Beispiel #1
0
def val(epoch, model, dataloader, loss_fn, writer, world_size, best_acc):
    param = next(model.parameters())
    device = param.device  # torch.device
    cuda = param.is_cuda  # bool
    model.eval()

    pbar = enumerate(dataloader)
    pbar = tqdm(pbar, total=len(dataloader), desc='val')
    running_loss = 0.0
    running_corrects = 0
    num_samples = 0
    pf = ''  # progress bar postfix

    for i, (inputs, labels) in pbar:
        inputs = inputs.to(device)
        labels = labels.to(device)

        with autocast(enabled=cuda):
            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)
            loss = loss_fn(outputs, labels)
            loss *= world_size  # for DDP world_size > 1

        mem = torch.cuda.memory_reserved() / 1E9 if cuda else 0
        pf += f'mem: {mem:.3f}GB, '

        running_loss += loss.item() * inputs.size(0)
        running_corrects += torch.sum(preds == labels.data)
        num_samples += inputs.size(0)

        pf += f'loss: {running_loss / num_samples:.4f}, '
        pf += f'acc: {running_corrects.double() / num_samples:.4f}, '
        pf += f'epoch: {epoch}'
        pbar.set_postfix_str(pf)

    epoch_acc = running_corrects.double() / num_samples
    if epoch_acc > best_acc:
        best_acc = epoch_acc
        CHECKPOINT_PATH = tempfile.gettempdir() + '/model.checkpoint'
        # All processes should see same parameters as they all start
        # from same random parameters and gradients are synchronized
        # in backward passes. Therefore, saving it in one process is
        # sufficient.
        # model state_dict
        msd = model.module.state_dict() if is_parallel(
            model) else model.state_dict()
        torch.save(msd, CHECKPOINT_PATH)

    return best_acc
    def sort_parallel(self, n):
        for cls in range(
                n
        ):  # there is n+1 classes but the last one would be "found" if we have found others

            # pick a representative of cls
            idx_repr = cls * n

            idx_to_swap = cls * n + 1
            idx_to_check = cls * n + 1

            # and search for its remaining n-1 parallel friends
            while idx_to_swap - idx_repr < n:
                if is_parallel(self.incidence_matrix[idx_repr],
                               self.incidence_matrix[idx_to_check]):
                    tmp = self.incidence_matrix[idx_to_swap]
                    self.incidence_matrix[idx_to_swap] = self.incidence_matrix[
                        idx_to_check]
                    self.incidence_matrix[idx_to_check] = tmp
                    idx_to_swap += 1
                idx_to_check += 1
Beispiel #3
0
    def fitness_function(genome):
        """
        Given a candidate solution will return its fitness score assuming
        the cantus_firmus in this closure. Caches the fitness score in the
        genome.
        """
        # Save some time!
        if genome.fitness is not None:
            return genome.fitness

        # The fitness score to be returned.
        fitness_score = 0.0
        # Counts the number of repeated notes.
        repeats = 0
        # Counts the amount of parallel motion.
        parallel_motion = 0
        # Counts the number of jumps in the melodic contour.
        jump_contour = 0

        contrapunctus = genome.chromosome

        # Make sure the solution starts correctly (at a 5th or octave).
        first_interval = contrapunctus[0] - cantus_firmus[0]
        if first_interval == 7 or first_interval == 4:
            fitness_score += REWARD_FIRST
        else:
            fitness_score -= PUNISH_FIRST

        # Make sure the solution finishes correctly (at an octave).
        if contrapunctus[-1] - cantus_firmus[-1] == 7:
            fitness_score += REWARD_LAST
        else:
            fitness_score -= PUNISH_LAST

        # Ensure the penultimate note is step wise onto the final note.
        if abs(contrapunctus[-1] - contrapunctus[-2]) == 1:
            fitness_score += REWARD_LAST_STEP
        else:
            fitness_score -= PUNISH_LAST_STEP

        # Reward contrary motion onto the final note.
        cantus_firmus_motion = cantus_firmus[-1] - cantus_firmus[-2]
        contrapunctus_motion = contrapunctus[-1] - contrapunctus[-2]

        if ((cantus_firmus_motion < 0 and contrapunctus_motion > 0) or
            (cantus_firmus_motion > 0 and contrapunctus_motion < 0)):
            fitness_score += REWARD_LAST_MOTION
        else:
            fitness_score -= PUNISH_LAST_MOTION

        # Make sure the penultimate note isn't a repeated note.
        penultimate_preparation = abs(contrapunctus[-2] - contrapunctus[-3])
        if penultimate_preparation == 0:
            fitness_score -= PUNISH_REPEATED_PENULTIMATE
        else:
            # Make sure the movement to the penultimate note isn't from too
            # far away (not greater than a third).
            if penultimate_preparation < 2:
                fitness_score += REWARD_PENULTIMATE_PREPARATION
            else:
                fitness_score -= PUNISH_PENULTIMATE_PREPARATION

        # Check the fitness of the body of the solution.
        last_notes = (contrapunctus[0], cantus_firmus[0])
        last_interval = last_notes[0] - last_notes[1]
        for i in range(1, len(contrapunctus) - 1):
            contrapunctus_note = contrapunctus[i]
            cantus_firmus_note = cantus_firmus[i / 4]
            current_notes = (contrapunctus_note, cantus_firmus_note)
            current_interval = contrapunctus_note - cantus_firmus_note

            # Punish parallel fifths or octaves.
            if ((current_interval == 4 or current_interval == 7) and
                (last_interval == 4 or last_interval == 7)):
                fitness_score -= PUNISH_PARALLEL_FIFTHS_OCTAVES

            # Check for parallel motion.
            if is_parallel(last_notes, current_notes):
                parallel_motion += 1

            # Check if the melody is a repeating note.
            if contrapunctus_note == last_notes[0]:
                repeats += 1

            # Check the melodic contour.
            contour_leap = abs(current_notes[0] - last_notes[0])
            if contour_leap >= 2:
                jump_contour += contour_leap - 2

            # Ensure dissonances are part of a step-wise movement.
            if i % 2 and current_interval in DISSONANCES:
                # The current_note is a dissonance on the third beat of a bar.
                # Check that both the adjacent notes are only a step away.
                if is_stepwise_motion(contrapunctus, i):
                    fitness_score += REWARD_STEPWISE_MOTION
                else:
                    fitness_score -= PUNISH_STEPWISE_MOTION
            else:
                if is_stepwise_motion(contrapunctus, i):
                    fitness_score += REWARD_STEPWISE_MOTION

            last_notes = current_notes
            last_interval = current_interval

        # Punish too many (> 1/3) repeated notes.
        if repeats > repeat_threshold:
            fitness_score -= PUNISH_REPEATS

        # Punish too many (> 1/3) parallel movements.
        if parallel_motion > repeat_threshold:
            fitness_score -= PUNISH_PARALLEL

        # Punish too many large leaps in the melody.
        if jump_contour > jump_threshold:
            fitness_score -= PUNISH_LEAPS

        genome.fitness = fitness_score

        return fitness_score
Beispiel #4
0
    def fitness_function(genome):
        """
        Given a candidate solution will return its fitness score assuming
        the cantus_firmus in this closure. Caches the fitness score in the
        genome.
        """
        # Save some time!
        if genome.fitness is not None:
            return genome.fitness

        # The fitness score to be returned.
        fitness_score = 0.0
        # Counts the number of repeated notes in the contrapunctus.
        repeats = 0
        # Counts consecutive parallel thirds.
        thirds = 0
        # Counts consecutive parallel sixths.
        sixths = 0
        # Counts the amount of parallel motion.
        parallel_motion = 0
        # Counts the number of jumps in the melodic contour.
        jump_contour = 0

        contrapunctus = genome.chromosome

        # Make sure the solution starts correctly (at a 5th or octave).
        first_interval = contrapunctus[0] - cantus_firmus[0]
        if first_interval == 7 or first_interval == 4:
            fitness_score += REWARD_FIRST
        else:
            fitness_score -= PUNISH_FIRST

        # Make sure the solution finishes correctly (at an octave).
        if contrapunctus[-1] - cantus_firmus[-1] == 7:
            fitness_score += REWARD_LAST
        else:
            fitness_score -= PUNISH_LAST

        # Ensure the penultimate note is step wise onto the final note.
        if abs(contrapunctus[-1] - contrapunctus[-2]) == 1:
            fitness_score += REWARD_LAST_STEP
        else:
            fitness_score -= PUNISH_LAST_STEP

        # Reward contrary motion onto the final note.
        cantus_firmus_motion = cantus_firmus[-1] - cantus_firmus[-2]
        contrapunctus_motion = contrapunctus[-1] - contrapunctus[-2]

        if ((cantus_firmus_motion < 0 and contrapunctus_motion > 0)
                or (cantus_firmus_motion > 0 and contrapunctus_motion < 0)):
            fitness_score += REWARD_LAST_MOTION
        else:
            fitness_score -= PUNISH_LAST_MOTION

        # Make sure the penultimate note isn't a repeated note.
        penultimate_preparation = abs(contrapunctus[-2] - contrapunctus[-3])
        if penultimate_preparation == 0:
            fitness_score -= PUNISH_REPEATED_PENULTIMATE
        else:
            # Make sure the movement to the penultimate note isn't from too
            # far away (not greater than a third).
            if penultimate_preparation < 2:
                fitness_score += REWARD_PENULTIMATE_PREPARATION
            else:
                fitness_score -= PUNISH_PENULTIMATE_PREPARATION

        # Check the fitness of the body of the solution.
        solution = zip(contrapunctus, cantus_firmus)
        last_notes = solution.pop()
        last_interval = last_notes[0] - last_notes[1]
        for contrapunctus_note, cantus_firmus_note in solution[1:]:
            current_notes = (contrapunctus_note, cantus_firmus_note)
            current_interval = contrapunctus_note - cantus_firmus_note

            # Punish parallel fifths or octaves.
            if ((current_interval == 4 or current_interval == 7)
                    and (last_interval == 4 or last_interval == 7)):
                fitness_score -= PUNISH_PARALLEL_FIFTHS_OCTAVES

            # Check if the melody is a repeating note.
            if contrapunctus_note == last_notes[0]:
                repeats += 1

            # Check for parallel thirds.
            if current_interval == 2 and last_interval == 2:
                thirds += 1

            # Check for parallel sixths.
            if current_interval == 4 and last_interval == 4:
                sixths += 1

            # Check for parallel motion.
            if is_parallel(last_notes, current_notes):
                parallel_motion += 1

            # Check the melodic contour.
            contour_leap = abs(current_notes[0] - last_notes[0])
            if contour_leap > 2:
                jump_contour += contour_leap - 2

            last_notes = current_notes
            last_interval = current_interval

        # Punish too many (> 1/3) repeated notes.
        if repeats > repeat_threshold:
            fitness_score -= PUNISH_REPEATS

        # Punish too many (> 1/3) parallel thirds
        if thirds > repeat_threshold:
            fitness_score -= PUNISH_THIRDS

        # Punish too many (> 1/3) parallel sixths.
        if sixths > repeat_threshold:
            fitness_score -= PUNISH_SIXTHS

        # Punish too many (> 1/3) parallel movements.
        if parallel_motion > repeat_threshold:
            fitness_score -= PUNISH_PARALLEL

        # Punish too many large leaps in the melody.
        if jump_contour > jump_threshold:
            fitness_score -= PUNISH_LEAPS

        genome.fitness = fitness_score

        return fitness_score
Beispiel #5
0
    def fitness_function(genome):
        """
        Given a candidate solution will return its fitness score assuming
        the cantus_firmus in this closure. Caches the fitness score in the
        genome.
        """
        # Save some time!
        if genome.fitness is not None:
            return genome.fitness

        # The fitness score to be returned.
        fitness_score = 0.0
        # Counts the number of repeated notes in the contrapunctus.
        repeats = 0
        # Counts consecutive parallel thirds.
        thirds = 0
        # Counts consecutive parallel sixths.
        sixths = 0
        # Counts the amount of parallel motion.
        parallel_motion = 0
        # Counts the number of jumps in the melodic contour.
        jump_contour = 0

        contrapunctus = genome.chromosome

        # Make sure the solution starts correctly (at a 5th or octave).
        first_interval = contrapunctus[0] - cantus_firmus[0]
        if first_interval == 7 or first_interval == 4:
            fitness_score += REWARD_FIRST
        else:
            fitness_score -= PUNISH_FIRST

        # Make sure the solution finishes correctly (at an octave).
        if contrapunctus[-1] - cantus_firmus[-1] == 7:
            fitness_score += REWARD_LAST
        else:
            fitness_score -= PUNISH_LAST

        # Ensure the penultimate note is step wise onto the final note.
        if abs(contrapunctus[-1] - contrapunctus[-2]) == 1:
            fitness_score += REWARD_LAST_STEP
        else:
            fitness_score -= PUNISH_LAST_STEP

        # Reward contrary motion onto the final note.
        cantus_firmus_motion = cantus_firmus[-1] - cantus_firmus[-2]
        contrapunctus_motion = contrapunctus[-1] - contrapunctus[-2]

        if ((cantus_firmus_motion < 0 and contrapunctus_motion > 0) or
            (cantus_firmus_motion > 0 and contrapunctus_motion < 0)):
            fitness_score += REWARD_LAST_MOTION
        else:
            fitness_score -= PUNISH_LAST_MOTION

        # Make sure the penultimate note isn't a repeated note.
        penultimate_preparation = abs(contrapunctus[-2] - contrapunctus[-3])
        if penultimate_preparation == 0:
            fitness_score -= PUNISH_REPEATED_PENULTIMATE
        else:
            # Make sure the movement to the penultimate note isn't from too
            # far away (not greater than a third).
            if penultimate_preparation < 2:
                fitness_score += REWARD_PENULTIMATE_PREPARATION
            else:
                fitness_score -= PUNISH_PENULTIMATE_PREPARATION

        # Check the fitness of the body of the solution.
        solution = zip(contrapunctus, cantus_firmus)
        last_notes = solution.pop()
        last_interval = last_notes[0] - last_notes[1]
        for contrapunctus_note, cantus_firmus_note in solution[1:]:
            current_notes = (contrapunctus_note, cantus_firmus_note)
            current_interval = contrapunctus_note - cantus_firmus_note

            # Punish parallel fifths or octaves.
            if ((current_interval == 4 or current_interval == 7) and
                (last_interval == 4 or last_interval == 7)):
                fitness_score -= PUNISH_PARALLEL_FIFTHS_OCTAVES

            # Check if the melody is a repeating note.
            if contrapunctus_note == last_notes[0]:
                repeats += 1

            # Check for parallel thirds.
            if current_interval == 2 and last_interval == 2:
                thirds += 1

            # Check for parallel sixths.
            if current_interval == 4 and last_interval == 4:
                sixths += 1

            # Check for parallel motion.
            if is_parallel(last_notes, current_notes):
                parallel_motion += 1

            # Check the melodic contour.
            contour_leap = abs(current_notes[0] - last_notes[0])
            if contour_leap > 2:
                jump_contour += contour_leap - 2

            last_notes = current_notes
            last_interval = current_interval

        # Punish too many (> 1/3) repeated notes.
        if repeats > repeat_threshold:
            fitness_score -= PUNISH_REPEATS

        # Punish too many (> 1/3) parallel thirds
        if thirds > repeat_threshold:
            fitness_score -= PUNISH_THIRDS

        # Punish too many (> 1/3) parallel sixths.
        if sixths > repeat_threshold:
            fitness_score -= PUNISH_SIXTHS

        # Punish too many (> 1/3) parallel movements.
        if parallel_motion > repeat_threshold:
            fitness_score -= PUNISH_PARALLEL

        # Punish too many large leaps in the melody.
        if jump_contour > jump_threshold:
            fitness_score -= PUNISH_LEAPS

        genome.fitness = fitness_score

        return fitness_score
Beispiel #6
0
net = getattr(import_module('lightcnn'), module_name)

model = net(num_classes=num_classes, channels=18)
is_available(model)
# is_adaptive(model,fc_num=fc_num,num_classes=num_classes,num_channels = num_channels)
# channels_conv(model,fc_num=fc_num,num_classes=num_classes)
# load(model,train_mode,pretrained_path=pretrained_path)

# In[28]:

# optimizer
print('create optimizer......')
optimizer = torch.optim.Adam(model.parameters(),
                             lr=lr,
                             weight_decay=weight_decay)
is_parallel(optimizer)
# loss
print('create loss......')
# criterion = nn.CrossEntropyLoss(weight=class_weights)  # nn.MSELoss()
criterion = FocalLoss(class_num=num_classes, alpha=class_weights, gamma=2)

# In[29]:

# train
# pass model, loss, optimizer and dataset to the trainer
print('=' * 10)
print('train......')
print('=' * 10)
e = Trainer(model,
            criterion,
            optimizer,
Beispiel #7
0
    def fitness_function(genome):
        """
        Given a candidate solution will return its fitness score assuming
        the cantus_firmus in this closure. Caches the fitness score in the
        genome.
        """
        # Save some time!
        if genome.fitness is not None:
            return genome.fitness

        # The fitness score to be returned.
        fitness_score = 0.0
        # Counts the number of repeated notes.
        repeats = 0
        # Counts the amount of parallel motion.
        parallel_motion = 0
        # Counts the number of jumps in the melodic contour.
        jump_contour = 0

        contrapunctus = genome.chromosome

        # Make sure the solution starts correctly (at a 5th or octave).
        first_interval = contrapunctus[0] - cantus_firmus[0]
        if first_interval == 7 or first_interval == 4:
            fitness_score += REWARD_FIRST
        else:
            fitness_score -= PUNISH_FIRST

        # Make sure the solution finishes correctly (at an octave).
        if contrapunctus[-1] - cantus_firmus[-1] == 7:
            fitness_score += REWARD_LAST
        else:
            fitness_score -= PUNISH_LAST

        # Ensure the penultimate note is step wise onto the final note.
        if abs(contrapunctus[-1] - contrapunctus[-2]) == 1:
            fitness_score += REWARD_LAST_STEP
        else:
            fitness_score -= PUNISH_LAST_STEP

        # Reward contrary motion onto the final note.
        cantus_firmus_motion = cantus_firmus[-1] - cantus_firmus[-2]
        contrapunctus_motion = contrapunctus[-1] - contrapunctus[-2]

        if ((cantus_firmus_motion < 0 and contrapunctus_motion > 0)
                or (cantus_firmus_motion > 0 and contrapunctus_motion < 0)):
            fitness_score += REWARD_LAST_MOTION
        else:
            fitness_score -= PUNISH_LAST_MOTION

        # Make sure the penultimate note isn't a repeated note.
        penultimate_preparation = abs(contrapunctus[-2] - contrapunctus[-3])
        if penultimate_preparation == 0:
            fitness_score -= PUNISH_REPEATED_PENULTIMATE
        else:
            # Make sure the movement to the penultimate note isn't from too
            # far away (not greater than a third).
            if penultimate_preparation < 2:
                fitness_score += REWARD_PENULTIMATE_PREPARATION
            else:
                fitness_score -= PUNISH_PENULTIMATE_PREPARATION

        # Check the fitness of the body of the solution.
        last_notes = (contrapunctus[0], cantus_firmus[0])
        last_interval = last_notes[0] - last_notes[1]
        for i in range(1, len(contrapunctus) - 1):
            contrapunctus_note = contrapunctus[i]
            cantus_firmus_note = cantus_firmus[i / 4]
            current_notes = (contrapunctus_note, cantus_firmus_note)
            current_interval = contrapunctus_note - cantus_firmus_note

            # Punish parallel fifths or octaves.
            if ((current_interval == 4 or current_interval == 7)
                    and (last_interval == 4 or last_interval == 7)):
                fitness_score -= PUNISH_PARALLEL_FIFTHS_OCTAVES

            # Check for parallel motion.
            if is_parallel(last_notes, current_notes):
                parallel_motion += 1

            # Check if the melody is a repeating note.
            if contrapunctus_note == last_notes[0]:
                repeats += 1

            # Check the melodic contour.
            contour_leap = abs(current_notes[0] - last_notes[0])
            if contour_leap >= 2:
                jump_contour += contour_leap - 2

            # Ensure dissonances are part of a step-wise movement.
            if i % 2 and current_interval in DISSONANCES:
                # The current_note is a dissonance on the third beat of a bar.
                # Check that both the adjacent notes are only a step away.
                if is_stepwise_motion(contrapunctus, i):
                    fitness_score += REWARD_STEPWISE_MOTION
                else:
                    fitness_score -= PUNISH_STEPWISE_MOTION
            else:
                if is_stepwise_motion(contrapunctus, i):
                    fitness_score += REWARD_STEPWISE_MOTION

            last_notes = current_notes
            last_interval = current_interval

        # Punish too many (> 1/3) repeated notes.
        if repeats > repeat_threshold:
            fitness_score -= PUNISH_REPEATS

        # Punish too many (> 1/3) parallel movements.
        if parallel_motion > repeat_threshold:
            fitness_score -= PUNISH_PARALLEL

        # Punish too many large leaps in the melody.
        if jump_contour > jump_threshold:
            fitness_score -= PUNISH_LEAPS

        genome.fitness = fitness_score

        return fitness_score
Beispiel #8
0
                          num_workers=num_workers)
valid_loader = DataLoader(dataset=valid_dataset,
                          shuffle=False,
                          batch_size=valid_batch_size,
                          num_workers=num_workers)
# print('data_loader end......')
#
# print('model load......')
net = getattr(import_module('torchvision.models'), module_name)
model = net(num_classes=num_classes)
is_adaptive(model,
            fc_num=fc_num,
            num_classes=num_classes,
            num_channels=num_channels)
is_available(model)
model = is_parallel(model)
# load(model,train_mode,pretrained_path=pretrained_path)
#
#
#
# # In[28]:
#
# # optimizer
# print('create optimizer......')
optimizer = torch.optim.Adam(model.parameters(),
                             lr=lr,
                             weight_decay=weight_decay)
optimizer = is_parallel(optimizer)
# loss
print('create loss......')
criterion = nn.CrossEntropyLoss(weight=class_weights)  # nn.MSELoss()