog_features = np.ravel(hog_features)
        else:
            hog_features = get_hog_features(feature_image[:, :, hog_channel],
                                            orient,
                                            pix_per_cell,
                                            cell_per_block,
                                            visualize=False,
                                            feature_vec=True)

        # Extract the image patch
        sub_img = cv2.resize(feature_image, (64, 64))

        # Get color features
        spatial_features = bin_spatial(sub_img, size=spatial_size)
        hist_features = color_hist(sub_img, nbins=hist_bins)
        image_features = np.hstack(
            (hog_features, spatial_features, hist_features))

        # Append the new feature vector to the features list
        features.append(image_features)
    return features
Beispiel #4
0
    def extract_image_features(self, img):
        """
        Extract features from single image
        """
        features = []
        cvt_img = convert_color(img, self.P.color_space)

        spatial_features = get_spatial_features(cvt_img, size=self.P.spatial_size)
        features.append(spatial_features)

        color_features = get_color_features(cvt_img, size=self.P.window_size,
                                            nbins=self.P.color_nbins)
        features.append(color_features)

        if self.P.window_size != (cvt_img.shape[0], cvt_img.shape[1]):
            cvt_img = cv2.resize(cvt_img, self.P.window_size)
        hog_features = get_hog_features(cvt_img, orient=self.P.orient,
                                        pix_per_cell=self.P.pix_per_cell,
                                        cell_per_block=self.P.cell_per_block)
        features.append(hog_features)
        return np.concatenate(features)
Beispiel #5
0
def pipeline(img):
    img_draw_search = img.copy()
    img_draw_cars = img.copy()
    img_processed = process_image(img)
    img_search = img_processed[p_search.ystart:p_search.ystop, :, :]
    shape = img_search.shape
    img_search = cv2.resize(
        img_search,
        (np.int(shape[1] / p_search.scale), np.int(shape[0] / p_search.scale)))
    hog_features = get_hog_features(img_search, p_features)[0]
    heatmap = slide_and_search(img_search, img_draw_search, hog_features,
                               classifier, p_search, p_features)

    heatmaps.update(heatmap)
    heatmap_sum = heatmaps.get_sum()
    heatmap_thresh = heatmap_sum.copy()
    apply_threshold(heatmap_thresh, 25)
    boxes = scipy_label(heatmap_thresh)

    draw_car_boxes(img_draw_cars, boxes)

    return img_draw_search, img_draw_cars, heatmap_sum
def find_cars(img, ystart, ystop, scale, svc, X_scaler, colorspaces,
              spatial_size, bin_channel, hist_bins, hist_range, hist_channel,
              orient, pix_per_cell, cell_per_block, hog_channel, spatial_feat,
              hist_feat, hog_feat):

    window_list = []
    img = img.astype(np.float32) / 255  # It´s a JPG

    img_tosearch = img[ystart:ystop, :, :]
    color_feature_img = get_feature_image(img_tosearch, colorspaces[0])
    hog_feature_img = get_feature_image(img_tosearch, colorspaces[1])
    if scale != 1:
        imshape = color_feature_img.shape
        color_feature_img = cv2.resize(
            color_feature_img,
            (np.int(imshape[1] / scale), np.int(imshape[0] / scale)))
        hog_feature_img = cv2.resize(
            hog_feature_img,
            (np.int(imshape[1] / scale), np.int(imshape[0] / scale)))

    # Define blocks and steps as above
    nxblocks = (color_feature_img.shape[1] //
                pix_per_cell) - cell_per_block + 1
    nyblocks = (color_feature_img.shape[0] //
                pix_per_cell) - cell_per_block + 1
    nfeat_per_block = orient * cell_per_block**2

    # 64 was the original sampling rate, with 8 cells and 8 pix per cell
    window = 64
    nblocks_per_window = (window // pix_per_cell) - cell_per_block + 1
    cells_per_step = 2  # Instead of overlap, define how many cells to step
    nxsteps = (nxblocks - nblocks_per_window) // cells_per_step + 1
    nysteps = (nyblocks - nblocks_per_window) // cells_per_step + 1

    # Compute individual channel HOG features for the entire image
    if hog_feat == True:
        if hog_channel == 'ALL':
            hog1 = get_hog_features(hog_feature_img[:, :, 0],
                                    orient,
                                    pix_per_cell,
                                    cell_per_block,
                                    feature_vec=False)
            hog2 = get_hog_features(hog_feature_img[:, :, 1],
                                    orient,
                                    pix_per_cell,
                                    cell_per_block,
                                    feature_vec=False)
            hog3 = get_hog_features(hog_feature_img[:, :, 2],
                                    orient,
                                    pix_per_cell,
                                    cell_per_block,
                                    feature_vec=False)
        else:
            hog1 = get_hog_features(hog_feature_img[:, :, hog_channel],
                                    orient,
                                    pix_per_cell,
                                    cell_per_block,
                                    feature_vec=False)

    for xb in range(nxsteps):
        for yb in range(nysteps):
            ypos = yb * cells_per_step
            xpos = xb * cells_per_step

            features = []
            # Extract HOG for this patch
            if hog_feat == True:
                if hog_channel == 'ALL':
                    hog_feat1 = hog1[ypos:ypos + nblocks_per_window,
                                     xpos:xpos + nblocks_per_window].ravel()
                    hog_feat2 = hog2[ypos:ypos + nblocks_per_window,
                                     xpos:xpos + nblocks_per_window].ravel()
                    hog_feat3 = hog3[ypos:ypos + nblocks_per_window,
                                     xpos:xpos + nblocks_per_window].ravel()
                    features.append(
                        np.hstack((hog_feat1, hog_feat2, hog_feat3)))
                else:
                    hog_feat1 = hog1[ypos:ypos + nblocks_per_window,
                                     xpos:xpos + nblocks_per_window].ravel()
                    features.append(np.hstack((hog_feat1)))

            xleft = xpos * pix_per_cell
            ytop = ypos * pix_per_cell

            # Extract the image patch
            subimg = cv2.resize(
                color_feature_img[ytop:ytop + window, xleft:xleft + window],
                (window, window))

            # Get color features
            if spatial_feat == True:
                features.append(
                    bin_spatial(subimg,
                                size=spatial_size,
                                bin_channel=bin_channel))
            if hist_feat == True:
                features.append(
                    color_hist(subimg,
                               nbins=hist_bins,
                               bins_range=hist_range,
                               hist_channel=hist_channel))

            # Scale features and make a prediction
            test_features = X_scaler.transform(
                np.hstack(features).reshape(1, -1))
            test_prediction = svc.predict(test_features)

            if test_prediction == 1:
                xbox_left = np.int(xleft * scale)
                ytop_draw = np.int(ytop * scale)
                win_draw = np.int(window * scale)
                # Append window position to list
                window_list.append(
                    ((xbox_left, ytop_draw + ystart),
                     (xbox_left + win_draw, ytop_draw + win_draw + ystart)))

    return window_list
Beispiel #7
0
if mode == 'predict' and os.path.exists(utils.train_imgs_file) and os.path.exists(utils.train_labels_file) \
        and os.path.exists(utils.test_imgs_file) and os.path.exists(utils.test_labels_file) \
        and os.path.exists(hog_train_imgs_file) and os.path.exists(hog_test_imgs_file):
    print('Predict BEGIN')
    _, Y_train, _, _ = utils.load_data()
    X_train = np.load(hog_train_imgs_file)
    X_test = np.load(hog_test_imgs_file)
elif mode == 'train' or not os.path.exists(utils.train_imgs_file) or not os.path.exists(utils.train_labels_file) \
        or not os.path.exists(utils.test_imgs_file) or not os.path.exists(utils.test_labels_file)\
        or not os.path.exists(hog_train_imgs_file) or not os.path.exists(hog_test_imgs_file):
    print('Train BEGIN')
    utils.repartition_data(father_path=os.path.abspath(
        os.path.join(os.getcwd(), "..")),
                           test_rate=0)
    imgs_train, Y_train, _, _ = utils.load_data()
    X_train = utils.get_hog_features(imgs_train)
    # X_val = utils.get_hog_features(imgs_val)
    imgs_test = utils.get_imgs([test_imgs_path],
                               max_pool=True,
                               homomorphic=False,
                               file_type_list=['.bmp', '.png'],
                               equalize=False,
                               morphology=False)
    X_test = utils.get_hog_features(imgs_test)  # 获得HOG特征向量
    np.save(hog_train_imgs_file, X_train)
    np.save(hog_test_imgs_file, X_test)
else:
    raise Exception('Mode not defined')

if not os.path.exists('Q1/linear_svc.model') or mode == 'repartition':
    linear_svc = svm.LinearSVC(loss='hinge', max_iter=1000)
Beispiel #8
0
def search_windows_v2(img,
                      windows,
                      clf,
                      scaler,
                      color_space='RGB',
                      spatial_size=(32, 32),
                      hist_bins=32,
                      hist_range=(0, 256),
                      orient=9,
                      pix_per_cell=8,
                      cell_per_block=2,
                      hog_channel=0,
                      spatial_feat=True,
                      hist_feat=True,
                      hog_feat=True,
                      y_start_stop=[None, None],
                      scale=0):
    draw_img = np.copy(img)
    img = img.astype(np.float32) / 255
    img_tosearch = img[y_start_stop[0]:y_start_stop[1], :, :]
    ctrans_tosearch = utils.convert_color(img_tosearch, conv='RGB2YCrCb')
    if scale != 1:
        imshape = ctrans_tosearch.shape
        ctrans_tosearch = cv2.resize(
            ctrans_tosearch,
            (np.int(imshape[1] / scale), np.int(imshape[0] / scale)))

    ch1 = ctrans_tosearch[:, :, 0]
    ch2 = ctrans_tosearch[:, :, 1]
    ch3 = ctrans_tosearch[:, :, 2]
    # Define blocks and steps as above
    nxblocks = (ch1.shape[1] // pix_per_cell) - cell_per_block + 1
    nyblocks = (ch1.shape[0] // pix_per_cell) - cell_per_block + 1
    nfeat_per_block = orient * cell_per_block**2

    # 64 was the orginal sampling rate, with 8 cells and 8 pix per cell
    window = 64
    nblocks_per_window = (window // pix_per_cell) - cell_per_block + 1
    cells_per_step = 2  # Instead of overlap, define how many cells to step
    nxsteps = (nxblocks - nblocks_per_window) // cells_per_step
    nysteps = (nyblocks - nblocks_per_window) // cells_per_step

    # Compute individual channel HOG features for the entire image
    hog1 = utils.get_hog_features(ch1,
                                  orient,
                                  pix_per_cell,
                                  cell_per_block,
                                  feature_vec=False)
    hog2 = utils.get_hog_features(ch2,
                                  orient,
                                  pix_per_cell,
                                  cell_per_block,
                                  feature_vec=False)
    hog3 = utils.get_hog_features(ch3,
                                  orient,
                                  pix_per_cell,
                                  cell_per_block,
                                  feature_vec=False)

    for xb in range(nxsteps):
        for yb in range(nysteps):
            ypos = yb * cells_per_step
            xpos = xb * cells_per_step
            # Extract HOG for this patch
            hog_feat1 = hog1[ypos:ypos + nblocks_per_window,
                             xpos:xpos + nblocks_per_window].ravel()
            hog_feat2 = hog2[ypos:ypos + nblocks_per_window,
                             xpos:xpos + nblocks_per_window].ravel()
            hog_feat3 = hog3[ypos:ypos + nblocks_per_window,
                             xpos:xpos + nblocks_per_window].ravel()
            hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3))

            xleft = xpos * pix_per_cell
            ytop = ypos * pix_per_cell

            # Extract the image patch
            subimg = cv2.resize(
                ctrans_tosearch[ytop:ytop + window, xleft:xleft + window],
                (64, 64))
            # Get color features
            features = utils.single_img_features(subimg,
                                                 color_space=color_space,
                                                 spatial_size=spatial_size,
                                                 hist_bins=hist_bins,
                                                 orient=orient,
                                                 pix_per_cell=pix_per_cell,
                                                 cell_per_block=cell_per_block,
                                                 hog_channel=hog_channel,
                                                 spatial_feat=spatial_feat,
                                                 hist_feat=hist_feat,
                                                 hog_feat=hog_feat)

            X = scaler.transform(np.array(features).reshape(1, -1))
            # 6) Predict using your classifier
            prediction = clf.predict(X)
            # Scale features and make a prediction
            # test_features = X_scaler.transform(X)
            # test_features = X_scaler.transform(np.hstack((shape_feat, hist_feat)).reshape(1, -1))
            # test_prediction = clf.predict(X)

            if prediction == 1:
                xbox_left = np.int(xleft * scale)
                ytop_draw = np.int(ytop * scale)
                win_draw = np.int(window * scale)
                cv2.rectangle(draw_img,
                              (xbox_left, ytop_draw + y_start_stop[0]),
                              (xbox_left + win_draw,
                               ytop_draw + win_draw + y_start_stop[0]),
                              (0, 0, 255), 6)

    return draw_img
Beispiel #9
0
def find_cars(img, ystart, ystop, scale, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins):
    draw_img = np.copy(img)
    img = img.astype(np.float32) / 255

    img_tosearch = img[ystart:ystop, :, :]
    ctrans_tosearch = utils.convert_color(img_tosearch, conv='RGB2YCrCb')
    if scale != 1:
        imshape = ctrans_tosearch.shape
        ctrans_tosearch = cv2.resize(ctrans_tosearch, (np.int(imshape[1] / scale), np.int(imshape[0] / scale)))

    ch1 = ctrans_tosearch[:, :, 0]
    ch2 = ctrans_tosearch[:, :, 1]
    ch3 = ctrans_tosearch[:, :, 2]

    # Define blocks and steps as above
    nxblocks = (ch1.shape[1] // pix_per_cell) - cell_per_block + 1
    nyblocks = (ch1.shape[0] // pix_per_cell) - cell_per_block + 1
    nfeat_per_block = orient * cell_per_block ** 2

    # 64 was the orginal sampling rate, with 8 cells and 8 pix per cell
    window = 64
    nblocks_per_window = (window // pix_per_cell) - cell_per_block + 1
    cells_per_step = 2  # Instead of overlap, define how many cells to step
    nxsteps = (nxblocks - nblocks_per_window) // cells_per_step
    nysteps = (nyblocks - nblocks_per_window) // cells_per_step

    # Compute individual channel HOG features for the entire image
    hog1 = utils.get_hog_features(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False)
    hog2 = utils.get_hog_features(ch2, orient, pix_per_cell, cell_per_block, feature_vec=False)
    hog3 = utils.get_hog_features(ch3, orient, pix_per_cell, cell_per_block, feature_vec=False)

    for xb in range(nxsteps):
        for yb in range(nysteps):
            ypos = yb * cells_per_step
            xpos = xb * cells_per_step
            # Extract HOG for this patch
            hog_feat1 = hog1[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel()
            hog_feat2 = hog2[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel()
            hog_feat3 = hog3[ypos:ypos + nblocks_per_window, xpos:xpos + nblocks_per_window].ravel()
            hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3))

            xleft = xpos * pix_per_cell
            ytop = ypos * pix_per_cell

            # Extract the image patch
            subimg = cv2.resize(ctrans_tosearch[ytop:ytop + window, xleft:xleft + window], (64, 64))

            # Get color features
            spatial_features = utils.bin_spatial(subimg, size=spatial_size)
            hist_features = utils.color_hist(subimg, nbins=hist_bins)
            print(hist_features.shape)
            print(spatial_features.shape)
            print(hog_features.shape)
            X  = np.hstack((spatial_features, hist_features, hog_features)).reshape(-1, 1)
            print(X.shape)
            # Scale features and make a prediction
            # test_features = X_scaler.transform(X)
            # test_features = X_scaler.transform(np.hstack((shape_feat, hist_feat)).reshape(1, -1))
            test_prediction = svc.predict(X)

            if test_prediction == 1:
                xbox_left = np.int(xleft * scale)
                ytop_draw = np.int(ytop * scale)
                win_draw = np.int(window * scale)
                cv2.rectangle(draw_img, (xbox_left, ytop_draw + ystart),
                              (xbox_left + win_draw, ytop_draw + win_draw + ystart), (0, 0, 255), 6)

    return draw_img
Beispiel #10
0
def find_cars(img,
              ystart,
              ystop,
              scale,
              cspace,
              hog_channel,
              svc,
              X_scaler,
              orient,
              pix_per_cell,
              cell_per_block,
              spatial_size,
              hist_bins,
              show_all_rectangles=False):
    # array of rectangles where cars were detected
    windows = []

    img = img.astype(np.float32) / 255

    img_tosearch = img[ystart:ystop, :, :]

    # apply color conversion if other than 'RGB'
    if cspace != 'RGB':
        if cspace == 'HSV':
            ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2HSV)
        elif cspace == 'LUV':
            ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2LUV)
        elif cspace == 'HLS':
            ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2HLS)
        elif cspace == 'YUV':
            ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2YUV)
        elif cspace == 'YCrCb':
            ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2YCrCb)
    else:
        ctrans_tosearch = np.copy(img)

    # rescale image if other than 1.0 scale
    if scale != 1:
        imshape = ctrans_tosearch.shape
        ctrans_tosearch = cv2.resize(
            ctrans_tosearch,
            (np.int(imshape[1] / scale), np.int(imshape[0] / scale)))

    # select colorspace channel for HOG
    if hog_channel == 'ALL':
        ch1 = ctrans_tosearch[:, :, 0]
        ch2 = ctrans_tosearch[:, :, 1]
        ch3 = ctrans_tosearch[:, :, 2]
    else:
        ch1 = ctrans_tosearch[:, :, hog_channel]

    # Define blocks and steps as above
    nxblocks = (ch1.shape[1] // pix_per_cell) + 1  # -1
    nyblocks = (ch1.shape[0] // pix_per_cell) + 1  # -1
    nfeat_per_block = orient * cell_per_block**2
    # 64 was the orginal sampling rate, with 8 cells and 8 pix per cell
    window = 64
    nblocks_per_window = (window // pix_per_cell) - 1
    cells_per_step = 2  # Instead of overlap, define how many cells to step
    nxsteps = (nxblocks - nblocks_per_window) // cells_per_step
    nysteps = (nyblocks - nblocks_per_window) // cells_per_step

    # Compute individual channel HOG features for the entire image
    hog1 = utils.get_hog_features(ch1,
                                  orient,
                                  pix_per_cell,
                                  cell_per_block,
                                  feature_vec=False)
    if hog_channel == 'ALL':
        hog2 = utils.get_hog_features(ch2,
                                      orient,
                                      pix_per_cell,
                                      cell_per_block,
                                      feature_vec=False)
        hog3 = utils.get_hog_features(ch3,
                                      orient,
                                      pix_per_cell,
                                      cell_per_block,
                                      feature_vec=False)

    for xb in range(nxsteps):
        for yb in range(nysteps):
            ypos = yb * cells_per_step
            xpos = xb * cells_per_step
            # Extract HOG for this patch
            hog_feat1 = hog1[ypos:ypos + nblocks_per_window,
                             xpos:xpos + nblocks_per_window].ravel()
            if hog_channel == 'ALL':
                hog_feat2 = hog2[ypos:ypos + nblocks_per_window,
                                 xpos:xpos + nblocks_per_window].ravel()
                hog_feat3 = hog3[ypos:ypos + nblocks_per_window,
                                 xpos:xpos + nblocks_per_window].ravel()
                hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3))
            else:
                hog_features = hog_feat1

            xleft = xpos * pix_per_cell
            ytop = ypos * pix_per_cell

            test_prediction = svc.predict(hog_features.reshape(1, -1))

            if test_prediction == 1 or show_all_rectangles:
                xbox_left = np.int(xleft * scale)
                ytop_draw = np.int(ytop * scale)
                win_draw = np.int(window * scale)
                windows.append(
                    ((xbox_left, ytop_draw + ystart),
                     (xbox_left + win_draw, ytop_draw + win_draw + ystart)))

    return windows
Beispiel #11
0
              [400, 528, 2.0],
              [432, 560, 2.0],
              [400, 596, 3.5],
              [464, 660, 3.5]]

for i, img in enumerate([car_example, notcar_example]):
    plt.imsave(r"./output_images/" + str(i) + "_1_spatial.jpg",
               cv2.resize(cv2.resize(img, spatial_size), (128, 128)))
    img2 = convert_color(img, cspace=cspace)
    ch1 = img2[:, :, 0]
    ch2 = img2[:, :, 1]
    ch3 = img2[:, :, 2]
    plt.imsave(r"./output_images/" + str(i) + "_2_ch1.jpg", ch1, cmap='gray')
    plt.imsave(r"./output_images/" + str(i) + "_2_ch2.jpg", ch2, cmap='gray')
    plt.imsave(r"./output_images/" + str(i) + "_2_ch3.jpg", ch3, cmap='gray')
    hog_feats, hog_im = get_hog_features(img, orient, pix_per_cell, cell_per_block,
                     vis=True, feature_vec=True)
    plt.imsave(r"./output_images/" + str(i) + "_3_hog.jpg", hog_im, cmap='gray')


for fname in images:
    print('processing ', fname, '...')
    img = mpimg.imread(fname)
    boxes = find_cars_multiscale(img, multiscale, clf, X_scaler, cspace, spatial_size,
                                 hist_bins, orient, pix_per_cell, cell_per_block, hog_channel)
    out_img = draw_boxes(img, boxes)
    plt.imsave(r"./output_images/" + fname.split('\\')[-1].split('.')[0] + "_5_bbox.jpg", out_img)
    heat = np.zeros_like(img[:, :, 0]).astype(np.float)
    # Add heat to each box in box list
    heat = add_heat(heat, boxes)
    # Apply threshold to help remove false positives
    heat = apply_threshold(heat, 2)
# Visualise the HOG, spatial and colour features
# For a car and non-car image
car_img = read_img(random.choice(training_filenames['vehicles']), 'cv2')
noncar_img = read_img(random.choice(training_filenames['non-vehicles']), 'cv2')

car_img_cvt = cv2.cvtColor(car_img, CONVERT_RGB_TO[config['color_space']])
noncar_img_cvt = cv2.cvtColor(noncar_img,
                              CONVERT_RGB_TO[config['color_space']])

car_hog_img = []
noncar_hog_img = []
for c in range(car_img.shape[2]):
    _, hog_img = get_hog_features(car_img_cvt[:, :, c],
                                  config['orient'],
                                  config['pix_per_cell'],
                                  config['cell_per_block'],
                                  vis=True,
                                  feature_vec=True)
    car_hog_img.append(hog_img)
    _, hog_img = get_hog_features(noncar_img_cvt[:, :, c],
                                  config['orient'],
                                  config['pix_per_cell'],
                                  config['cell_per_block'],
                                  vis=True,
                                  feature_vec=True)
    noncar_hog_img.append(hog_img)

car_hog_img = np.moveaxis(np.asarray(car_hog_img), 0, -1)
car_hog_img = np.sum(car_hog_img, axis=2)
noncar_hog_img = np.moveaxis(np.asarray(noncar_hog_img), 0, -1)
noncar_hog_img = np.sum(noncar_hog_img, axis=2)
def find_cars(img,
              ystart,
              ystop,
              scale,
              cspace,
              hog_channel,
              svc,
              X_scaler,
              orient,
              pix_per_cell,
              cell_per_block,
              spatial_size,
              hist_bins,
              show_all_rectangles=False):
    windows = []

    img = img.astype(np.float32) / 255

    img_tosearch = img[ystart:ystop, :, :]

    if cspace != 'RGB':
        if cspace == 'HSV':
            ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2HSV)
        elif cspace == 'LUV':
            ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2LUV)
        elif cspace == 'HLS':
            ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2HLS)
        elif cspace == 'YUV':
            ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2YUV)
        elif cspace == 'YCrCb':
            ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2YCrCb)
    else:
        ctrans_tosearch = np.copy(img)

    if scale != 1:
        imshape = ctrans_tosearch.shape
        ctrans_tosearch = cv2.resize(
            ctrans_tosearch,
            (np.int(imshape[1] / scale), np.int(imshape[0] / scale)))

    if hog_channel == 'ALL':
        ch1 = ctrans_tosearch[:, :, 0]
        ch2 = ctrans_tosearch[:, :, 1]
        ch3 = ctrans_tosearch[:, :, 2]
    else:
        ch1 = ctrans_tosearch[:, :, hog_channel]

    nxblocks = (ch1.shape[1] // pix_per_cell) + 1  # -1
    nyblocks = (ch1.shape[0] // pix_per_cell) + 1  # -1
    nfeat_per_block = orient * cell_per_block**2
    window = 64
    nblocks_per_window = (window // pix_per_cell) - 1
    nxsteps = (nxblocks - nblocks_per_window) // cells_per_step
    nysteps = (nyblocks - nblocks_per_window) // cells_per_step

    hog1 = utils.get_hog_features(ch1,
                                  orient,
                                  pix_per_cell,
                                  cell_per_block,
                                  feature_vec=False)
    if hog_channel == 'ALL':
        hog2 = utils.get_hog_features(ch2,
                                      orient,
                                      pix_per_cell,
                                      cell_per_block,
                                      feature_vec=False)
        hog3 = utils.get_hog_features(ch3,
                                      orient,
                                      pix_per_cell,
                                      cell_per_block,
                                      feature_vec=False)

    for xb in range(nxsteps):
        for yb in range(nysteps):
            ypos = yb * cells_per_step
            xpos = xb * cells_per_step

            hog_feat1 = hog1[ypos:ypos + nblocks_per_window,
                             xpos:xpos + nblocks_per_window].ravel()
            if hog_channel == 'ALL':
                hog_feat2 = hog2[ypos:ypos + nblocks_per_window,
                                 xpos:xpos + nblocks_per_window].ravel()
                hog_feat3 = hog3[ypos:ypos + nblocks_per_window,
                                 xpos:xpos + nblocks_per_window].ravel()
                hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3))
            else:
                hog_features = hog_feat1

            xleft = xpos * pix_per_cell
            ytop = ypos * pix_per_cell

            test_prediction = svc.predict(hog_features.reshape(1, -1))

            if test_prediction == 1 or show_all_rectangles:
                xbox_left = np.int(xleft * scale)
                ytop_draw = np.int(ytop * scale)
                win_draw = np.int(window * scale)
                windows.append(
                    ((xbox_left, ytop_draw + ystart),
                     (xbox_left + win_draw, ytop_draw + win_draw + ystart)))

    return windows
Beispiel #14
0
def find_cars(img,
              draw_img=None,
              heatmap=None,
              color=(255, 0, 0),
              scale=1,
              svc=defaults.svc(),
              scaler=defaults.scaler()):
    img = utils.rgbTo(img, defaults.colorspace())

    # Select only the part of the image that we want to search at this scale
    height = img.shape[0]
    ystart = height // 2
    ystop = utils.ystop(height, scale)
    img = img[ystart:ystop, :, :]

    # Scale the image
    if scale != 1:
        img = cv2.resize(
            img, (np.int(img.shape[1] / scale), np.int(img.shape[0] / scale)))

    # Define dimensions that are used in calculating the size of the hog features.
    window = 64
    pix_per_cell = defaults.pix_per_cell()
    cell_per_block = defaults.cell_per_block()
    nxblocks = (img.shape[1] // pix_per_cell) - cell_per_block + 1
    nyblocks = (img.shape[0] // pix_per_cell) - cell_per_block + 1
    nblocks_per_window = (window // pix_per_cell) - cell_per_block + 1
    cells_per_step = 1
    nxsteps = (nxblocks - nblocks_per_window) // cells_per_step
    nysteps = (nyblocks - nblocks_per_window) // cells_per_step

    # Compute individual channel HOG features for the entire image
    orient = defaults.orient()
    block_norm = defaults.block_norm()
    hog1 = utils.get_hog_features(img[:, :, 0], orient, pix_per_cell,
                                  cell_per_block, block_norm, False, False)
    hog2 = utils.get_hog_features(img[:, :, 1], orient, pix_per_cell,
                                  cell_per_block, block_norm, False, False)
    hog3 = utils.get_hog_features(img[:, :, 2], orient, pix_per_cell,
                                  cell_per_block, block_norm, False, False)
    for xb in range(nxsteps):
        for yb in range(nysteps):

            ypos = yb * cells_per_step
            xpos = xb * cells_per_step
            if ypos + nblocks_per_window >= hog1.shape[
                    0] or xpos + nblocks_per_window >= hog1.shape[1]:
                continue

            # Extract HOG for this patch
            hog_feat1 = hog1[ypos:ypos + nblocks_per_window,
                             xpos:xpos + nblocks_per_window].ravel()
            hog_feat2 = hog2[ypos:ypos + nblocks_per_window,
                             xpos:xpos + nblocks_per_window].ravel()
            hog_feat3 = hog3[ypos:ypos + nblocks_per_window,
                             xpos:xpos + nblocks_per_window].ravel()
            hog_features = np.hstack(
                (hog_feat1, hog_feat2, hog_feat3)).reshape(1, -1)

            xleft = xpos * pix_per_cell
            ytop = ypos * pix_per_cell

            # Scale features and make a prediction
            try:
                test_features = scaler.transform(hog_features)
                test_prediction = svc.predict(test_features)

                if test_prediction == 1:
                    xbox_left = np.int(xleft * scale)
                    ytop_draw = np.int(ytop * scale)
                    win_draw = np.int(window * scale)
                    y = ytop_draw + ystart
                    x = xbox_left
                    if heatmap is not None:
                        heatmap[y:y + win_draw, x:x + win_draw] += 1
                    if draw_img is not None:
                        cv2.rectangle(draw_img,
                                      (xbox_left, ytop_draw + ystart),
                                      (xbox_left + win_draw,
                                       ytop_draw + win_draw + ystart), color,
                                      6)
            except Exception as e:
                print(e)