Beispiel #1
0
def train():
    train_gpu_id = DC.train_gpu_id
    device = t.device('cuda', train_gpu_id) if DC.use_gpu else t.device('cpu')

    transforms = T.Compose([
      T.Resize(DC.input_size),
      T.CenterCrop(DC.input_size),
      T.ToTensor(),
      T.Lambda(lambda x: x*255)
    ])

    train_dir = DC.train_content_dir
    batch_size = DC.train_batch_size

    train_data = ImageFolder(train_dir, transform=transforms)

    num_train_data = len(train_data)

    train_dataloader = t.utils.data.DataLoader(train_data,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=DC.num_workers,
                                               drop_last=True)
    # transform net
    transformer = TransformerNet()
    if DC.load_model:
        transformer.load_state_dict(
          t.load(DC.load_model, 
                 map_location=lambda storage, loc: storage))

    transformer.to(device)

    # Loss net (vgg16)
    vgg = Vgg16().eval()
    vgg.to(device)

    for param in vgg.parameters():
        param.requires_grad = False

    optimizer = t.optim.Adam(transformer.parameters(), DC.base_lr)

    # Get the data from style image
    ys = utils.get_style_data(DC.style_img)
    ys = ys.to(device)

    # The Gram matrix of the style image
    with t.no_grad():
        features_ys = vgg(ys)

        gram_ys = [utils.gram_matrix(ys) for ys in features_ys]

    # Start training
    train_imgs = 0
    iteration = 0
    for epoch in range(DC.max_epoch):
        for i, (data, label) in tqdm.tqdm(enumerate(train_dataloader)):
            train_imgs += batch_size
            iteration += 1

            optimizer.zero_grad()
         
            # Transformer net
            x = data.to(device)
            y = transformer(x)

            x = utils.normalize_batch(x)
            yc = x
            y = utils.normalize_batch(y)

            features_y = vgg(y)
            features_yc = vgg(yc)

            # Content loss
            content_loss = DC.content_weight * \
                             nn.functional.mse_loss(features_y.relu2_2, 
                                                    features_yc.relu2_2)
#            content_loss = DC.content_weight * \
#                             nn.functional.mse_loss(features_y.relu3_3, 
#                                                    features_yc.relu3_3)

            # Style loss
            style_loss = 0.0
            for ft_y, gm_ys in zip(features_y, gram_ys):
                gm_y = utils.gram_matrix(ft_y)
                
                style_loss += nn.functional.mse_loss(gm_y, 
                                                     gm_ys.expand_as(gm_y))


            style_loss *= DC.style_weight

            # Total loss
            total_loss = content_loss + style_loss
            total_loss.backward()
            optimizer.step()

            if iteration%DC.show_iter == 0: 
                print('\ncontent loss: ', content_loss.data)
                print('style loss: ', style_loss.data)
                print('total loss: ', total_loss.data)
                print()

        t.save(transformer.state_dict(), '{}_style.pth'.format(epoch))
def train(**kwargs):
    opt = Config()
    for k_, v_ in kwargs.items():
        setattr(opt, k_, v_)
    # 可视化操作
    vis = utils.Visualizer(opt.env)

    # 数据加载
    transfroms = tv.transforms.Compose([
        # 将输入的`PIL.Image`重新改变大小成给定的`size`  `size`是最小边的边长
        tv.transforms.Scale(opt.image_size),
        tv.transforms.CenterCrop(opt.image_size),
        # 转为0-1之间
        tv.transforms.ToTensor(),
        # 转为0-255之间
        tv.transforms.Lambda(lambda x: x * 255)
    ])
    # 封装数据集,并进行数据转化
    dataset = tv.datasets.ImageFolder(opt.data_root, transfroms)
    # 数据加载器
    dataloader = data.DataLoader(dataset, opt.batch_size)

    # 转换网络
    transformer = TransformerNet()
    if opt.model_path:
        transformer.load_state_dict(
            t.load(opt.model_path, map_location=lambda _s, _: _s))

    # 损失网络 Vgg16  置为预测模式
    vgg = Vgg16().eval()

    # 优化器(需要训练 风格转化网络的参数)
    optimizer = t.optim.Adam(transformer.parameters(), opt.lr)

    # 获取风格图片的数据  形状 1*c*h*w, 分布 -2~2(使用预设)
    style = utils.get_style_data(opt.style_path)
    # 可视化风格图:-2 到2 转化为0-1
    vis.img('style', (style[0] * 0.225 + 0.45).clamp(min=0, max=1))

    if opt.use_gpu:
        transformer.cuda()
        style = style.cuda()
        vgg.cuda()

    # 风格图片的gram矩阵
    style_v = Variable(style, volatile=True)
    # 得到vgg中间四层的结果(用以跟输入图片的输出四层比较,计算损失)
    features_style = vgg(style_v)
    # gram_matrix:输入 b,c,h,w  输出 b,c,c 计算gram矩阵(四层的gram矩阵)
    gram_style = [Variable(utils.gram_matrix(y.data)) for y in features_style]

    # 损失统计  仪表盘 用以可视化(每个epoch中的所有batch平均损失)
    # 风格损失
    style_meter = tnt.meter.AverageValueMeter()
    # 内容损失
    content_meter = tnt.meter.AverageValueMeter()

    for epoch in range(opt.epoches):
        # 仪表盘清零
        content_meter.reset()
        style_meter.reset()

        for ii, (x, _) in tqdm.tqdm(enumerate(dataloader)):

            # 训练
            optimizer.zero_grad()
            if opt.use_gpu:
                x = x.cuda()
            # x为输入的真实图像
            x = Variable(x)
            # 风格转换后的预测图像为y
            y = transformer(x)
            # 输入: b, ch, h, w   0~255
            # 输出: b, ch, h, w    - 2~2
            # 将x,y范围从0-255转化为-2-2
            y = utils.normalize_batch(y)
            x = utils.normalize_batch(x)
            # 返回 四个中间层的特征输出
            features_y = vgg(y)
            features_x = vgg(x)

            # content loss内容损失 只计算relu2_2之间的损失   预测图片与原图在relu2_2中间层比较,计算损失
            # content_weight内容的权重     mse_loss均方误差损失函数
            content_loss = opt.content_weight * F.mse_loss(
                features_y.relu2_2, features_x.relu2_2)

            # style loss
            style_loss = 0.
            # 风格损失取四层的均方误差损失总和
            # features_y:预测图像的四层输出内容    gram_style:风格图像的四层输出的gram_matrix
            # zip将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表
            for ft_y, gm_s in zip(features_y, gram_style):
                # 计算预测图像的四层输出内容的gram_matrix
                gram_y = utils.gram_matrix(ft_y)
                style_loss += F.mse_loss(gram_y, gm_s.expand_as(gram_y))
            style_loss *= opt.style_weight
            # 总损失=风格损失+内容损失
            total_loss = content_loss + style_loss
            # 反向传播
            total_loss.backward()
            # 更新参数
            optimizer.step()

            # 损失平滑  将损失加入仪表盘,以便可视化损失过程
            content_meter.add(content_loss.data[0])
            style_meter.add(style_loss.data[0])
            # 每plot_every次前向传播后可视化
            if (ii + 1) % opt.plot_every == 0:
                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()

                # 可视化
                vis.plot('content_loss', content_meter.value()[0])
                vis.plot('style_loss', style_meter.value()[0])
                # 因为x和y经过标准化处理(utils.normalize_batch),所以需要将它们还原
                #x,y为[-2,2]还原回[0,1]
                vis.img('output',
                        (y.data.cpu()[0] * 0.225 + 0.45).clamp(min=0, max=1))
                vis.img('input', (x.data.cpu()[0] * 0.225 + 0.45).clamp(min=0,
                                                                        max=1))

        # 每次epoch完毕后保存visdom和模型
        vis.save([opt.env])
        t.save(transformer.state_dict(), 'checkpoints/%s_style.pth' % epoch)
Beispiel #3
0
def train(**kwargs):
    opt = Config()
    for k_, v_ in kwargs.items():
        setattr(opt, k_, v_)

    vis = utils.Visualizer(opt.env)

    # 数据加载
    transfroms = tv.transforms.Compose([
        tv.transforms.Scale(opt.image_size),
        tv.transforms.CenterCrop(opt.image_size),
        tv.transforms.ToTensor(),
        tv.transforms.Lambda(lambda x: x * 255)
    ])
    dataset = tv.datasets.ImageFolder(opt.data_root, transfroms)
    dataloader = data.DataLoader(dataset, opt.batch_size)

    # 转换网络
    transformer = TransformerNet()
    if opt.model_path:
        transformer.load_state_dict(t.load(opt.model_path, map_location=lambda _s, _: _s))

    # 损失网络 Vgg16
    vgg = Vgg16().eval()

    # 优化器
    optimizer = t.optim.Adam(transformer.parameters(), opt.lr)

    # 获取风格图片的数据
    style = utils.get_style_data(opt.style_path)
    vis.img('style', (style[0] * 0.225 + 0.45).clamp(min=0, max=1))

    if opt.use_gpu:
        transformer.cuda()
        style = style.cuda()
        vgg.cuda()

    # 风格图片的gram矩阵
    style_v = Variable(style, volatile=True)
    features_style = vgg(style_v)
    gram_style = [Variable(utils.gram_matrix(y.data)) for y in features_style]

    # 损失统计
    style_meter = tnt.meter.AverageValueMeter()
    content_meter = tnt.meter.AverageValueMeter()

    for epoch in range(opt.epoches):
        content_meter.reset()
        style_meter.reset()

        for ii, (x, _) in tqdm.tqdm(enumerate(dataloader)):

            # 训练
            optimizer.zero_grad()
            if opt.use_gpu:
                x = x.cuda()
            x = Variable(x)
            y = transformer(x)
            y = utils.normalize_batch(y)
            x = utils.normalize_batch(x)
            features_y = vgg(y)
            features_x = vgg(x)

            # content loss
            content_loss = opt.content_weight * F.mse_loss(features_y.relu2_2, features_x.relu2_2)

            # style loss
            style_loss = 0.
            for ft_y, gm_s in zip(features_y, gram_style):
                gram_y = utils.gram_matrix(ft_y)
                style_loss += F.mse_loss(gram_y, gm_s.expand_as(gram_y))
            style_loss *= opt.style_weight

            total_loss = content_loss + style_loss
            total_loss.backward()
            optimizer.step()

            # 损失平滑
            content_meter.add(content_loss.data[0])
            style_meter.add(style_loss.data[0])

            if (ii + 1) % opt.plot_every == 0:
                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()

                # 可视化
                vis.plot('content_loss', content_meter.value()[0])
                vis.plot('style_loss', style_meter.value()[0])
                # 因为x和y经过标准化处理(utils.normalize_batch),所以需要将它们还原
                vis.img('output', (y.data.cpu()[0] * 0.225 + 0.45).clamp(min=0, max=1))
                vis.img('input', (x.data.cpu()[0] * 0.225 + 0.45).clamp(min=0, max=1))

        # 保存visdom和模型
        vis.save([opt.env])
        t.save(transformer.state_dict(), 'checkpoints/%s_style.pth' % epoch)
Beispiel #4
0
def train(**kwargs):
    opt = Config()
    for k_, v_ in kwargs.items():
        setattr(opt, k_, v_)

    device = t.device('cuda') if opt.use_gpu else t.device('cpu')
    vis = utils.Visualizer(opt.env)

    # 数据加载
    transfroms = tv.transforms.Compose([
        tv.transforms.Resize(opt.image_size),
        tv.transforms.CenterCrop(opt.image_size),
        tv.transforms.ToTensor(),
        tv.transforms.Lambda(lambda x: x * 255)
    ])
    dataset = tv.datasets.ImageFolder(opt.data_root, transfroms)
    dataloader = data.DataLoader(dataset, opt.batch_size)

    # 转换网络
    transformer = TransformerNet()
    if opt.model_path:
        transformer.load_state_dict(
            t.load(opt.model_path, map_location=lambda _s, _: _s))
    transformer.to(device)

    # 损失网络 Vgg16
    vgg = Vgg16().eval()
    vgg.to(device)
    for param in vgg.parameters():
        param.requires_grad = False

    # 优化器
    optimizer = t.optim.Adam(transformer.parameters(), opt.lr)

    # 获取风格图片的数据
    style = utils.get_style_data(opt.style_path)
    vis.img('style', (style.data[0] * 0.225 + 0.45).clamp(min=0, max=1))
    style = style.to(device)

    # 风格图片的gram矩阵
    with t.no_grad():
        features_style = vgg(style)
        gram_style = [utils.gram_matrix(y) for y in features_style]

    # 损失统计
    style_meter = tnt.meter.AverageValueMeter()
    content_meter = tnt.meter.AverageValueMeter()

    for epoch in range(opt.epoches):
        content_meter.reset()
        style_meter.reset()

        for ii, (x, _) in tqdm.tqdm(enumerate(dataloader)):

            # 训练
            optimizer.zero_grad()
            x = x.to(device)
            y = transformer(x)
            y = utils.normalize_batch(y)
            x = utils.normalize_batch(x)
            features_y = vgg(y)
            features_x = vgg(x)

            # content loss
            content_loss = opt.content_weight * F.mse_loss(
                features_y.relu2_2, features_x.relu2_2)

            # style loss
            style_loss = 0.
            for ft_y, gm_s in zip(features_y, gram_style):
                gram_y = utils.gram_matrix(ft_y)
                style_loss += F.mse_loss(gram_y, gm_s.expand_as(gram_y))
            style_loss *= opt.style_weight

            total_loss = content_loss + style_loss
            total_loss.backward()
            optimizer.step()

            # 损失平滑
            content_meter.add(content_loss.item())
            style_meter.add(style_loss.item())

            if (ii + 1) % opt.plot_every == 0:
                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()

                # 可视化
                vis.plot('content_loss', content_meter.value()[0])
                vis.plot('style_loss', style_meter.value()[0])
                # 因为x和y经过标准化处理(utils.normalize_batch),所以需要将它们还原
                vis.img('output',
                        (y.data.cpu()[0] * 0.225 + 0.45).clamp(min=0, max=1))
                vis.img('input', (x.data.cpu()[0] * 0.225 + 0.45).clamp(min=0,
                                                                        max=1))

        # 保存visdom和模型
        vis.save([opt.env])
        t.save(transformer.state_dict(), 'checkpoints/%s_style.pth' % epoch)
Beispiel #5
0
def train(**kwargs):
    # step1:config
    opt.parse(**kwargs)
    vis = Visualizer(opt.env)
    device = t.device('cuda') if opt.use_gpu else t.device('cpu')
    
    # step2:data
    # dataloader, style_img
    # 这次图片的处理和之前不一样,之前都是normalize,这次改成了lambda表达式乘以255,这种转化之后要给出一个合理的解释
    # 图片共分为两种,一种是原图,一种是风格图片,在作者的代码里,原图用于训练,需要很多,风格图片需要一张,用于损失函数
    
    transforms = T.Compose([
        T.Resize(opt.image_size),
        T.CenterCrop(opt.image_size),
        T.ToTensor(),
        T.Lambda(lambda x: x*255)    
    ])
    # 这次获取图片的方式和第七章一样,仍然是ImageFolder的方式,而不是dataset的方式
    dataset = tv.datasets.ImageFolder(opt.data_root,transform=transforms)
    dataloader = DataLoader(dataset,batch_size=opt.batch_size,shuffle=True,num_workers=opt.num_workers,drop_last=True)
    
    style_img = get_style_data(opt.style_path) # 1*c*H*W
    style_img = style_img.to(device)
    vis.img('style_image',(style_img.data[0]*0.225+0.45).clamp(min=0,max=1)) # 个人觉得这个没必要,下次可以实验一下
    
    # step3: model:Transformer_net 和 损失网络vgg16
    # 整个模型分为两部分,一部分是转化模型TransformerNet,用于转化原始图片,一部分是损失模型Vgg16,用于评价损失函数,
    # 在这里需要注意一下,Vgg16只是用于评价损失函数的,所以它的参数不参与反向传播,只有Transformer的参数参与反向传播,
    # 也就意味着,我们只训练TransformerNet,只保存TransformerNet的参数,Vgg16的参数是在网络设计时就已经加载进去的。
    # Vgg16是以验证model.eval()的方式在运行,表示其中涉及到pooling等层会发生改变
    # 那模型什么时候开始model.eval()呢,之前是是val和test中就会这样设置,那么Vgg16的设置理由是什么?
    # 这里加载模型的时候,作者使用了简单的map_location的记录方法,更轻巧一些
    # 发现作者在写这些的时候越来越趋向方便的方式
    # 在cuda的使用上,模型的cuda是直接使用的,而数据的cuda是在正式训练的时候才使用的,注意一下两者的区别
    # 在第七章作者是通过两种方式实现网络分离的,一种是对于前面网络netg,进行 fake_img = netg(noises).detach(),使得非叶子节点变成一个类似不需要邱求导的叶子节点
    # 第四章还需要重新看,
    
    transformer_net = TransformerNet()
    
    if opt.model_path:
        transformer_net.load_state_dict(t.load(opt.model_path,map_location= lambda _s, _: _s))    
    transformer_net.to(device)
    

    
    # step3: criterion and optimizer
    optimizer = t.optim.Adam(transformer_net.parameters(),opt.lr)
    # 此通过vgg16实现的,损失函数包含两个Gram矩阵和均方误差,所以,此外,我们还需要求Gram矩阵和均方误差
    vgg16 = Vgg16().eval() # 待验证
    vgg16.to(device)
    # vgg的参数不需要倒数,但仍然需要反向传播
    # 回头重新考虑一下detach和requires_grad的区别
    for param in vgg16.parameters():
        param.requires_grad = False
    criterion = t.nn.MSELoss(reduce=True, size_average=True)
    
    
    # step4: meter 损失统计
    style_meter = meter.AverageValueMeter()
    content_meter = meter.AverageValueMeter()
    total_meter = meter.AverageValueMeter()
    
    # step5.2:loss 补充
    # 求style_image的gram矩阵
    # gram_style:list [relu1_2,relu2_2,relu3_3,relu4_3] 每一个是b*c*c大小的tensor
    with t.no_grad():
        features = vgg16(style_img)
        gram_style = [gram_matrix(feature) for feature in features]
    # 损失网络 Vgg16
    # step5: train
    for epoch in range(opt.epoches):
        style_meter.reset()
        content_meter.reset()
        
        # step5.1: train
        for ii,(data,_) in tqdm(enumerate(dataloader)):
            optimizer.zero_grad()
            # 这里作者没有进行 Variable(),与之前不同
            # pytorch 0.4.之后tensor和Variable不再严格区分,创建的tensor就是variable
            # https://mp.weixin.qq.com/s?__biz=MzI0ODcxODk5OA==&mid=2247494701&idx=2&sn=ea8411d66038f172a2f553770adccbec&chksm=e99edfd4dee956c23c47c7bb97a31ee816eb3a0404466c1a57c12948d807c975053e38b18097&scene=21#wechat_redirect
            data = data.to(device)
            y = transformer_net(data)
            # vgg对输入的图片需要进行归一化
            data = normalize_batch(data)
            y = normalize_batch(y)

           
            feature_data = vgg16(data)
            feature_y = vgg16(y) 
            # 疑问??现在的feature是一个什么样子的向量?
            
            # step5.2: loss:content loss and style loss
            # content_loss
            # 在这里和书上的讲的不一样,书上是relu3_3,代码用的是relu2_2
            # https://blog.csdn.net/zhangxb35/article/details/72464152?utm_source=itdadao&utm_medium=referral
            # 均方误差指的是一个像素点的损失,可以理解N*b*h*w个元素加起来,然后除以N*b*h*w
            # 随机梯度下降法本身就是对batch内loss求平均后反向传播
            content_loss = opt.content_weight*criterion(feature_y.relu2_2,feature_data.relu2_2)
            # style loss
            # style loss:relu1_2,relu2_2,relu3_3,relu3_4 
            # 此时需要求每一张图片的gram矩阵
            
            style_loss = 0
            # tensor也可以 for i in tensor:,此时只拆解外面一层的tensor
            # ft_y:b*c*h*w, gm_s:1*c*h*w
            for ft_y, gm_s in zip(feature_y, gram_style):
                gram_y = gram_matrix(ft_y)
                style_loss += criterion(gram_y, gm_s.expand_as(gram_y))
            style_loss *= opt.style_weight
            
            total_loss = content_loss + style_loss
            optimizer.zero_grad()
            total_loss.backward()
            optimizer.step()
            #import ipdb
            #ipdb.set_trace()
            # 获取tensor的值 tensor.item()   tensor.tolist()
            content_meter.add(content_loss.item())
            style_meter.add(style_loss.item())
            total_meter.add(total_loss.item())
            
            # step5.3: visualize
            if (ii+1)%opt.print_freq == 0 and opt.vis:
                # 为什么总是以这种形式进行debug
                if os.path.exists(opt.debug_file):
                    import ipdb
                    ipdb.set_trace()
                vis.plot('content_loss',content_meter.value()[0])
                vis.plot('style_loss',style_meter.value()[0])
                vis.plot('total_loss',total_meter.value()[0])
                # 因为现在data和y都已经经过了normalize,变成了-2~2,所以需要把它变回去0-1
                vis.img('input',(data.data*0.225+0.45)[0].clamp(min=0,max=1))
                vis.img('output',(y.data*0.225+0.45)[0].clamp(min=0,max=1))
            
        # step 5.4 save and validate and visualize
        if (epoch+1) % opt.save_every == 0:
            t.save(transformer_net.state_dict(), 'checkpoints/%s_style.pth' % epoch)
            # 保存图片的几种方法,第七章的是 
            # tv.utils.save_image(fix_fake_imgs,'%s/%s.png' % (opt.img_save_path, epoch),normalize=True, range=(-1,1))
            # vis.save竟然没找到  我的神   
            vis.save([opt.env])
Beispiel #6
0
def train(**kwargs):
    opt = Config()
    for _k, _v in kwargs.items():
        setattr(opt, _k, _v)

    device = t.device("cuda" if t.cuda.is_available() else "cpu")
    vis = utils.Visualizer(opt.env)

    # 数据加载
    transforms = tv.transforms.Compose([
        tv.transforms.Resize(opt.image_size),
        tv.transforms.CenterCrop(opt.image_size),
        tv.transforms.ToTensor(),
        tv.transforms.Lambda(lambda x: x * 255)
    ])
    dataset = tv.datasets.ImageFolder(opt.data_root, transforms)
    dataloader = data.DataLoader(dataset, opt.batch_size)

    # 风格转换网络
    transformer = TransformerNet()
    if opt.model_path:
        transformer.load_state_dict(
            t.load(opt.model_path, map_location=t.device('cpu')))
    transformer.to(device)

    # 损失网络 Vgg16
    vgg = Vgg16().eval()
    vgg.to(device)
    for param in vgg.parameters():
        param.requires_grad = False

    # 优化器
    optimizer = t.optim.Adam(transformer.parameters(), opt.lr)

    # 获取风格图片的数据
    style = utils.get_style_data(opt.style_path)
    vis.img('style', (style.data[0] * 0.225 + 0.45).clamp(min=0, max=1))
    style = style.to(device)

    # 风格图片的gramj矩阵
    with t.no_grad():
        features_style = vgg(style)
        gram_style = [utils.gram_matrix(y) for y in features_style]

    # 损失统计
    style_loss_avg = 0
    content_loss_avg = 0

    for epoch in range(opt.epoches):
        for ii, (x, _) in tqdm(enumerate(dataloader)):

            # 训练
            optimizer.zero_grad()
            x = x.to(device)
            y = transformer(x)
            # print(y.size())
            y = utils.normalize_batch(y)
            x = utils.normalize_batch(x)
            features_x = vgg(x)
            features_y = vgg(y)

            # content loss
            content_loss = opt.content_weight * F.mse_loss(
                features_y.relu3_3, features_x.relu3_3)

            # style loss
            style_loss = 0
            for ft_y, gm_s in zip(features_y, gram_style):
                with t.no_grad():
                    gram_y = utils.gram_matrix(ft_y)
                style_loss += F.mse_loss(gram_y, gm_s.expand_as(gram_y))
            style_loss *= opt.style_weight

            total_loss = content_loss + style_loss
            total_loss.backward()
            optimizer.step()

            content_loss_avg += content_loss.item()
            style_loss_avg += style_loss.item()

            if (ii + 1) % opt.plot_every == 0:
                vis.plot('content_loss', content_loss_avg / opt.plot_every)
                vis.plot('style_loss', style_loss_avg / opt.plot_every)
                content_loss_avg = 0
                style_loss_avg = 0
                vis.img('output',
                        (y.data.cpu()[0] * 0.225 + 0.45).clamp(min=0, max=1))
                vis.img('input', (x.data.cpu()[0] * 0.225 + 0.45).clamp(min=0,
                                                                        max=1))

            if (ii + 1) % opt.save_every == 0:
                vis.save([opt.env])
                t.save(transformer.state_dict(),
                       'checkpoints/%s_style.pth' % (ii + 1))
Beispiel #7
0
def train(**kwargs):

    for k_, v_ in kwargs.items():
        setattr(opt, k_, v_)

    if opt.vis is True:
        from visualize import Visualizer
        vis = Visualizer(opt.env)

    transforms = tv.transforms.Compose([
        tv.transforms.Resize(opt.image_size),
        tv.transforms.CenterCrop(opt.image_size),
        tv.transforms.ToTensor(),  #change value to (0,1)
        tv.transforms.Lambda(lambda x: x * 255)
    ])  #change value to (0,255)
    dataset = tv.datasets.ImageFolder(opt.data_root, transforms)

    dataloader = data.DataLoader(dataset, opt.batch_size)  #value is (0,255)

    transformer = TransformerNet()

    if opt.model_path:
        transformer.load_state_dict(
            t.load(opt.model_path, map_location=lambda _s, _: _s))

    vgg = VGG16().eval()
    for param in vgg.parameters():
        param.requires_grad = False

    optimizer = t.optim.Adam(transformer.parameters(), opt.lr)

    style = utils.get_style_data(opt.style_path)
    vis.img('style', (style[0] * 0.225 + 0.45).clamp(min=0, max=1))

    if opt.use_gpu:

        transformer.cuda()
        style = style.cuda()
        vgg.cuda()

    style_v = Variable(style.unsqueeze(0), volatile=True)
    features_style = vgg(style_v)
    gram_style = [Variable(utils.gram_matrix(y.data)) for y in features_style]

    style_meter = tnt.meter.AverageValueMeter()
    content_meter = tnt.meter.AverageValueMeter()

    for epoch in range(opt.epoches):
        content_meter.reset()
        style_meter.reset()

        for ii, (x, _) in tqdm.tqdm(enumerate(dataloader)):

            optimizer.zero_grad()
            if opt.use_gpu:
                x = x.cuda()  #(0,255)
            x = Variable(x)
            y = transformer(x)  #(0,255)
            y = utils.normalize_batch(y)  #(-2,2)
            x = utils.normalize_batch(x)  #(-2,2)

            features_y = vgg(y)
            features_x = vgg(x)

            #calculate the content loss: it's only used relu2_2
            # i think should add more layer's result to calculate the result like: w1*relu2_2+w2*relu3_2+w3*relu3_3+w4*relu4_3
            content_loss = opt.content_weight * F.mse_loss(
                features_y.relu2_2, features_x.relu2_2)
            content_meter.add(content_loss.data)

            style_loss = 0
            for ft_y, gm_s in zip(features_y, gram_style):

                gram_y = utils.gram_matrix(ft_y)
                style_loss += F.mse_loss(gram_y, gm_s.expand_as(gram_y))
            style_meter.add(style_loss.data)

            style_loss *= opt.style_weight

            total_loss = content_loss + style_loss
            total_loss.backward()
            optimizer.step()

            if (ii + 1) % (opt.plot_every) == 0:

                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()

                vis.plot('content_loss', content_meter.value()[0])
                vis.plot('style_loss', style_meter.value()[0])

                vis.img('output',
                        (y.data.cpu()[0] * 0.225 + 0.45).clamp(min=0, max=1))
                vis.img('input', (x.data.cpu()[0] * 0.225 + 0.45).clamp(min=0,
                                                                        max=1))

        vis.save([opt.env])
        t.save(transformer.state_dict(), 'checkpoints/%s_style.pth' % epoch)