Beispiel #1
0
def main(argv):
  del argv  # unused arg
  tf.enable_v2_behavior()
  tf.io.gfile.makedirs(FLAGS.output_dir)
  logging.info('Saving checkpoints at %s', FLAGS.output_dir)
  tf.random.set_seed(FLAGS.seed)

  if FLAGS.use_gpu:
    logging.info('Use GPU')
    strategy = tf.distribute.MirroredStrategy()
  else:
    logging.info('Use TPU at %s',
                 FLAGS.tpu if FLAGS.tpu is not None else 'local')
    resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=FLAGS.tpu)
    tf.config.experimental_connect_to_cluster(resolver)
    tf.tpu.experimental.initialize_tpu_system(resolver)
    strategy = tf.distribute.experimental.TPUStrategy(resolver)

  train_input_fn = utils.load_input_fn(
      split=tfds.Split.TRAIN,
      name=FLAGS.dataset,
      batch_size=FLAGS.per_core_batch_size,
      use_bfloat16=FLAGS.use_bfloat16)
  clean_test_input_fn = utils.load_input_fn(
      split=tfds.Split.TEST,
      name=FLAGS.dataset,
      batch_size=FLAGS.per_core_batch_size,
      use_bfloat16=FLAGS.use_bfloat16)
  train_dataset = strategy.experimental_distribute_datasets_from_function(
      train_input_fn)
  test_datasets = {
      'clean': strategy.experimental_distribute_datasets_from_function(
          clean_test_input_fn),
  }
  if FLAGS.corruptions_interval > 0:
    if FLAGS.dataset == 'cifar10':
      load_c_input_fn = utils.load_cifar10_c_input_fn
    else:
      load_c_input_fn = functools.partial(utils.load_cifar100_c_input_fn,
                                          path=FLAGS.cifar100_c_path)
    corruption_types, max_intensity = utils.load_corrupted_test_info(
        FLAGS.dataset)
    for corruption in corruption_types:
      for intensity in range(1, max_intensity + 1):
        input_fn = load_c_input_fn(
            corruption_name=corruption,
            corruption_intensity=intensity,
            batch_size=FLAGS.per_core_batch_size,
            use_bfloat16=FLAGS.use_bfloat16)
        test_datasets['{0}_{1}'.format(corruption, intensity)] = (
            strategy.experimental_distribute_datasets_from_function(input_fn))

  ds_info = tfds.builder(FLAGS.dataset).info
  batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
  steps_per_epoch = ds_info.splits['train'].num_examples // batch_size
  steps_per_eval = ds_info.splits['test'].num_examples // batch_size
  num_classes = ds_info.features['label'].num_classes

  if FLAGS.use_bfloat16:
    policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
    tf.keras.mixed_precision.experimental.set_policy(policy)

  summary_writer = tf.summary.create_file_writer(
      os.path.join(FLAGS.output_dir, 'summaries'))

  with strategy.scope():
    logging.info('Building ResNet model')
    model = wide_resnet(input_shape=ds_info.features['image'].shape,
                        depth=28,
                        width_multiplier=10,
                        num_classes=num_classes,
                        l2=FLAGS.l2,
                        version=2)
    logging.info('Model input shape: %s', model.input_shape)
    logging.info('Model output shape: %s', model.output_shape)
    logging.info('Model number of weights: %s', model.count_params())
    # Linearly scale learning rate and the decay epochs by vanilla settings.
    base_lr = FLAGS.base_learning_rate * batch_size / 128
    lr_decay_epochs = [(start_epoch * FLAGS.train_epochs) // 200
                       for start_epoch in FLAGS.lr_decay_epochs]
    lr_schedule = utils.LearningRateSchedule(
        steps_per_epoch,
        base_lr,
        decay_ratio=FLAGS.lr_decay_ratio,
        decay_epochs=lr_decay_epochs,
        warmup_epochs=FLAGS.lr_warmup_epochs)
    optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                        momentum=0.9,
                                        nesterov=True)
    metrics = {
        'train/negative_log_likelihood': tf.keras.metrics.Mean(),
        'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'train/loss': tf.keras.metrics.Mean(),
        'train/ece': ed.metrics.ExpectedCalibrationError(
            num_classes=num_classes, num_bins=FLAGS.num_bins),
        'test/negative_log_likelihood': tf.keras.metrics.Mean(),
        'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'test/ece': ed.metrics.ExpectedCalibrationError(
            num_classes=num_classes, num_bins=FLAGS.num_bins),
    }
    if FLAGS.corruptions_interval > 0:
      corrupt_metrics = {}
      for intensity in range(1, max_intensity + 1):
        for corruption in corruption_types:
          dataset_name = '{0}_{1}'.format(corruption, intensity)
          corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
              tf.keras.metrics.Mean())
          corrupt_metrics['test/accuracy_{}'.format(dataset_name)] = (
              tf.keras.metrics.SparseCategoricalAccuracy())
          corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
              ed.metrics.ExpectedCalibrationError(
                  num_classes=num_classes, num_bins=FLAGS.num_bins))

    checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
    latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
    initial_epoch = 0
    if latest_checkpoint:
      # checkpoint.restore must be within a strategy.scope() so that optimizer
      # slot variables are mirrored.
      checkpoint.restore(latest_checkpoint)
      logging.info('Loaded checkpoint %s', latest_checkpoint)
      initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

  @tf.function
  def train_step(iterator):
    """Training StepFn."""
    def step_fn(inputs):
      """Per-Replica StepFn."""
      images, labels = inputs
      with tf.GradientTape() as tape:
        logits = model(images, training=True)
        if FLAGS.use_bfloat16:
          logits = tf.cast(logits, tf.float32)
        negative_log_likelihood = tf.reduce_mean(
            tf.keras.losses.sparse_categorical_crossentropy(labels,
                                                            logits,
                                                            from_logits=True))
        l2_loss = sum(model.losses)
        loss = negative_log_likelihood + l2_loss
        # Scale the loss given the TPUStrategy will reduce sum all gradients.
        scaled_loss = loss / strategy.num_replicas_in_sync

      grads = tape.gradient(scaled_loss, model.trainable_variables)
      optimizer.apply_gradients(zip(grads, model.trainable_variables))

      probs = tf.nn.softmax(logits)
      metrics['train/ece'].update_state(labels, probs)
      metrics['train/loss'].update_state(loss)
      metrics['train/negative_log_likelihood'].update_state(
          negative_log_likelihood)
      metrics['train/accuracy'].update_state(labels, logits)

    strategy.experimental_run_v2(step_fn, args=(next(iterator),))

  @tf.function
  def test_step(iterator, dataset_name):
    """Evaluation StepFn."""
    def step_fn(inputs):
      """Per-Replica StepFn."""
      images, labels = inputs
      logits = model(images, training=False)
      if FLAGS.use_bfloat16:
        logits = tf.cast(logits, tf.float32)
      probs = tf.nn.softmax(logits)
      negative_log_likelihood = tf.reduce_mean(
          tf.keras.losses.sparse_categorical_crossentropy(labels, probs))

      if dataset_name == 'clean':
        metrics['test/negative_log_likelihood'].update_state(
            negative_log_likelihood)
        metrics['test/accuracy'].update_state(labels, probs)
        metrics['test/ece'].update_state(labels, probs)
      else:
        corrupt_metrics['test/nll_{}'.format(dataset_name)].update_state(
            negative_log_likelihood)
        corrupt_metrics['test/accuracy_{}'.format(dataset_name)].update_state(
            labels, probs)
        corrupt_metrics['test/ece_{}'.format(dataset_name)].update_state(
            labels, probs)

    strategy.experimental_run_v2(step_fn, args=(next(iterator),))

  train_iterator = iter(train_dataset)
  start_time = time.time()
  for epoch in range(initial_epoch, FLAGS.train_epochs):
    logging.info('Starting to run epoch: %s', epoch)
    for step in range(steps_per_epoch):
      train_step(train_iterator)

      current_step = epoch * steps_per_epoch + (step + 1)
      max_steps = steps_per_epoch * FLAGS.train_epochs
      time_elapsed = time.time() - start_time
      steps_per_sec = float(current_step) / time_elapsed
      eta_seconds = (max_steps - current_step) / steps_per_sec
      message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                 'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                     current_step / max_steps,
                     epoch + 1,
                     FLAGS.train_epochs,
                     steps_per_sec,
                     eta_seconds / 60,
                     time_elapsed / 60))
      if step % 20 == 0:
        logging.info(message)

    datasets_to_evaluate = {'clean': test_datasets['clean']}
    if (FLAGS.corruptions_interval > 0 and
        (epoch + 1) % FLAGS.corruptions_interval == 0):
      datasets_to_evaluate = test_datasets
    for dataset_name, test_dataset in datasets_to_evaluate.items():
      test_iterator = iter(test_dataset)
      logging.info('Testing on dataset %s', dataset_name)
      for step in range(steps_per_eval):
        if step % 20 == 0:
          logging.info('Starting to run eval step %s of epoch: %s', step,
                       epoch)
        test_step(test_iterator, dataset_name)
      logging.info('Done with testing on %s', dataset_name)

    corrupt_results = {}
    if (FLAGS.corruptions_interval > 0 and
        (epoch + 1) % FLAGS.corruptions_interval == 0):
      corrupt_results = utils.aggregate_corrupt_metrics(corrupt_metrics,
                                                        corruption_types,
                                                        max_intensity)

    logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                 metrics['train/loss'].result(),
                 metrics['train/accuracy'].result() * 100)
    logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                 metrics['test/negative_log_likelihood'].result(),
                 metrics['test/accuracy'].result() * 100)
    total_results = {name: metric.result() for name, metric in metrics.items()}
    total_results.update(corrupt_results)
    with summary_writer.as_default():
      for name, result in total_results.items():
        tf.summary.scalar(name, result, step=epoch + 1)

    for metric in metrics.values():
      metric.reset_states()

    if (FLAGS.checkpoint_interval > 0 and
        (epoch + 1) % FLAGS.checkpoint_interval == 0):
      checkpoint_name = checkpoint.save(
          os.path.join(FLAGS.output_dir, 'checkpoint'))
      logging.info('Saved checkpoint to %s', checkpoint_name)
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)

    train_input_fn = utils.load_input_fn(
        split=tfds.Split.TRAIN,
        name=FLAGS.dataset,
        batch_size=FLAGS.per_core_batch_size // FLAGS.ensemble_size,
        use_bfloat16=FLAGS.use_bfloat16)
    clean_test_input_fn = utils.load_input_fn(
        split=tfds.Split.TEST,
        name=FLAGS.dataset,
        batch_size=FLAGS.per_core_batch_size // FLAGS.ensemble_size,
        use_bfloat16=FLAGS.use_bfloat16)
    train_dataset = strategy.experimental_distribute_datasets_from_function(
        train_input_fn)
    test_datasets = {
        'clean':
        strategy.experimental_distribute_datasets_from_function(
            clean_test_input_fn),
    }
    if FLAGS.corruptions_interval > 0:
        if FLAGS.dataset == 'cifar10':
            load_c_input_fn = utils.load_cifar10_c_input_fn
        else:
            load_c_input_fn = functools.partial(utils.load_cifar100_c_input_fn,
                                                path=FLAGS.cifar100_c_path)
        corruption_types, max_intensity = utils.load_corrupted_test_info(
            FLAGS.dataset)
        for corruption in corruption_types:
            for intensity in range(1, max_intensity + 1):
                input_fn = load_c_input_fn(
                    corruption_name=corruption,
                    corruption_intensity=intensity,
                    batch_size=FLAGS.per_core_batch_size //
                    FLAGS.ensemble_size,
                    use_bfloat16=FLAGS.use_bfloat16)
                test_datasets['{0}_{1}'.format(corruption, intensity)] = (
                    strategy.experimental_distribute_datasets_from_function(
                        input_fn))

    ds_info = tfds.builder(FLAGS.dataset).info
    batch_size = ((FLAGS.per_core_batch_size // FLAGS.ensemble_size) *
                  FLAGS.num_cores)
    train_dataset_size = ds_info.splits['train'].num_examples
    steps_per_epoch = train_dataset_size // batch_size
    test_dataset_size = ds_info.splits['test'].num_examples
    steps_per_eval = test_dataset_size // batch_size
    num_classes = ds_info.features['label'].num_classes

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building Keras model')
        model = ub.models.wide_resnet_rank1(
            input_shape=ds_info.features['image'].shape,
            depth=28,
            width_multiplier=10,
            num_classes=num_classes,
            alpha_initializer=FLAGS.alpha_initializer,
            gamma_initializer=FLAGS.gamma_initializer,
            alpha_regularizer=FLAGS.alpha_regularizer,
            gamma_regularizer=FLAGS.gamma_regularizer,
            use_additive_perturbation=FLAGS.use_additive_perturbation,
            ensemble_size=FLAGS.ensemble_size,
            random_sign_init=FLAGS.random_sign_init,
            dropout_rate=FLAGS.dropout_rate,
            prior_mean=FLAGS.prior_mean,
            prior_stddev=FLAGS.prior_stddev)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Linearly scale learning rate and the decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 128
        lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200
                           for start_epoch_str in FLAGS.lr_decay_epochs]
        lr_schedule = utils.LearningRateSchedule(
            steps_per_epoch,
            base_lr,
            decay_ratio=FLAGS.lr_decay_ratio,
            decay_epochs=lr_decay_epochs,
            warmup_epochs=FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/kl': tf.keras.metrics.Mean(),
            'train/kl_scale': tf.keras.metrics.Mean(),
            'train/elbo': tf.keras.metrics.Mean(),
            'train/loss': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/kl': tf.keras.metrics.Mean(),
            'test/elbo': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
        }
        if FLAGS.ensemble_size > 1:
            for i in range(FLAGS.ensemble_size):
                metrics['test/nll_member_{}'.format(
                    i)] = tf.keras.metrics.Mean()
                metrics['test/accuracy_member_{}'.format(i)] = (
                    tf.keras.metrics.SparseCategoricalAccuracy())
        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/kl_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/elbo_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    def compute_l2_loss(model):
        filtered_variables = []
        for var in model.trainable_variables:
            # Apply l2 on the BN parameters and bias terms. This
            # excludes only fast weight approximate posterior/prior parameters,
            # but pay caution to their naming scheme.
            if ('kernel' in var.name or 'batch_norm' in var.name
                    or 'bias' in var.name):
                filtered_variables.append(tf.reshape(var, (-1, )))
        l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss(
            tf.concat(filtered_variables, axis=0))
        return l2_loss

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            if FLAGS.ensemble_size > 1:
                images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])
                labels = tf.tile(labels, [FLAGS.ensemble_size])

            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                negative_log_likelihood = tf.reduce_mean(
                    tf.keras.losses.sparse_categorical_crossentropy(
                        labels, logits, from_logits=True))
                l2_loss = compute_l2_loss(model)
                kl = sum(model.losses) / train_dataset_size
                kl_scale = tf.cast(optimizer.iterations + 1, kl.dtype)
                kl_scale /= steps_per_epoch * FLAGS.kl_annealing_epochs
                kl_scale = tf.minimum(1., kl_scale)
                kl_loss = kl_scale * kl

                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                loss = negative_log_likelihood + l2_loss + kl_loss
                scaled_loss = loss / strategy.num_replicas_in_sync
                elbo = -(negative_log_likelihood + l2_loss + kl)

            grads = tape.gradient(scaled_loss, model.trainable_variables)

            # Separate learning rate implementation.
            if FLAGS.fast_weight_lr_multiplier != 1.0:
                grads_and_vars = []
                for grad, var in zip(grads, model.trainable_variables):
                    # Apply different learning rate on the fast weight approximate
                    # posterior/prior parameters. This is excludes BN and slow weights,
                    # but pay caution to the naming scheme.
                    if ('kernel' not in var.name
                            and 'batch_norm' not in var.name
                            and 'bias' not in var.name):
                        grads_and_vars.append(
                            (grad * FLAGS.fast_weight_lr_multiplier, var))
                    else:
                        grads_and_vars.append((grad, var))
                optimizer.apply_gradients(grads_and_vars)
            else:
                optimizer.apply_gradients(zip(grads,
                                              model.trainable_variables))

            probs = tf.nn.softmax(logits)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/kl'].update_state(kl)
            metrics['train/kl_scale'].update_state(kl_scale)
            metrics['train/elbo'].update_state(elbo)
            metrics['train/loss'].update_state(loss)
            metrics['train/accuracy'].update_state(labels, probs)
            metrics['train/ece'].update_state(labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            if FLAGS.ensemble_size > 1:
                images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])
            logits = tf.reshape([
                model(images, training=False)
                for _ in range(FLAGS.num_eval_samples)
            ], [FLAGS.num_eval_samples, FLAGS.ensemble_size, -1, num_classes])
            if FLAGS.use_bfloat16:
                logits = tf.cast(logits, tf.float32)
            probs = tf.nn.softmax(logits)

            if FLAGS.ensemble_size > 1:
                per_probs = tf.reduce_mean(probs,
                                           axis=0)  # marginalize samples
                for i in range(FLAGS.ensemble_size):
                    member_probs = per_probs[i]
                    member_loss = tf.keras.losses.sparse_categorical_crossentropy(
                        labels, member_probs)
                    metrics['test/nll_member_{}'.format(i)].update_state(
                        member_loss)
                    metrics['test/accuracy_member_{}'.format(i)].update_state(
                        labels, member_probs)

            # Negative log marginal likelihood computed in a numerically-stable way.
            labels_broadcasted = tf.broadcast_to(
                labels,
                [FLAGS.num_eval_samples, FLAGS.ensemble_size, labels.shape[0]])
            log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy(
                labels_broadcasted, logits, from_logits=True)
            negative_log_likelihood = tf.reduce_mean(
                -tf.reduce_logsumexp(log_likelihoods, axis=[0, 1]) +
                tf.math.log(float(FLAGS.num_eval_samples *
                                  FLAGS.ensemble_size)))
            probs = tf.math.reduce_mean(probs, axis=[0, 1])  # marginalize

            l2_loss = compute_l2_loss(model)
            kl = sum(model.losses) / test_dataset_size
            elbo = -(negative_log_likelihood + l2_loss + kl)

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/kl'].update_state(kl)
                metrics['test/elbo'].update_state(elbo)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            else:
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/kl_{}'.format(
                    dataset_name)].update_state(kl)
                corrupt_metrics['test/elbo_{}'.format(
                    dataset_name)].update_state(elbo)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)

        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_step(test_iterator, dataset_name)
            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types, max_intensity)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        if FLAGS.ensemble_size > 1:
            for i in range(FLAGS.ensemble_size):
                logging.info(
                    'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i,
                    metrics['test/nll_member_{}'.format(i)].result(),
                    metrics['test/accuracy_member_{}'.format(i)].result() *
                    100)
        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)

    final_checkpoint_name = checkpoint.save(
        os.path.join(FLAGS.output_dir, 'checkpoint'))
    logging.info('Saved last checkpoint to %s', final_checkpoint_name)
Beispiel #3
0
def main(argv):
    del argv  # unused arg
    if not FLAGS.use_gpu:
        raise ValueError('Only GPU is currently supported.')
    if FLAGS.num_cores > 1:
        raise ValueError('Only a single accelerator is currently supported.')
    tf.enable_v2_behavior()
    tf.random.set_seed(FLAGS.seed)
    tf.io.gfile.makedirs(FLAGS.output_dir)

    ds_info = tfds.builder(FLAGS.dataset).info
    batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    steps_per_eval = ds_info.splits['test'].num_examples // batch_size
    num_classes = ds_info.features['label'].num_classes

    dataset_input_fn = utils.load_input_fn(
        split=tfds.Split.TEST,
        name=FLAGS.dataset,
        batch_size=FLAGS.per_core_batch_size,
        use_bfloat16=FLAGS.use_bfloat16)
    test_datasets = {'clean': dataset_input_fn()}
    corruption_types, max_intensity = utils.load_corrupted_test_info(
        FLAGS.dataset)
    for name in corruption_types:
        for intensity in range(1, max_intensity + 1):
            dataset_name = '{0}_{1}'.format(name, intensity)
            if FLAGS.dataset == 'cifar10':
                load_c_dataset = utils.load_cifar10_c_input_fn
            else:
                load_c_dataset = functools.partial(
                    utils.load_cifar100_c_input_fn, path=FLAGS.cifar100_c_path)
            corrupted_input_fn = load_c_dataset(
                corruption_name=name,
                corruption_intensity=intensity,
                batch_size=FLAGS.per_core_batch_size,
                use_bfloat16=FLAGS.use_bfloat16)
            test_datasets[dataset_name] = corrupted_input_fn()

    model = deterministic.wide_resnet(
        input_shape=ds_info.features['image'].shape,
        depth=28,
        width_multiplier=10,
        num_classes=num_classes,
        l2=0.,
        version=2)
    logging.info('Model input shape: %s', model.input_shape)
    logging.info('Model output shape: %s', model.output_shape)
    logging.info('Model number of weights: %s', model.count_params())

    # Search for checkpoints from their index file; then remove the index suffix.
    ensemble_filenames = tf.io.gfile.glob(
        os.path.join(FLAGS.checkpoint_dir, '**/*.index'))
    ensemble_filenames = [filename[:-6] for filename in ensemble_filenames]
    ensemble_size = len(ensemble_filenames)
    logging.info('Ensemble size: %s', ensemble_size)
    logging.info('Ensemble number of weights: %s',
                 ensemble_size * model.count_params())
    logging.info('Ensemble filenames: %s', str(ensemble_filenames))
    checkpoint = tf.train.Checkpoint(model=model)

    # Write model predictions to files.
    num_datasets = len(test_datasets)
    for m, ensemble_filename in enumerate(ensemble_filenames):
        checkpoint.restore(ensemble_filename)
        for n, (name, test_dataset) in enumerate(test_datasets.items()):
            filename = '{dataset}_{member}.npy'.format(dataset=name, member=m)
            filename = os.path.join(FLAGS.output_dir, filename)
            if not tf.io.gfile.exists(filename):
                logits = []
                test_iterator = iter(test_dataset)
                for _ in range(steps_per_eval):
                    features, _ = next(test_iterator)  # pytype: disable=attribute-error
                    logits.append(model(features, training=False))

                logits = tf.concat(logits, axis=0)
                with tf.io.gfile.GFile(filename, 'w') as f:
                    np.save(f, logits.numpy())
            percent = (m * num_datasets +
                       (n + 1)) / (ensemble_size * num_datasets)
            message = (
                '{:.1%} completion for prediction: ensemble member {:d}/{:d}. '
                'Dataset {:d}/{:d}'.format(percent, m + 1, ensemble_size,
                                           n + 1, num_datasets))
            logging.info(message)

    metrics = {
        'test/negative_log_likelihood': tf.keras.metrics.Mean(),
        'test/gibbs_cross_entropy': tf.keras.metrics.Mean(),
        'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'test/ece':
        ed.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
    }
    corrupt_metrics = {}
    for name in test_datasets:
        corrupt_metrics['test/nll_{}'.format(name)] = tf.keras.metrics.Mean()
        corrupt_metrics['test/accuracy_{}'.format(name)] = (
            tf.keras.metrics.SparseCategoricalAccuracy())
        corrupt_metrics['test/ece_{}'.format(name)] = (
            ed.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins))

    # Evaluate model predictions.
    for n, (name, test_dataset) in enumerate(test_datasets.items()):
        logits_dataset = []
        for m in range(ensemble_size):
            filename = '{dataset}_{member}.npy'.format(dataset=name, member=m)
            filename = os.path.join(FLAGS.output_dir, filename)
            with tf.io.gfile.GFile(filename, 'rb') as f:
                logits_dataset.append(np.load(f))

        logits_dataset = tf.convert_to_tensor(logits_dataset)
        test_iterator = iter(test_dataset)
        for step in range(steps_per_eval):
            _, labels = next(test_iterator)  # pytype: disable=attribute-error
            logits = logits_dataset[:, (step * batch_size):((step + 1) *
                                                            batch_size)]
            labels = tf.cast(labels, tf.int32)
            negative_log_likelihood = tf.reduce_mean(
                ensemble_negative_log_likelihood(labels, logits))
            per_probs = tf.nn.softmax(logits)
            probs = tf.reduce_mean(per_probs, axis=0)
            if name == 'clean':
                gibbs_ce = tf.reduce_mean(gibbs_cross_entropy(labels, logits))
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/gibbs_cross_entropy'].update_state(gibbs_ce)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            else:
                corrupt_metrics['test/nll_{}'.format(name)].update_state(
                    negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(name)].update_state(
                    labels, probs)
                corrupt_metrics['test/ece_{}'.format(name)].update_state(
                    labels, probs)

        message = (
            '{:.1%} completion for evaluation: dataset {:d}/{:d}'.format(
                (n + 1) / num_datasets, n + 1, num_datasets))
        logging.info(message)

    corrupt_results = utils.aggregate_corrupt_metrics(corrupt_metrics,
                                                      corruption_types,
                                                      max_intensity)
    total_results = {name: metric.result() for name, metric in metrics.items()}
    total_results.update(corrupt_results)
    logging.info('Metrics: %s', total_results)
Beispiel #4
0
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)

    train_input_fn = utils.load_input_fn(
        split=tfds.Split.TRAIN,
        name=FLAGS.dataset,
        batch_size=FLAGS.per_core_batch_size // FLAGS.batch_repetitions,
        use_bfloat16=FLAGS.use_bfloat16)
    clean_test_input_fn = utils.load_input_fn(
        split=tfds.Split.TEST,
        name=FLAGS.dataset,
        batch_size=FLAGS.per_core_batch_size,
        use_bfloat16=FLAGS.use_bfloat16)
    train_dataset = strategy.experimental_distribute_datasets_from_function(
        train_input_fn)
    test_datasets = {
        'clean':
        strategy.experimental_distribute_datasets_from_function(
            clean_test_input_fn),
    }
    if FLAGS.corruptions_interval > 0:
        if FLAGS.dataset == 'cifar10':
            load_c_input_fn = utils.load_cifar10_c_input_fn
        else:
            load_c_input_fn = functools.partial(utils.load_cifar100_c_input_fn,
                                                path=FLAGS.cifar100_c_path)
        corruption_types, max_intensity = utils.load_corrupted_test_info(
            FLAGS.dataset)
        for corruption in corruption_types:
            for intensity in range(1, max_intensity + 1):
                input_fn = load_c_input_fn(
                    corruption_name=corruption,
                    corruption_intensity=intensity,
                    batch_size=FLAGS.per_core_batch_size,
                    use_bfloat16=FLAGS.use_bfloat16)
                test_datasets['{0}_{1}'.format(corruption, intensity)] = (
                    strategy.experimental_distribute_datasets_from_function(
                        input_fn))

    ds_info = tfds.builder(FLAGS.dataset).info
    train_batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores // FLAGS.batch_repetitions
    test_batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    train_dataset_size = ds_info.splits['train'].num_examples
    steps_per_epoch = train_dataset_size // train_batch_size
    steps_per_eval = ds_info.splits['test'].num_examples // test_batch_size
    num_classes = ds_info.features['label'].num_classes

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building Keras model')
        model = ub.models.wide_resnet_mimo(
            input_shape=[FLAGS.ensemble_size] +
            list(ds_info.features['image'].shape),
            depth=28,
            width_multiplier=FLAGS.width_multiplier,
            num_classes=num_classes,
            ensemble_size=FLAGS.ensemble_size)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Linearly scale learning rate and the decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * train_batch_size / 128
        lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200
                           for start_epoch_str in FLAGS.lr_decay_epochs]
        lr_schedule = utils.LearningRateSchedule(steps_per_epoch, base_lr,
                                                 FLAGS.lr_decay_ratio,
                                                 lr_decay_epochs,
                                                 FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
        }
        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))

        for i in range(FLAGS.ensemble_size):
            metrics['test/nll_member_{}'.format(i)] = tf.keras.metrics.Mean()
            metrics['test/accuracy_member_{}'.format(i)] = (
                tf.keras.metrics.SparseCategoricalAccuracy())
        test_diversity = {
            'test/disagreement': tf.keras.metrics.Mean(),
            'test/average_kl': tf.keras.metrics.Mean(),
            'test/cosine_similarity': tf.keras.metrics.Mean(),
        }

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            batch_size = tf.shape(images)[0]

            main_shuffle = tf.random.shuffle(
                tf.tile(tf.range(batch_size), [FLAGS.batch_repetitions]))
            to_shuffle = tf.cast(
                tf.cast(tf.shape(main_shuffle)[0], tf.float32) *
                (1. - FLAGS.input_repetition_probability), tf.int32)
            shuffle_indices = [
                tf.concat([
                    tf.random.shuffle(main_shuffle[:to_shuffle]),
                    main_shuffle[to_shuffle:]
                ],
                          axis=0) for _ in range(FLAGS.ensemble_size)
            ]
            images = tf.stack([
                tf.gather(images, indices, axis=0)
                for indices in shuffle_indices
            ],
                              axis=1)
            labels = tf.stack([
                tf.gather(labels, indices, axis=0)
                for indices in shuffle_indices
            ],
                              axis=1)

            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)

                negative_log_likelihood = tf.reduce_mean(
                    tf.reduce_sum(
                        tf.keras.losses.sparse_categorical_crossentropy(
                            labels, logits, from_logits=True),
                        axis=1))
                filtered_variables = []
                for var in model.trainable_variables:
                    # Apply l2 on the BN parameters and bias terms.
                    if ('kernel' in var.name or 'batch_norm' in var.name
                            or 'bias' in var.name):
                        filtered_variables.append(tf.reshape(var, (-1, )))

                l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss(
                    tf.concat(filtered_variables, axis=0))

                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                loss = negative_log_likelihood + l2_loss
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            probs = tf.nn.softmax(tf.reshape(logits, [-1, num_classes]))
            flat_labels = tf.reshape(labels, [-1])
            metrics['train/ece'].update_state(flat_labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(flat_labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            images = tf.tile(tf.expand_dims(images, 1),
                             [1, FLAGS.ensemble_size, 1, 1, 1])
            logits = model(images, training=False)
            if FLAGS.use_bfloat16:
                logits = tf.cast(logits, tf.float32)
            probs = tf.nn.softmax(logits)

            if dataset_name == 'clean':
                per_probs = tf.transpose(probs, perm=[1, 0, 2])
                diversity_results = um.average_pairwise_diversity(
                    per_probs, FLAGS.ensemble_size)
                for k, v in diversity_results.items():
                    test_diversity['test/' + k].update_state(v)

            for i in range(FLAGS.ensemble_size):
                member_probs = probs[:, i]
                member_loss = tf.keras.losses.sparse_categorical_crossentropy(
                    labels, member_probs)
                metrics['test/nll_member_{}'.format(i)].update_state(
                    member_loss)
                metrics['test/accuracy_member_{}'.format(i)].update_state(
                    labels, member_probs)

            # Negative log marginal likelihood computed in a numerically-stable way.
            labels_tiled = tf.tile(tf.expand_dims(labels, 1),
                                   [1, FLAGS.ensemble_size])
            log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy(
                labels_tiled, logits, from_logits=True)
            negative_log_likelihood = tf.reduce_mean(
                -tf.reduce_logsumexp(log_likelihoods, axis=[1]) +
                tf.math.log(float(FLAGS.ensemble_size)))
            probs = tf.math.reduce_mean(probs, axis=1)  # marginalize

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            else:
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)

        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * (FLAGS.train_epochs)
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_start_time = time.time()
                test_step(test_iterator, dataset_name)
                ms_per_example = (time.time() -
                                  test_start_time) * 1e6 / test_batch_size
                metrics['test/ms_per_example'].update_state(ms_per_example)
            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types, max_intensity)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        for i in range(FLAGS.ensemble_size):
            logging.info(
                'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i,
                metrics['test/nll_member_{}'.format(i)].result(),
                metrics['test/accuracy_member_{}'.format(i)].result() * 100)

        metrics.update(test_diversity)
        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)

    final_checkpoint_name = checkpoint.save(
        os.path.join(FLAGS.output_dir, 'checkpoint'))
    logging.info('Saved last checkpoint to %s', final_checkpoint_name)
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)

    per_core_batch_size = FLAGS.per_core_batch_size // FLAGS.ensemble_size
    check_bool = FLAGS.train_proportion > 0 and FLAGS.train_proportion <= 1
    assert check_bool, 'Proportion of train set has to meet 0 < prop <= 1.'

    drop_remainder_validation = True
    if not FLAGS.use_gpu:
        # This has to be True for TPU traing, otherwise the batchsize of images in
        # the validation set can't be determined by TPU compile.
        assert drop_remainder_validation, 'drop_remainder must be True in TPU mode.'

    train_input_fn = utils.load_input_fn(split=tfds.Split.TRAIN,
                                         name=FLAGS.dataset,
                                         batch_size=per_core_batch_size,
                                         use_bfloat16=FLAGS.use_bfloat16,
                                         repeat=True,
                                         proportion=FLAGS.train_proportion)
    validation_proportion = 1 - FLAGS.train_proportion
    validation_input_fn = utils.load_input_fn(
        split=tfds.Split.VALIDATION,
        name=FLAGS.dataset,
        batch_size=per_core_batch_size,
        use_bfloat16=FLAGS.use_bfloat16,
        repeat=True,
        proportion=validation_proportion,
        drop_remainder=drop_remainder_validation)
    clean_test_input_fn = utils.load_input_fn(split=tfds.Split.TEST,
                                              name=FLAGS.dataset,
                                              batch_size=per_core_batch_size,
                                              use_bfloat16=FLAGS.use_bfloat16)
    train_dataset = strategy.experimental_distribute_datasets_from_function(
        train_input_fn)
    validation_dataset = strategy.experimental_distribute_datasets_from_function(
        validation_input_fn)
    test_datasets = {
        'clean':
        strategy.experimental_distribute_datasets_from_function(
            clean_test_input_fn),
    }
    if FLAGS.corruptions_interval > 0:
        if FLAGS.dataset == 'cifar10':
            load_c_input_fn = utils.load_cifar10_c_input_fn
        else:
            load_c_input_fn = functools.partial(utils.load_cifar100_c_input_fn,
                                                path=FLAGS.cifar100_c_path)
        corruption_types, max_intensity = utils.load_corrupted_test_info(
            FLAGS.dataset)
        for corruption in corruption_types:
            for intensity in range(1, max_intensity + 1):
                input_fn = load_c_input_fn(corruption_name=corruption,
                                           corruption_intensity=intensity,
                                           batch_size=per_core_batch_size,
                                           use_bfloat16=FLAGS.use_bfloat16)
                test_datasets['{0}_{1}'.format(corruption, intensity)] = (
                    strategy.experimental_distribute_datasets_from_function(
                        input_fn))

    ds_info = tfds.builder(FLAGS.dataset).info
    batch_size = per_core_batch_size * FLAGS.num_cores
    train_sample_size = ds_info.splits[
        'train'].num_examples * FLAGS.train_proportion
    steps_per_epoch = int(train_sample_size / batch_size)
    train_sample_size = int(train_sample_size)

    steps_per_eval = ds_info.splits['test'].num_examples // batch_size
    num_classes = ds_info.features['label'].num_classes

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    logging.info('Building Keras model.')
    depth = 28
    width = 10

    dict_ranges = {'min': FLAGS.min_l2_range, 'max': FLAGS.max_l2_range}
    ranges = [dict_ranges for _ in range(6)]  # 6 independent l2 parameters
    model_config = {
        'key_to_index': {
            'input_conv_l2_kernel': 0,
            'group_l2_kernel': 1,
            'group_1_l2_kernel': 2,
            'group_2_l2_kernel': 3,
            'dense_l2_kernel': 4,
            'dense_l2_bias': 5,
        },
        'ranges': ranges,
        'test': None
    }
    lambdas_config = LambdaConfig(model_config['ranges'],
                                  model_config['key_to_index'])

    if FLAGS.e_body_hidden_units > 0:
        e_body_arch = '({},)'.format(FLAGS.e_body_hidden_units)
    else:
        e_body_arch = '()'
    e_shared_arch = '()'
    e_activation = 'tanh'
    filters_resnet = [16]
    for i in range(0, 3):  # 3 groups of blocks
        filters_resnet.extend([16 * width * 2**i] *
                              9)  # 9 layers in each block
    # e_head dim for conv2d is just the number of filters (only
    # kernel) and twice num of classes for the last dense layer (kernel + bias)
    e_head_dims = [x for x in filters_resnet] + [2 * num_classes]

    with strategy.scope():
        e_models = e_factory(
            lambdas_config.input_shape,
            e_head_dims=e_head_dims,
            e_body_arch=eval(e_body_arch),  # pylint: disable=eval-used
            e_shared_arch=eval(e_shared_arch),  # pylint: disable=eval-used
            activation=e_activation,
            use_bias=FLAGS.e_model_use_bias,
            e_head_init=FLAGS.init_emodels_stddev)

        model = wide_resnet_hyperbatchensemble(
            input_shape=ds_info.features['image'].shape,
            depth=depth,
            width_multiplier=width,
            num_classes=num_classes,
            ensemble_size=FLAGS.ensemble_size,
            random_sign_init=FLAGS.random_sign_init,
            config=lambdas_config,
            e_models=e_models,
            l2_batchnorm_layer=FLAGS.l2_batchnorm,
            regularize_fast_weights=FLAGS.regularize_fast_weights,
            fast_weights_eq_contraint=FLAGS.fast_weights_eq_contraint,
            version=2)

        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # build hyper-batchensemble complete -------------------------

        # Initialize Lambda distributions for tuning
        lambdas_mean = tf.reduce_mean(
            log_uniform_mean([lambdas_config.log_min, lambdas_config.log_max]))
        lambdas0 = tf.random.normal((FLAGS.ensemble_size, lambdas_config.dim),
                                    lambdas_mean,
                                    0.1 * FLAGS.ens_init_delta_bounds)
        lower0 = lambdas0 - tf.constant(FLAGS.ens_init_delta_bounds)
        lower0 = tf.maximum(lower0, 1e-8)
        upper0 = lambdas0 + tf.constant(FLAGS.ens_init_delta_bounds)

        log_lower = tf.Variable(tf.math.log(lower0))
        log_upper = tf.Variable(tf.math.log(upper0))
        lambda_parameters = [log_lower, log_upper]  # these variables are tuned
        clip_lambda_parameters(lambda_parameters, lambdas_config)

        # Optimizer settings to train model weights
        # Linearly scale learning rate and the decay epochs by vanilla settings.
        # Note: Here, we don't divide the epochs by 200 as for the other uncertainty
        # baselines.
        base_lr = FLAGS.base_learning_rate * batch_size / 128
        lr_decay_epochs = [int(l) for l in FLAGS.lr_decay_epochs]

        lr_schedule = utils.LearningRateSchedule(
            steps_per_epoch,
            base_lr,
            decay_ratio=FLAGS.lr_decay_ratio,
            decay_epochs=lr_decay_epochs,
            warmup_epochs=FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)

        # tuner used for optimizing lambda_parameters
        tuner = tf.keras.optimizers.Adam(FLAGS.lr_tuning)

        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'train/disagreement': tf.keras.metrics.Mean(),
            'train/average_kl': tf.keras.metrics.Mean(),
            'train/cosine_similarity': tf.keras.metrics.Mean(),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/gibbs_nll': tf.keras.metrics.Mean(),
            'test/gibbs_accuracy':
            tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/disagreement': tf.keras.metrics.Mean(),
            'test/average_kl': tf.keras.metrics.Mean(),
            'test/cosine_similarity': tf.keras.metrics.Mean(),
            'validation/loss': tf.keras.metrics.Mean(),
            'validation/loss_entropy': tf.keras.metrics.Mean(),
            'validation/loss_ce': tf.keras.metrics.Mean()
        }
        corrupt_metrics = {}

        for i in range(FLAGS.ensemble_size):
            metrics['test/nll_member_{}'.format(i)] = tf.keras.metrics.Mean()
            metrics['test/accuracy_member_{}'.format(i)] = (
                tf.keras.metrics.SparseCategoricalAccuracy())
        if FLAGS.corruptions_interval > 0:
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))

        checkpoint = tf.train.Checkpoint(model=model,
                                         lambda_parameters=lambda_parameters,
                                         optimizer=optimizer)

        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint and FLAGS.restore_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])

            # generate lambdas
            lambdas = log_uniform_sample(per_core_batch_size,
                                         lambda_parameters)
            lambdas = tf.reshape(lambdas,
                                 (FLAGS.ensemble_size * per_core_batch_size,
                                  lambdas_config.dim))

            with tf.GradientTape() as tape:
                logits = model([images, lambdas], training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)

                if FLAGS.use_gibbs_ce:
                    # Average of single model CEs
                    # tiling of labels should be only done for Gibbs CE loss
                    labels = tf.tile(labels, [FLAGS.ensemble_size])
                    negative_log_likelihood = tf.reduce_mean(
                        tf.keras.losses.sparse_categorical_crossentropy(
                            labels, logits, from_logits=True))
                else:
                    # Ensemble CE uses no tiling of the labels
                    negative_log_likelihood = ensemble_crossentropy(
                        labels, logits, FLAGS.ensemble_size)
                # Note: Divide l2_loss by sample_size (this differs from uncertainty_
                # baselines implementation.)
                l2_loss = sum(model.losses) / train_sample_size
                loss = negative_log_likelihood + l2_loss
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)

            # Separate learning rate for fast weights.
            grads_and_vars = []
            for grad, var in zip(grads, model.trainable_variables):
                if (('alpha' in var.name or 'gamma' in var.name)
                        and 'batch_norm' not in var.name):
                    grads_and_vars.append(
                        (grad * FLAGS.fast_weight_lr_multiplier, var))
                else:
                    grads_and_vars.append((grad, var))
            optimizer.apply_gradients(grads_and_vars)

            probs = tf.nn.softmax(logits)
            per_probs = tf.split(probs,
                                 num_or_size_splits=FLAGS.ensemble_size,
                                 axis=0)
            per_probs_stacked = tf.stack(per_probs, axis=0)
            metrics['train/ece'].update_state(labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)
            diversity_results = um.average_pairwise_diversity(
                per_probs_stacked, FLAGS.ensemble_size)
            for k, v in diversity_results.items():
                metrics['train/' + k].update_state(v)

            if grads_and_vars:
                grads, _ = zip(*grads_and_vars)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def tuning_step(iterator):
        """Tuning StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])

            with tf.GradientTape(watch_accessed_variables=False) as tape:
                tape.watch(lambda_parameters)

                # sample lambdas
                if FLAGS.sample_and_tune:
                    lambdas = log_uniform_sample(per_core_batch_size,
                                                 lambda_parameters)
                else:
                    lambdas = log_uniform_mean(lambda_parameters)
                    lambdas = tf.repeat(lambdas, per_core_batch_size, axis=0)
                lambdas = tf.reshape(lambdas,
                                     (FLAGS.ensemble_size *
                                      per_core_batch_size, lambdas_config.dim))
                # ensemble CE
                logits = model([images, lambdas], training=False)
                ce = ensemble_crossentropy(labels, logits, FLAGS.ensemble_size)
                # entropy penalty for lambda distribution
                entropy = FLAGS.tau * log_uniform_entropy(lambda_parameters)
                loss = ce - entropy
                scaled_loss = loss / strategy.num_replicas_in_sync

            gradients = tape.gradient(loss, lambda_parameters)
            tuner.apply_gradients(zip(gradients, lambda_parameters))

            metrics['validation/loss_ce'].update_state(
                ce / strategy.num_replicas_in_sync)
            metrics['validation/loss_entropy'].update_state(
                entropy / strategy.num_replicas_in_sync)
            metrics['validation/loss'].update_state(scaled_loss)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            # Note that we don't use tf.tile for labels here
            images, labels = inputs
            images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])

            # get lambdas
            lambdas = log_uniform_mean(lambda_parameters)
            rep_lambdas = tf.repeat(lambdas, per_core_batch_size, axis=0)

            # eval on testsets
            logits = model([images, rep_lambdas], training=False)
            if FLAGS.use_bfloat16:
                logits = tf.cast(logits, tf.float32)
            probs = tf.nn.softmax(logits)
            per_probs = tf.split(probs,
                                 num_or_size_splits=FLAGS.ensemble_size,
                                 axis=0)

            # per member performance and gibbs performance (average per member perf)
            if dataset_name == 'clean':
                for i in range(FLAGS.ensemble_size):
                    member_probs = per_probs[i]
                    member_loss = tf.keras.losses.sparse_categorical_crossentropy(
                        labels, member_probs)
                    metrics['test/nll_member_{}'.format(i)].update_state(
                        member_loss)
                    metrics['test/accuracy_member_{}'.format(i)].update_state(
                        labels, member_probs)

                labels_tile = tf.tile(labels, [FLAGS.ensemble_size])
                metrics['test/gibbs_nll'].update_state(
                    tf.reduce_mean(
                        tf.keras.losses.sparse_categorical_crossentropy(
                            labels_tile, logits, from_logits=True)))
                metrics['test/gibbs_accuracy'].update_state(labels_tile, probs)

            # ensemble performance
            negative_log_likelihood = ensemble_crossentropy(
                labels, logits, FLAGS.ensemble_size)
            probs = tf.reduce_mean(per_probs, axis=0)
            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            else:
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)

            if dataset_name == 'clean':
                per_probs_stacked = tf.stack(per_probs, axis=0)
                diversity_results = um.average_pairwise_diversity(
                    per_probs_stacked, FLAGS.ensemble_size)
                for k, v in diversity_results.items():
                    metrics['test/' + k].update_state(v)

        strategy.run(step_fn, args=(next(iterator), ))

    logging.info('--- Starting training using %d examples. ---',
                 train_sample_size)
    train_iterator = iter(train_dataset)
    validation_iterator = iter(validation_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)
            do_tuning = (epoch >= FLAGS.tuning_warmup_epochs)
            if do_tuning and ((step + 1) % FLAGS.tuning_every_x_step == 0):
                tuning_step(validation_iterator)
                # clip lambda parameters if outside of range
                clip_lambda_parameters(lambda_parameters, lambdas_config)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        # evaluate on test data
        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_step(test_iterator, dataset_name)
            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types, max_intensity)
        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Validation Loss: %.4f, CE: %.4f, Entropy: %.4f',
                     metrics['validation/loss'].result(),
                     metrics['validation/loss_ce'].result(),
                     metrics['validation/loss_entropy'].result())
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        for i in range(FLAGS.ensemble_size):
            logging.info(
                'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i,
                metrics['test/nll_member_{}'.format(i)].result(),
                metrics['test/accuracy_member_{}'.format(i)].result() * 100)

        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update({
            name: metric.result()
            for name, metric in corrupt_metrics.items()
        })
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        # save checkpoint and lambdas config
        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            lambdas_cf = lambdas_config.get_config()
            filepath = os.path.join(FLAGS.output_dir, 'lambdas_config.p')
            with tf.io.gfile.GFile(filepath, 'wb') as fp:
                pickle.dump(lambdas_cf, fp, protocol=pickle.HIGHEST_PROTOCOL)
            logging.info('Saved checkpoint to %s', checkpoint_name)
Beispiel #6
0
def main(argv):
    del argv  # unused arg
    if FLAGS.num_cores > 1:
        raise ValueError('Only a single accelerator is currently supported.')
    tf.enable_v2_behavior()
    tf.random.set_seed(FLAGS.seed)

    dataset_input_fn = utils.load_input_fn(tfds.Split.TEST,
                                           FLAGS.per_core_batch_size,
                                           name=FLAGS.dataset,
                                           use_bfloat16=False,
                                           normalize=True,
                                           drop_remainder=True,
                                           proportion=1.0)
    test_datasets = {'clean': dataset_input_fn()}

    ds_info = tfds.builder(FLAGS.dataset).info
    num_classes = ds_info.features['label'].num_classes
    model = deterministic.wide_resnet(
        input_shape=ds_info.features['image'].shape,
        depth=28,
        width_multiplier=10,
        num_classes=num_classes,
        l2=0.,
        version=2)
    logging.info('Model input shape: %s', model.input_shape)
    logging.info('Model output shape: %s', model.output_shape)
    logging.info('Model number of weights: %s', model.count_params())

    # Search for checkpoints from their index file; then remove the index suffix.
    ensemble_filenames = tf.io.gfile.glob(
        os.path.join(FLAGS.output_dir, '**/*.index'))
    ensemble_filenames = [filename[:-6] for filename in ensemble_filenames]
    ensemble_size = len(ensemble_filenames)
    logging.info('Ensemble size: %s', ensemble_size)
    logging.info('Ensemble number of weights: %s',
                 ensemble_size * model.count_params())
    logging.info('Ensemble filenames: %s', str(ensemble_filenames))
    checkpoint = tf.train.Checkpoint(model=model)

    # Collect the logits output for each ensemble member and train/test data
    # point. We also collect the labels.
    # TODO(trandustin): Refactor data loader so you can get the full dataset in
    # memory without looping.
    logits_test = {'clean': []}
    labels_test = {'clean': []}
    corruption_types, max_intensity = utils.load_corrupted_test_info(
        FLAGS.dataset)
    for name in corruption_types:
        for intensity in range(1, max_intensity + 1):
            dataset_name = '{0}_{1}'.format(name, intensity)
            logits_test[dataset_name] = []
            labels_test[dataset_name] = []

            if FLAGS.dataset == 'cifar10':
                load_c_dataset = utils.load_cifar10_c_input_fn
            else:
                load_c_dataset = functools.partial(
                    utils.load_cifar100_c_input_fn, path=FLAGS.cifar100_c_path)
            corrupted_input_fn = load_c_dataset(
                corruption_name=name,
                corruption_intensity=intensity,
                batch_size=FLAGS.per_core_batch_size,
                use_bfloat16=False)
            test_datasets[dataset_name] = corrupted_input_fn()

    for m, ensemble_filename in enumerate(ensemble_filenames):
        checkpoint.restore(ensemble_filename)
        logging.info('Working on test data for ensemble member %s', m)
        for name, test_dataset in test_datasets.items():
            logits = []
            for features, labels in test_dataset:
                logits.append(model(features, training=False))
                if m == 0:
                    labels_test[name].append(labels)

            logits = tf.concat(logits, axis=0)
            logits_test[name].append(logits)
            if m == 0:
                labels_test[name] = tf.concat(labels_test[name], axis=0)
            logging.info('Finished testing on %s', format(name))

    metrics = {
        'test/ece':
        ed.metrics.ExpectedCalibrationError(num_classes=num_classes,
                                            num_bins=15)
    }
    corrupt_metrics = {}
    for name in test_datasets:
        corrupt_metrics['test/ece_{}'.format(
            name)] = ed.metrics.ExpectedCalibrationError(
                num_classes=num_classes, num_bins=15)
        corrupt_metrics['test/nll_{}'.format(name)] = tf.keras.metrics.Mean()
        corrupt_metrics['test/accuracy_{}'.format(
            name)] = tf.keras.metrics.Mean()

    for name, test_dataset in test_datasets.items():
        labels = labels_test[name]
        logits = logits_test[name]
        nll_test = ensemble_negative_log_likelihood(labels, logits)
        gibbs_ce_test = gibbs_cross_entropy(labels_test[name],
                                            logits_test[name])
        labels = tf.cast(labels, tf.int32)
        logits = tf.convert_to_tensor(logits)
        per_probs = tf.nn.softmax(logits)
        probs = tf.reduce_mean(per_probs, axis=0)
        accuracy = tf.keras.metrics.sparse_categorical_accuracy(labels, probs)
        if name == 'clean':
            metrics['test/negative_log_likelihood'] = tf.reduce_mean(nll_test)
            metrics['test/gibbs_cross_entropy'] = tf.reduce_mean(gibbs_ce_test)
            metrics['test/accuracy'] = tf.reduce_mean(accuracy)
            metrics['test/ece'].update_state(labels, probs)
        else:
            corrupt_metrics['test/nll_{}'.format(name)].update_state(
                tf.reduce_mean(nll_test))
            corrupt_metrics['test/accuracy_{}'.format(name)].update_state(
                tf.reduce_mean(accuracy))
            corrupt_metrics['test/ece_{}'.format(name)].update_state(
                labels, probs)

    corrupt_results = {}
    corrupt_results = utils.aggregate_corrupt_metrics(corrupt_metrics,
                                                      corruption_types,
                                                      max_intensity)
    metrics['test/ece'] = metrics['test/ece'].result()
    total_results = {name: metric for name, metric in metrics.items()}
    total_results.update(corrupt_results)
    logging.info('Metrics: %s', total_results)
Beispiel #7
0
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)

    aug_params = {
        'augmix': FLAGS.augmix,
        'aug_count': FLAGS.aug_count,
        'augmix_depth': FLAGS.augmix_depth,
        'augmix_prob_coeff': FLAGS.augmix_prob_coeff,
        'augmix_width': FLAGS.augmix_width,
        'ensemble_size': 1,
        'mixup_alpha': FLAGS.mixup_alpha,
    }
    train_input_fn = data_utils.load_input_fn(
        split=tfds.Split.TRAIN,
        name=FLAGS.dataset,
        batch_size=FLAGS.per_core_batch_size //
        FLAGS.num_dropout_samples_training,
        use_bfloat16=FLAGS.use_bfloat16,
        aug_params=aug_params)
    clean_test_input_fn = utils.load_input_fn(
        split=tfds.Split.TEST,
        name=FLAGS.dataset,
        batch_size=FLAGS.per_core_batch_size,
        use_bfloat16=FLAGS.use_bfloat16)
    train_dataset = strategy.experimental_distribute_datasets_from_function(
        train_input_fn)
    test_datasets = {
        'clean':
        strategy.experimental_distribute_datasets_from_function(
            clean_test_input_fn),
    }
    if FLAGS.corruptions_interval > 0:
        if FLAGS.dataset == 'cifar10':
            load_c_input_fn = utils.load_cifar10_c_input_fn
        else:
            load_c_input_fn = functools.partial(utils.load_cifar100_c_input_fn,
                                                path=FLAGS.cifar100_c_path)
        corruption_types, max_intensity = utils.load_corrupted_test_info(
            FLAGS.dataset)
        for corruption in corruption_types:
            for intensity in range(1, max_intensity + 1):
                input_fn = load_c_input_fn(
                    corruption_name=corruption,
                    corruption_intensity=intensity,
                    batch_size=FLAGS.per_core_batch_size,
                    use_bfloat16=FLAGS.use_bfloat16)
                test_datasets['{0}_{1}'.format(corruption, intensity)] = (
                    strategy.experimental_distribute_datasets_from_function(
                        input_fn))

    ds_info = tfds.builder(FLAGS.dataset).info
    batch_size = (FLAGS.per_core_batch_size * FLAGS.num_cores //
                  FLAGS.num_dropout_samples_training)
    steps_per_epoch = ds_info.splits['train'].num_examples // batch_size
    steps_per_eval = ds_info.splits['test'].num_examples // batch_size
    num_classes = ds_info.features['label'].num_classes

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building ResNet model')
        if FLAGS.use_spec_norm:
            logging.info('Use Spectral Normalization with norm bound %.2f',
                         FLAGS.spec_norm_bound)
        if FLAGS.use_gp_layer:
            logging.info('Use GP layer with hidden units %d',
                         FLAGS.gp_hidden_dim)

        model = ub.models.wide_resnet_sngp(
            input_shape=ds_info.features['image'].shape,
            batch_size=batch_size,
            depth=28,
            width_multiplier=10,
            num_classes=num_classes,
            l2=FLAGS.l2,
            use_mc_dropout=FLAGS.use_mc_dropout,
            dropout_rate=FLAGS.dropout_rate,
            use_gp_layer=FLAGS.use_gp_layer,
            gp_input_dim=FLAGS.gp_input_dim,
            gp_hidden_dim=FLAGS.gp_hidden_dim,
            gp_scale=FLAGS.gp_scale,
            gp_bias=FLAGS.gp_bias,
            gp_input_normalization=FLAGS.gp_input_normalization,
            gp_cov_discount_factor=FLAGS.gp_cov_discount_factor,
            gp_cov_ridge_penalty=FLAGS.gp_cov_ridge_penalty,
            use_spec_norm=FLAGS.use_spec_norm,
            spec_norm_iteration=FLAGS.spec_norm_iteration,
            spec_norm_bound=FLAGS.spec_norm_bound)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Linearly scale learning rate and the decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 128
        lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200
                           for start_epoch_str in FLAGS.lr_decay_epochs]
        lr_schedule = utils.LearningRateSchedule(
            steps_per_epoch,
            base_lr,
            decay_ratio=FLAGS.lr_decay_ratio,
            decay_epochs=lr_decay_epochs,
            warmup_epochs=FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/stddev': tf.keras.metrics.Mean(),
        }
        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))
                    corrupt_metrics['test/stddev_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            if FLAGS.augmix and FLAGS.aug_count >= 1:
                # Index 0 at augmix preprocessing is the unperturbed image.
                images = images[:, 1, ...]
                # This is for the case of combining AugMix and Mixup.
                if FLAGS.mixup_alpha > 0:
                    labels = tf.split(labels, FLAGS.aug_count + 1, axis=0)[1]
            images = tf.tile(images,
                             [FLAGS.num_dropout_samples_training, 1, 1, 1])
            if FLAGS.mixup_alpha > 0:
                labels = tf.tile(labels,
                                 [FLAGS.num_dropout_samples_training, 1])
            else:
                labels = tf.tile(labels, [FLAGS.num_dropout_samples_training])

            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if isinstance(logits, tuple):
                    # If model returns a tuple of (logits, covmat), extract logits
                    logits, _ = logits
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                if FLAGS.mixup_alpha > 0:
                    negative_log_likelihood = tf.reduce_mean(
                        tf.keras.losses.categorical_crossentropy(
                            labels, logits, from_logits=True))
                else:
                    negative_log_likelihood = tf.reduce_mean(
                        tf.keras.losses.sparse_categorical_crossentropy(
                            labels, logits, from_logits=True))

                l2_loss = sum(model.losses)
                loss = negative_log_likelihood + l2_loss
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            probs = tf.nn.softmax(logits)
            if FLAGS.mixup_alpha > 0:
                labels = tf.argmax(labels, axis=-1)
            metrics['train/ece'].update_state(labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs

            logits_list = []
            stddev_list = []
            for _ in range(FLAGS.num_dropout_samples):
                logits = model(images, training=False)
                if isinstance(logits, tuple):
                    # If model returns a tuple of (logits, covmat), extract both
                    logits, covmat = logits
                else:
                    covmat = tf.eye(FLAGS.per_core_batch_size)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                logits = ed.layers.utils.mean_field_logits(
                    logits,
                    covmat,
                    mean_field_factor=FLAGS.gp_mean_field_factor)
                stddev = tf.sqrt(tf.linalg.diag_part(covmat))

                stddev_list.append(stddev)
                logits_list.append(logits)

            # Logits dimension is (num_samples, batch_size, num_classes).
            logits_list = tf.stack(logits_list, axis=0)
            stddev_list = tf.stack(stddev_list, axis=0)

            stddev = tf.reduce_mean(stddev_list, axis=0)
            probs_list = tf.nn.softmax(logits_list)
            probs = tf.reduce_mean(probs_list, axis=0)

            labels_broadcasted = tf.broadcast_to(
                labels, [FLAGS.num_dropout_samples, labels.shape[0]])
            log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy(
                labels_broadcasted, logits_list, from_logits=True)
            negative_log_likelihood = tf.reduce_mean(
                -tf.reduce_logsumexp(log_likelihoods, axis=[0]) +
                tf.math.log(float(FLAGS.num_dropout_samples)))

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
                metrics['test/stddev'].update_state(stddev)
            else:
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/stddev_{}'.format(
                    dataset_name)].update_state(stddev)

        strategy.run(step_fn, args=(next(iterator), ))

    metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_start_time = time.time()
                test_step(test_iterator, dataset_name)
                ms_per_example = (time.time() -
                                  test_start_time) * 1e6 / batch_size
                metrics['test/ms_per_example'].update_state(ms_per_example)

            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types, max_intensity)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)

    final_checkpoint_name = checkpoint.save(
        os.path.join(FLAGS.output_dir, 'checkpoint'))
    logging.info('Saved last checkpoint to %s', final_checkpoint_name)

    final_save_name = os.path.join(FLAGS.output_dir, 'model')
    model.save(final_save_name)
    logging.info('Saved model to %s', final_save_name)