Beispiel #1
0
    def __init__(self, path, dataset, num_nodes, num_rels, set_name):
        data, times = utils.load_quadruples(path + dataset, set_name + '.txt')
        true_prob_s, true_prob_r, true_prob_o = utils.get_true_distributions(
            path, data, num_nodes, num_rels, dataset, set_name)
        times = torch.from_numpy(times)
        self.len = len(times)
        if torch.cuda.is_available():
            true_prob_s = true_prob_s.cuda()
            true_prob_r = true_prob_r.cuda()
            true_prob_o = true_prob_o.cuda()
            times = times.cuda()

        self.times = times
        self.true_prob_s = true_prob_s
        self.true_prob_r = true_prob_r
        self.true_prob_o = true_prob_o
Beispiel #2
0
def test(args):
    # load data
    num_nodes, num_rels = utils.get_total_number('./data/' + args.dataset,
                                                 'stat.txt')
    if args.dataset == 'icews_know':
        train_data, train_times = utils.load_quadruples(
            './data/' + args.dataset, 'train.txt')
        valid_data, valid_times = utils.load_quadruples(
            './data/' + args.dataset, 'test.txt')
        test_data, test_times = utils.load_quadruples('./data/' + args.dataset,
                                                      'test.txt')
        total_data, total_times = utils.load_quadruples(
            './data/' + args.dataset, 'train.txt', 'test.txt')
    else:
        train_data, train_times = utils.load_quadruples(
            './data/' + args.dataset, 'train.txt')
        valid_data, valid_times = utils.load_quadruples(
            './data/' + args.dataset, 'valid.txt')
        test_data, test_times = utils.load_quadruples('./data/' + args.dataset,
                                                      'test.txt')
        total_data, total_times = utils.load_quadruples(
            './data/' + args.dataset, 'train.txt', 'valid.txt', 'test.txt')
    # check cuda
    use_cuda = args.gpu >= 0 and torch.cuda.is_available()
    if use_cuda:
        torch.cuda.set_device(args.gpu)
        torch.cuda.manual_seed_all(999)

    model_state_file = 'models/' + args.dataset + '/rgcn.pth'
    model_graph_file = 'models/' + args.dataset + '/rgcn_graph.pth'
    model_state_global_file2 = 'models/' + args.dataset + '/max' + str(
        args.maxpool) + 'rgcn_global2.pth'

    model = RENet(num_nodes,
                  args.n_hidden,
                  num_rels,
                  model=args.model,
                  seq_len=args.seq_len,
                  num_k=args.num_k)
    global_model = RENet_global(num_nodes,
                                args.n_hidden,
                                num_rels,
                                model=args.model,
                                seq_len=args.seq_len,
                                num_k=args.num_k,
                                maxpool=args.maxpool)

    if use_cuda:
        model.cuda()
        global_model.cuda()

    with open('data/' + args.dataset + '/test_history_sub.txt', 'rb') as f:
        s_history_test_data = pickle.load(f)
    with open('data/' + args.dataset + '/test_history_ob.txt', 'rb') as f:
        o_history_test_data = pickle.load(f)

    s_history_test = s_history_test_data[0]
    s_history_test_t = s_history_test_data[1]
    o_history_test = o_history_test_data[0]
    o_history_test_t = o_history_test_data[1]

    print("\nstart testing:")

    checkpoint = torch.load(model_state_file,
                            map_location=lambda storage, loc: storage)
    model.load_state_dict(checkpoint['state_dict'])
    model.s_hist_test = checkpoint['s_hist']
    model.s_his_cache = checkpoint['s_cache']
    model.o_hist_test = checkpoint['o_hist']
    model.o_his_cache = checkpoint['o_cache']
    model.latest_time = checkpoint['latest_time']
    if args.dataset == "icews_know":
        model.latest_time = torch.LongTensor([4344])[0]
    model.global_emb = checkpoint['global_emb']
    model.s_hist_test_t = checkpoint['s_hist_t']
    model.s_his_cache_t = checkpoint['s_cache_t']
    model.o_hist_test_t = checkpoint['o_hist_t']
    model.o_his_cache_t = checkpoint['o_cache_t']
    with open(model_graph_file, 'rb') as f:
        model.graph_dict = pickle.load(f)

    checkpoint_global = torch.load(model_state_global_file2,
                                   map_location=lambda storage, loc: storage)
    global_model.load_state_dict(checkpoint_global['state_dict'])

    print("Using best epoch: {}".format(checkpoint['epoch']))

    total_data = torch.from_numpy(total_data)
    test_data = torch.from_numpy(test_data)

    model.eval()
    global_model.eval()
    total_loss = 0
    total_ranks = np.array([])
    total_ranks_filter = np.array([])
    ranks = []
    for ee in range(num_nodes):
        while len(model.s_hist_test[ee]) > args.seq_len:
            model.s_hist_test[ee].pop(0)
            model.s_hist_test_t[ee].pop(0)
        while len(model.o_hist_test[ee]) > args.seq_len:
            model.o_hist_test[ee].pop(0)
            model.o_hist_test_t[ee].pop(0)

    if use_cuda:
        total_data = total_data.cuda()

    latest_time = test_times[0]
    for i in range(len(test_data)):
        batch_data = test_data[i]
        s_hist = s_history_test[i]
        o_hist = o_history_test[i]
        if args.model == 3:
            s_hist_t = s_history_test_t[i]
            o_hist_t = o_history_test_t[i]
        if latest_time != batch_data[3]:
            ranks.append(total_ranks_filter)
            latest_time = batch_data[3]
            total_ranks_filter = np.array([])

        if use_cuda:
            batch_data = batch_data.cuda()

        with torch.no_grad():
            # Filtered metric
            if args.raw:
                ranks_filter, loss = model.evaluate(batch_data,
                                                    (s_hist, s_hist_t),
                                                    (o_hist, o_hist_t),
                                                    global_model)
            else:
                ranks_filter, loss = model.evaluate_filter(
                    batch_data, (s_hist, s_hist_t), (o_hist, o_hist_t),
                    global_model, total_data)

            total_ranks_filter = np.concatenate(
                (total_ranks_filter, ranks_filter))
            total_loss += loss.item()

    ranks.append(total_ranks_filter)

    for rank in ranks:
        total_ranks = np.concatenate((total_ranks, rank))
    mrr = np.mean(1.0 / total_ranks)
    mr = np.mean(total_ranks)
    hits = []

    for hit in [1, 3, 10]:
        avg_count = np.mean((total_ranks <= hit))
        hits.append(avg_count)
        print("Hits (filtered) @ {}: {:.6f}".format(hit, avg_count))
    print("MRR (filtered): {:.6f}".format(mrr))
    print("MR (filtered): {:.6f}".format(mr))
Beispiel #3
0
def train(args):
    # load data
    num_nodes, num_rels = utils.get_total_number('./data/' + args.dataset,
                                                 'stat.txt')
    train_data, train_times = utils.load_quadruples('./data/' + args.dataset,
                                                    'train.txt')
    valid_data, valid_times = utils.load_quadruples('./data/' + args.dataset,
                                                    'valid.txt')
    total_data, total_times = utils.load_quadruples('./data/' + args.dataset,
                                                    'train.txt', 'valid.txt',
                                                    'test.txt')

    # check cuda
    use_cuda = args.gpu >= 0 and torch.cuda.is_available()
    if use_cuda:
        torch.cuda.set_device(args.gpu)
        torch.cuda.manual_seed_all(999)

    os.makedirs('models', exist_ok=True)
    if args.model == 0:
        model_state_file = 'models/' + args.dataset + 'attn.pth'
    elif args.model == 1:
        model_state_file = 'models/' + args.dataset + 'mean.pth'
    elif args.model == 2:
        model_state_file = 'models/' + args.dataset + 'gcn.pth'

    print("start training...")
    model = RENet(num_nodes,
                  args.n_hidden,
                  num_rels,
                  dropout=args.dropout,
                  model=args.model,
                  seq_len=args.seq_len)

    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=0.00001)

    if use_cuda:
        model.cuda()
    with open('./data/' + args.dataset + '/train_history_sub.txt', 'rb') as f:
        s_history = pickle.load(f)
    with open('./data/' + args.dataset + '/train_history_ob.txt', 'rb') as f:
        o_history = pickle.load(f)

    with open('./data/' + args.dataset + '/dev_history_sub.txt', 'rb') as f:
        s_history_valid = pickle.load(f)
    with open('./data/' + args.dataset + '/dev_history_ob.txt', 'rb') as f:
        o_history_valid = pickle.load(f)
    valid_data = torch.from_numpy(valid_data)

    epoch = 0
    best_mrr = 0
    while True:
        model.train()
        if epoch == args.max_epochs:
            break
        epoch += 1
        loss_epoch = 0
        t0 = time.time()

        train_data, s_history, o_history = shuffle(train_data, s_history,
                                                   o_history)
        i = 0
        for batch_data, s_hist, o_hist in utils.make_batch(
                train_data, s_history, o_history, args.batch_size):
            batch_data = torch.from_numpy(batch_data)
            if use_cuda:
                batch_data = batch_data.cuda()

            loss = model.get_loss(batch_data, s_hist, o_hist)

            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(),
                                           args.grad_norm)  # clip gradients
            optimizer.step()
            optimizer.zero_grad()
            loss_epoch += loss.item()
            i += 1

        t3 = time.time()

        print("Epoch {:04d} | Loss {:.4f} | time {:.4f}".format(
            epoch, loss_epoch / (len(train_data) / args.batch_size), t3 - t0))

        if epoch % 1 == 0:
            model.eval()
            total_loss = 0
            total_ranks = np.array([])
            model.init_history()
            model.latest_time = valid_data[0][3]

            for i in range(len(valid_data)):
                batch_data = valid_data[i]
                s_hist = s_history_valid[i]
                o_hist = o_history_valid[i]

                if use_cuda:
                    batch_data = batch_data.cuda()

                with torch.no_grad():
                    ranks, loss = model.evaluate(batch_data, s_hist, o_hist)
                    total_ranks = np.concatenate((total_ranks, ranks))
                    total_loss += loss.item()

            mrr = np.mean(1.0 / total_ranks)
            mr = np.mean(total_ranks)
            hits = []
            for hit in [1, 3, 10]:
                avg_count = np.mean((total_ranks <= hit))
                hits.append(avg_count)
                print("valid Hits (raw) @ {}: {:.6f}".format(hit, avg_count))
            print("valid MRR (raw): {:.6f}".format(mrr))
            print("valid MR (raw): {:.6f}".format(mr))
            print("valid Loss: {:.6f}".format(total_loss / (len(valid_data))))

            if mrr > best_mrr:
                best_mrr = mrr
                torch.save(
                    {
                        'state_dict': model.state_dict(),
                        'epoch': epoch,
                        's_hist': model.s_hist_test,
                        's_cache': model.s_his_cache,
                        'o_hist': model.o_hist_test,
                        'o_cache': model.o_his_cache,
                        'latest_time': model.latest_time
                    }, model_state_file)

    print("training done")
Beispiel #4
0
def train(args):
    # load data
    num_nodes, num_rels = utils.get_total_number('./data/' + args.dataset, 'stat.txt')
    if args.dataset == 'icews_know':
        train_data, train_times = utils.load_quadruples('./data/' + args.dataset, 'train.txt')
        valid_data, valid_times = utils.load_quadruples('./data/' + args.dataset, 'test.txt')
        test_data, test_times = utils.load_quadruples('./data/' + args.dataset, 'test.txt')
        total_data, total_times = utils.load_quadruples('./data/' + args.dataset, 'train.txt', 'test.txt')
    else:
        train_data, train_times = utils.load_quadruples('./data/' + args.dataset, 'train.txt')
        valid_data, valid_times = utils.load_quadruples('./data/' + args.dataset, 'valid.txt')
        test_data, test_times = utils.load_quadruples('./data/' + args.dataset, 'test.txt')
        total_data, total_times = utils.load_quadruples('./data/' + args.dataset, 'train.txt', 'valid.txt','test.txt')

    # check cuda
    use_cuda = args.gpu >= 0 and torch.cuda.is_available()
    seed = 999
    np.random.seed(seed)
    torch.manual_seed(seed)
    if use_cuda:
        torch.cuda.set_device(args.gpu)

    os.makedirs('models', exist_ok=True)
    os.makedirs('models/'+ args.dataset, exist_ok=True)

    model_state_file = 'models/' + args.dataset + '/rgcn.pth'
    model_graph_file = 'models/' + args.dataset + '/rgcn_graph.pth'
    model_state_global_file2 = 'models/' + args.dataset + '/max' + str(args.maxpool) + 'rgcn_global2.pth'
    model_state_global_file = 'models/' + args.dataset + '/max' + str(args.maxpool) + 'rgcn_global.pth'
    model_state_file_backup = 'models/' + args.dataset + '/rgcn_backup.pth'

    print("start training...")
    model = RENet(num_nodes,
                    args.n_hidden,
                    num_rels,
                    dropout=args.dropout,
                    model=args.model,
                    seq_len=args.seq_len,
                    num_k=args.num_k)

    global_model = RENet_global(num_nodes,
                         args.n_hidden,
                         num_rels,
                         dropout=args.dropout,
                         model=args.model,
                         seq_len=args.seq_len,
                         num_k=args.num_k, maxpool=args.maxpool)

    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=0.00001)

    checkpoint_global = torch.load(model_state_global_file, map_location=lambda storage, loc: storage)
    global_model.load_state_dict(checkpoint_global['state_dict'])
    global_emb = checkpoint_global['global_emb']
    model.global_emb = global_emb
    if use_cuda:
        model.cuda()
        global_model.cuda()
    train_sub = '/train_history_sub.txt'
    train_ob = '/train_history_ob.txt'
    if args.dataset == 'icews_know':
        valid_sub = '/test_history_sub.txt'
        valid_ob = '/test_history_ob.txt'
    else:
        valid_sub = '/dev_history_sub.txt'
        valid_ob = '/dev_history_ob.txt'
    with open('./data/' + args.dataset+'/train_graphs.txt', 'rb') as f:
        graph_dict = pickle.load(f)
    model.graph_dict = graph_dict

    with open('data/' + args.dataset+'/test_history_sub.txt', 'rb') as f:
        s_history_test_data = pickle.load(f)
    with open('data/' + args.dataset+'/test_history_ob.txt', 'rb') as f:
        o_history_test_data = pickle.load(f)

    s_history_test = s_history_test_data[0]
    s_history_test_t = s_history_test_data[1]
    o_history_test = o_history_test_data[0]
    o_history_test_t = o_history_test_data[1]

    with open('./data/' + args.dataset+train_sub, 'rb') as f:
        s_history_data = pickle.load(f)
    with open('./data/' + args.dataset+train_ob, 'rb') as f:
        o_history_data = pickle.load(f)

    with open('./data/' + args.dataset+valid_sub, 'rb') as f:
        s_history_valid_data = pickle.load(f)
    with open('./data/' + args.dataset+valid_ob, 'rb') as f:
        o_history_valid_data = pickle.load(f)
    valid_data = torch.from_numpy(valid_data)

    s_history = s_history_data[0]
    s_history_t = s_history_data[1]
    o_history = o_history_data[0]
    o_history_t = o_history_data[1]
    s_history_valid = s_history_valid_data[0]
    s_history_valid_t = s_history_valid_data[1]
    o_history_valid = o_history_valid_data[0]
    o_history_valid_t = o_history_valid_data[1]

    total_data = torch.from_numpy(total_data)
    if use_cuda:
        total_data = total_data.cuda()


    epoch = 0
    best_mrr = 0
    while True:
        print('training starting')
        model.train()
        if epoch == args.max_epochs:
            break
        epoch += 1
        loss_epoch = 0
        t0 = time.time()
        print('training time captured')
        train_data_shuffle, s_history_shuffle, s_history_t_shuffle, o_history_shuffle, o_history_t_shuffle = shuffle(train_data, s_history, s_history_t, o_history, o_history_t)
        print('training data formatted')

        for batch_data, s_hist, s_hist_t, o_hist, o_hist_t in utils.make_batch2(train_data_shuffle, s_history_shuffle, s_history_t_shuffle, o_history_shuffle, o_history_t_shuffle, args.batch_size):
            # break
            batch_data = torch.from_numpy(batch_data).long()
            if use_cuda:
                batch_data = batch_data.cuda()
            print('batch instance preprocessing')
            loss_s = model(batch_data, (s_hist, s_hist_t), (o_hist, o_hist_t), graph_dict, subject=True)
            loss_o = model(batch_data, (s_hist, s_hist_t), (o_hist, o_hist_t), graph_dict, subject=False)
            loss = loss_s + loss_o
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_norm)  # clip gradients
            optimizer.step()
            optimizer.zero_grad()
            loss_epoch += loss.item()



        t3 = time.time()
        print("Epoch {:04d} | Loss {:.4f} | time {:.4f}".
              format(epoch, loss_epoch/(len(train_data)/args.batch_size), t3 - t0))

        ## VALIDATION
        if epoch % args.valid_every == 0 and epoch >= int(args.max_epochs/2):
            model.eval()
            global_model.eval()
            total_loss = 0
            total_ranks = np.array([])
            model.init_history(train_data, (s_history, s_history_t), (o_history, o_history_t), valid_data,
                           (s_history_valid, s_history_valid_t), (o_history_valid, o_history_valid_t), test_data,
                           (s_history_test, s_history_test_t), (o_history_test, o_history_test_t))
            model.latest_time = valid_data[0][3]

            for i in range(len(valid_data)):
                batch_data = valid_data[i]
                s_hist = s_history_valid[i]
                o_hist = o_history_valid[i]
                s_hist_t = s_history_valid_t[i]
                o_hist_t = o_history_valid_t[i]

                if use_cuda:
                    batch_data = batch_data.cuda()

                with torch.no_grad():
                    ranks, loss = model.evaluate_filter(batch_data, (s_hist, s_hist_t), (o_hist, o_hist_t), global_model, total_data)
                    total_ranks = np.concatenate((total_ranks, ranks))
                    total_loss += loss.item()

            mrr = np.mean(1.0 / total_ranks)
            mr = np.mean(total_ranks)
            hits = []
            for hit in [1, 3, 10]:
                avg_count = np.mean((total_ranks <= hit))
                hits.append(avg_count)
                print("valid Hits (filtered) @ {}: {:.6f}".format(hit, avg_count))
            print("valid MRR (filtered): {:.6f}".format(mrr))
            print("valid MR (filtered): {:.6f}".format(mr))
            print("valid Loss: {:.6f}".format(total_loss / (len(valid_data))))

            if mrr > best_mrr:
                best_mrr = mrr
                torch.save({'state_dict': model.state_dict(), 'epoch': epoch,
                        's_hist': model.s_hist_test, 's_cache': model.s_his_cache,
                        'o_hist': model.o_hist_test, 'o_cache': model.o_his_cache,
                        's_hist_t': model.s_hist_test_t, 's_cache_t': model.s_his_cache_t,
                        'o_hist_t': model.o_hist_test_t, 'o_cache_t': model.o_his_cache_t,
                        'latest_time': model.latest_time, 'global_emb': model.global_emb},
                       model_state_file)
                torch.save({'state_dict': global_model.state_dict(), 'epoch': epoch,
                            's_hist': model.s_hist_test, 's_cache': model.s_his_cache,
                            'o_hist': model.o_hist_test, 'o_cache': model.o_his_cache,
                            's_hist_t': model.s_hist_test_t, 's_cache_t': model.s_his_cache_t,
                            'o_hist_t': model.o_hist_test_t, 'o_cache_t': model.o_his_cache_t,
                            'latest_time': model.latest_time, 'global_emb': global_model.global_emb},
                           model_state_global_file2)
                with open(model_graph_file, 'wb') as fp:
                    pickle.dump(model.graph_dict, fp)

    print("training done")
Beispiel #5
0
def test(args):
    # load data
    num_nodes, num_rels = utils.get_total_number('./data/' + args.dataset,
                                                 'stat.txt')
    test_data, test_times = utils.load_quadruples('./data/' + args.dataset,
                                                  'test.txt')
    total_data, total_times = utils.load_quadruples('./data/' + args.dataset,
                                                    'train.txt', 'valid.txt',
                                                    'test.txt')
    # check cuda
    use_cuda = args.gpu >= 0 and torch.cuda.is_available()
    if use_cuda:
        torch.cuda.set_device(args.gpu)
        torch.cuda.manual_seed_all(999)

    os.makedirs('models', exist_ok=True)
    if args.model == 0:
        model_state_file = 'models/' + args.dataset + 'attn.pth'
    elif args.model == 1:
        model_state_file = 'models/' + args.dataset + 'mean.pth'
    elif args.model == 2:
        model_state_file = 'models/' + args.dataset + 'gcn.pth'

    model = RENet(num_nodes,
                  args.n_hidden,
                  num_rels,
                  model=args.model,
                  seq_len=args.seq_len)

    if use_cuda:
        model.cuda()

    with open('./data/' + args.dataset + '/test_history_sub.txt', 'rb') as f:
        s_history_test = pickle.load(f)
    with open('./data/' + args.dataset + '/test_history_ob.txt', 'rb') as f:
        o_history_test = pickle.load(f)

    print("\nstart testing:")

    checkpoint = torch.load(model_state_file,
                            map_location=lambda storage, loc: storage)
    model.load_state_dict(checkpoint['state_dict'])
    model.s_hist_test = checkpoint['s_hist']
    model.s_his_cache = checkpoint['s_cache']
    model.o_hist_test = checkpoint['o_hist']
    model.o_his_cache = checkpoint['o_cache']
    model.latest_time = checkpoint['latest_time']

    print("Using best epoch: {}".format(checkpoint['epoch']))

    total_data = torch.from_numpy(total_data)
    test_data = torch.from_numpy(test_data)

    model.eval()
    total_loss = 0
    total_ranks = np.array([])
    total_ranks_filter = np.array([])
    ranks = []

    if use_cuda:
        total_data = total_data.cuda()

    latest_time = test_times[0]
    for i in range(len(test_data)):
        batch_data = test_data[i]
        s_hist = s_history_test[i]
        o_hist = o_history_test[i]
        if latest_time != batch_data[3]:
            ranks.append(total_ranks_filter)
            latest_time = batch_data[3]
            total_ranks_filter = np.array([])

        if use_cuda:
            batch_data = batch_data.cuda()

        with torch.no_grad():
            # Raw metric
            # ranks_filter, loss = model.evaluate(batch_data, s_hist, o_hist)

            # Filtered metric
            ranks_filter, loss = model.evaluate_filter(batch_data, s_hist,
                                                       o_hist, total_data)

            total_ranks_filter = np.concatenate(
                (total_ranks_filter, ranks_filter))
            total_loss += loss.item()

    ranks.append(total_ranks_filter)

    for rank in ranks:
        total_ranks = np.concatenate((total_ranks, rank))
    mrr = np.mean(1.0 / total_ranks)
    mr = np.mean(total_ranks)
    hits = []

    for hit in [1, 3, 10]:
        avg_count = np.mean((total_ranks <= hit))
        hits.append(avg_count)
        print("Hits (filtered) @ {}: {:.6f}".format(hit, avg_count))
    print("MRR (filtered): {:.6f}".format(mrr))
    print("MR (filtered): {:.6f}".format(mr))
Beispiel #6
0
def train(args):
    # load data
    num_nodes, num_rels = utils.get_total_number('./data/' + args.dataset,
                                                 'stat.txt')
    train_data, train_times_origin = utils.load_quadruples(
        './data/' + args.dataset, 'train.txt')

    # check cuda
    use_cuda = args.gpu >= 0 and torch.cuda.is_available()
    seed = 999
    np.random.seed(seed)
    torch.manual_seed(seed)
    if use_cuda:
        torch.cuda.set_device(args.gpu)

    os.makedirs('models', exist_ok=True)
    os.makedirs('models/' + args.dataset, exist_ok=True)
    if args.model == 0:
        model_state_file = 'models/' + args.dataset + 'attn.pth'
    elif args.model == 1:
        model_state_file = 'models/' + args.dataset + 'mean.pth'
    elif args.model == 2:
        model_state_file = 'models/' + args.dataset + 'gcn.pth'
    elif args.model == 3:
        model_state_file = 'models/' + args.dataset + '/max' + str(
            args.maxpool) + 'rgcn_global.pth'
        # model_graph_file = 'models/' + args.dataset + 'rgcn_graph.pth'
        model_state_file_backup = 'models/' + args.dataset + '/max' + str(
            args.maxpool) + 'rgcn__global_backup.pth'
        # model_graph_file_backup = 'models/' + args.dataset + 'rgcn_graph_backup.pth'

    print("start training...")
    model = RENet_global(num_nodes,
                         args.n_hidden,
                         num_rels,
                         dropout=args.dropout,
                         model=args.model,
                         seq_len=args.seq_len,
                         num_k=args.num_k,
                         maxpool=args.maxpool)

    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=0.00001)

    if use_cuda:
        model.cuda()

    # train_times = torch.from_numpy(train_times)
    with open('./data/' + args.dataset + '/train_graphs.txt', 'rb') as f:
        graph_dict = pickle.load(f)

    true_prob_s, true_prob_o = utils.get_true_distribution(
        train_data, num_nodes)

    epoch = 0
    loss_small = 10000
    while True:
        model.train()
        if epoch == args.max_epochs:
            break
        epoch += 1
        loss_epoch = 0
        t0 = time.time()
        # print(graph_dict.keys())
        # print(train_times_origin)

        train_times, true_prob_s, true_prob_o = shuffle(
            train_times_origin, true_prob_s, true_prob_o)

        for batch_data, true_s, true_o in utils.make_batch(
                train_times, true_prob_s, true_prob_o, args.batch_size):

            batch_data = torch.from_numpy(batch_data)
            true_s = torch.from_numpy(true_s)
            true_o = torch.from_numpy(true_o)
            if use_cuda:
                batch_data = batch_data.cuda()
                true_s = true_s.cuda()
                true_o = true_o.cuda()

            loss = model(batch_data, true_s, true_o, graph_dict)
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(),
                                           args.grad_norm)  # clip gradients
            optimizer.step()
            optimizer.zero_grad()
            loss_epoch += loss.item()

        t3 = time.time()
        model.global_emb = model.get_global_emb(train_times_origin, graph_dict)
        print("Epoch {:04d} | Loss {:.4f} | time {:.4f}".format(
            epoch, loss_epoch / (len(train_times) / args.batch_size), t3 - t0))
        if loss_epoch < loss_small:
            loss_small = loss_epoch
            if args.model == 3:
                torch.save(
                    {
                        'state_dict': model.state_dict(),
                        'global_emb': model.global_emb
                    }, model_state_file)
                # with open(model_graph_file, 'wb') as fp:
                #     pickle.dump(model.graph_dict, fp)
            else:
                torch.save(
                    {
                        'state_dict': model.state_dict(),
                        'epoch': epoch,
                        's_hist': model.s_hist_test,
                        's_cache': model.s_his_cache,
                        'o_hist': model.o_hist_test,
                        'o_cache': model.o_his_cache,
                        'latest_time': model.latest_time
                    }, model_state_file)

    print("training done")