def io(): global serial_no ws = request.environ['wsgi.websocket'] if not ws: abort(400) logger = utils.logger_init('%s/%s.json' % (LOGS_PATH, serial_no)) results = utils.logger_init('%s/%s.json' % (RESULTS_PATH, serial_no)) if UI_DEBUG: time.sleep(0.1) utils.websocket_send(ws, '{"tester":"DI","result":true}', results) time.sleep(0.1) utils.websocket_send(ws, '{"tester":"ADC","result":true}', results) time.sleep(0.1) utils.websocket_send(ws, '{"tester":"UART","result":true}', results) time.sleep(0.1) utils.websocket_send(ws, '{"tester":"I2C","result":true}', results) time.sleep(0.1) utils.websocket_send(ws, '{"tester":"9-Axis","result":true}', results) time.sleep(0.1) utils.websocket_send(ws, '{"tester":"Airpressure","result":true}', results) time.sleep(0.1) utils.websocket_send(ws, '{"tester":"Charger","result":true}', results) else: com = utils.command_open() tester.tester_io(com, logger, results, ws) utils.command_close(com) utils.logger_term(logger) utils.logger_term(results) return 'OK'
def rtc(): ws = request.environ['wsgi.websocket'] if not ws: abort(400) logger = utils.logger_init('%s/%s.json' % (LOGS_PATH, serial_no)) results = utils.logger_init('%s/%s.json' % (RESULTS_PATH, serial_no)) if UI_DEBUG: utils.websocket_send(ws, '{"tester":"RTC","result":true,"seconds":120}', results) else: com = utils.command_open() tester.tester_rtc(com, logger, results, ws) utils.command_close(com) utils.logger_term(results) utils.logger_term(logger) return 'OK'
def __init__(self, output_dir): self.output_dir = output_dir os.makedirs(output_dir, exist_ok=True) filehandler, consolehandler = logger_init(output_dir, logging.DEBUG) self.setup_fretboard() self.tab_got()
def __init__(self): # Logger self.logger = logger_init() # Use Cuda Config.cuda = True self.device = None if Config.cuda and torch.cuda.is_available(): self.device = torch.device('cuda') else: self.device = torch.device('cpu') ################## Data ################### # Load Sparse Adjacency Matrix file_name = 'adj_input.pkl' (data, rows, columns, vocab_dict) = pd.read_pickle(file_name) id_word_map = {v: k for k, v in vocab_dict.items()} rel_list = ['ISA'] num_entities = len(vocab_dict) num_relations = len(rel_list) # Build the adjacency matrix and remove the edges which fre < 10. rows = rows + [i for i in range(num_entities)] columns = columns + [i for i in range(num_entities)] data = data + [1 for i in range(num_entities)] adjs = coo_matrix((data, (rows, columns)), shape=(num_entities, num_entities)).toarray() # only hyponym-hypernym candidate pairs observed more than 10 times are used to create a noisy graph. adjs = np.where(adjs >= 10, 1, 0) self.adjs = torch.FloatTensor(adjs).to(device=self.device) del rows del columns del data # Use X as index for the randomly initialized embeddings self.X = torch.LongTensor([i for i in range(num_entities) ]).to(device=self.device) # Load the word embedding if we use it. self.word_embs = load_embeddings(vocab_dict).to(device=self.device) logging.info('Finished the preprocessing') ################## Model, Optimizer, LossFunction ################### self.model = GRAPH2TAXO(num_entities, num_relations).to(device=self.device) self.opt = torch.optim.Adam(self.model.parameters(), lr=Config.learning_rate, weight_decay=Config.L2) self.f1_loss = F1_Loss().to(device=self.device) ################## Part of Hyperparameters ################### # Hyperparameters for the constraints self.lambda_A = 1.0 # 1.0 self.c_A = 0.5 # 0.5 self.tau_A = 1.0 # 1.0
def __init__(self, db_name, db_path=None, logger=None): if db_path is not None: # hax if path contains db name full_db_name = db_path.replace(db_name, '') + db_name else: full_db_name = db_name if logger is None: logger = logger_init('DB_log') self.logger = logger self.db_name = db_name # full name - with path self._full_db_name = full_db_name self._db_connector = None
def power(): global serial_no ws = request.environ['wsgi.websocket'] if not ws: abort(400) ws.receive() logger = utils.logger_init('%s/%s.json' % (LOGS_PATH, serial_no), 'wb') results = utils.logger_init('%s/%s.json' % (RESULTS_PATH, serial_no)) if UI_DEBUG: time.sleep(0.5) utils.websocket_send(ws, '{"tester":"Current","result":true}', results) time.sleep(0.5) utils.websocket_send(ws, '{"tester":"Voltage","result":true}', results) else: com = utils.command_open() if com: tz_power.check(com, ws, logger, results) utils.command_close(com) else: utils.websocket_send(ws, '{"tester":"Current","result":false}', results) utils.websocket_send(ws, '{"tester":"Voltage","result":false}', results) utils.logger_term(logger) utils.logger_term(results) return 'OK'
def ble(): global serial_no ws = request.environ['wsgi.websocket'] if not ws: abort(400) results = utils.logger_init('%s/%s.json' % (RESULTS_PATH, serial_no)) if UI_DEBUG: time.sleep(1) utils.websocket_send(ws, '{"tester":"BLE","result":true,"RSSI":-50}', results) else: com = utils.command_open() tester.tester_ble(com, results, ws) utils.command_close(com) utils.logger_term(results) return 'OK'
def term(): ws = request.environ['wsgi.websocket'] if not ws: abort(400) results = utils.logger_init('%s/%s.json' % (RESULTS_PATH, serial_no)) if UI_DEBUG: pass else: com = utils.command_open() tester.tester_terminate(com) #ファームウェア停止 firm_writer.erase_tester(com) #ファームウェア消去 tz_power.off(com) #USB電源OFF utils.command_close(com) utils.websocket_send(ws, '{"tester":"Terminated","result":true}', results) utils.logger_term(results) return 'OK'
def tz1_firm(): global serial_no ws = request.environ['wsgi.websocket'] if not ws: abort(400) results = utils.logger_init('%s/%s.json' % (RESULTS_PATH, serial_no)) if UI_DEBUG: utils.websocket_send(ws, '{"tester":"TZ1Firm","result":true}', results) else: com = utils.command_open() if firm_writer.write_tester(com): utils.websocket_send(ws, '{"tester":"TZ1Firm","result":true}', results) else: utils.websocket_send(ws, '{"tester":"TZ1Firm","result":false}', results) utils.command_close(com) utils.logger_term(results) return 'OK'
def start(): global serial_no ws = request.environ['wsgi.websocket'] msg = '' if not ws: abort(400) serial_no = ws.receive() if serial_no.startswith('TZ1'): msg = '{"tester":"Start","result":true, "serial_no":"%s"}' % serial_no else: serial_no = 'invalid_serial' msg = '{"tester":"Start","result":false, "serial_no":"%s"}' % serial_no results = utils.logger_init('%s/%s.json' % (RESULTS_PATH, serial_no), 'wb') utils.websocket_send(ws, msg, results) utils.logger_term(results) return 'OK'
import logging from utils import logger_init def viewImage(image): cv2.namedWindow('Display', cv2.WINDOW_NORMAL) cv2.imshow('Display', image) cv2.waitKey(0) cv2.destroyAllWindows() if __name__ == '__main__': output_dir = 'output' os.makedirs(output_dir, exist_ok=True) fileHandler, consoleHandler = logger_init(output_dir, logging.DEBUG) ## Read # img_path = 'assets/leaf.jpeg' img_path = 'data/guitar/test/2019-05-28-085835_1.jpg' img_name = os.path.basename(img_path).split('.')[0] img_gbr = cv2.imread(img_path) cv2.imwrite(os.path.join(output_dir, img_name + '_0' + '.jpg'), img_gbr) hsv_img = cv2.cvtColor(img_gbr, cv2.COLOR_BGR2HSV) cv2.imwrite(os.path.join(output_dir, img_name + '_1' + '.jpg'), hsv_img) green_low = np.array([45, 100, 50]) green_high = np.array([75, 255, 255]) curr_mask = cv2.inRange(hsv_img, green_low, green_high) hsv_img[curr_mask > 0] = ([75, 255, 200])
def main(params, args, arch): #def main(args, i): # set number of threads in pytorch torch.set_num_threads(6) # select which gpu to use logger_init(args) # set gpu if args.GPU: torch.cuda.set_device(args.gpu) # the default settings for correspdonding dataset args = default_search_hyper(args) # hyperOpt = {"lr":[0.00635456700742798, 0.0049700352658686425, 0.0023726642982752643], # "lamb":[3.162503061522238e-05, 1.9567149674424395e-05, 1.0729611255307008e-05], # "d":[512, 512, 512], # "dr":[0.9933500551931267, 0.9903909316509071, 0.9933910046627364], # "batch_size":[256, 256, 256]} # # args.lr = hyperOpt["lr"][i] # args.lamb = hyperOpt["lamb"][i] # args.n_dim = hyperOpt["d"][i] # args.decay_rate = hyperOpt["dr"][i] # args.n_batch = hyperOpt["batch_size"][i] # load data # read nary data if args.n_arity > 2: d = nary_dataloader(args.task_dir) entity_idxs = {d.entities[i]: i for i in range(len(d.entities))} relation_idxs = {d.relations[i]: i for i in range(len(d.relations))} n_ent, n_rel = len(entity_idxs), len(relation_idxs) print("Number of train:{}, valid:{}, test:{}.".format( len(d.train_data), len(d.valid_data), len(d.test_data))) train_data = torch.LongTensor( get_data_idxs(d.train_data, entity_idxs, relation_idxs)) valid_data = torch.LongTensor( get_data_idxs(d.valid_data, entity_idxs, relation_idxs)) test_data = torch.LongTensor( get_data_idxs(d.test_data, entity_idxs, relation_idxs)) e1_sp, e2_sp, e3_sp = n_ary_heads(train_data, valid_data, test_data) # train_data = torch.LongTensor(get_data_idxs(d.train_data, entity_idxs, relation_idxs))[0:512] # valid_data = torch.LongTensor(get_data_idxs(d.valid_data, entity_idxs, relation_idxs))[0:512] # test_data = torch.LongTensor(get_data_idxs(d.test_data, entity_idxs, relation_idxs))[0:512] else: loader = DataLoader(args.task_dir) n_ent, n_rel = loader.graph_size() train_data = loader.load_data('train') valid_data = loader.load_data('valid') test_data = loader.load_data('test') print("Number of train:{}, valid:{}, test:{}.".format( len(train_data[0]), len(valid_data[0]), len(test_data[0]))) heads, tails = loader.heads_tails() train_data = torch.LongTensor(train_data).transpose(0, 1) #[0:512] valid_data = torch.LongTensor(valid_data).transpose(0, 1) #[0:512] test_data = torch.LongTensor(test_data).transpose(0, 1) #[0:512] file_path = "search_nary" + "_" + str(args.num_blocks) directory = os.path.join("results", args.dataset, file_path) args.out_dir = directory if not os.path.exists(directory): os.makedirs(directory) os.environ["OMP_NUM_THREADS"] = "4" os.environ["MKL_NUM_THREADS"] = "4" args.perf_file = os.path.join( directory, args.dataset + '_search_nCP_nary_' + str(args.num_blocks) + "_" + str(args.trial) + '.txt') print('output file name:', args.perf_file) args.lr = params["lr"] args.decay_rate = params["decay_rate"] args.n_batch = params["n_batch"] #args.n_dim = params["n_dim"] args.input_dropout = params["input_dropout"] args.hidden_dropout = params["hidden_dropout"] #args.lamb = params["lamb"] plot_config(args) def tester_val(facts=None, arch=None): if args.n_arity == 2: return model.test_link(test_data=valid_data, n_ent=n_ent, heads=heads, tails=tails, filt=args.filter, arch=arch) elif args.n_arity > 2: return model.evaluate(valid_data, e1_sp, e2_sp, e3_sp, arch) def tester_tst(): if args.n_arity == 2: return model.test_link(test_data=test_data, n_ent=n_ent, heads=heads, tails=tails, filt=args.filter) elif args.n_arity > 2: return model.evaluate(test_data, e1_sp, e2_sp, e3_sp) tester_trip_class = None model = BaseModel(n_ent, n_rel, args, arch) mrr = model.train(train_data, valid_data, tester_val, tester_tst, tester_trip_class) return mrr
from data_process.dnn_DataLoader import LoadData from data_process.bert_DataLoader import BertDataGenerator from data_process.siamesebert_DataLoader import SiameseDataGenerator from model import SiameseCnnModel, SiameseRnnModel, SiameseBertModel, BertModel from utils import logger_init, Evaluator, cal_acc from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.models import load_model, Model import pandas as pd import argparse from bert4keras.backend import set_gelu # 初始化logging logger = logger_init() MODEL_CLASS = { "siamese_CNN": SiameseCnnModel, "siamese_RNN": SiameseRnnModel, "siamese_bert": SiameseBertModel, "albert": BertModel } def train(args): if "bert" in args.model_type: set_gelu("tanh") # 切换gelu版本 # Step1: Load Data data_generator = None
torch.set_num_threads(5) dataset = args.task_dir.split('/')[-1] directory = os.path.join('results', args.model) if not os.path.exists(directory): os.makedirs(directory) args.out_dir = directory args.perf_file = os.path.join( directory, '_'.join([dataset, args.sample, args.update]) + args.out_file_info + '.txt') args.stat_file = os.path.join( directory, '_'.join([dataset, args.sample, args.update]) + '.stat') print('output file name:', args.perf_file, args.stat_file) logger_init(args) task_dir = args.task_dir loader = DataLoader(task_dir, args.N_1) n_ent, n_rel = loader.graph_size() train_data = loader.load_data('train') valid_data = loader.load_data('valid') test_data = loader.load_data('test') args.n_train = len(train_data[0]) print("Number of train:{}, valid:{}, test:{}.".format( len(train_data[0]), len(valid_data[0]), len(test_data[0]))) plot_config(args)