def i_logp(self, index): """ Evaluates the log-probability of the Markov blanket of a stochastic owning a particular index. """ all_relevant_stochastics = set() p,i = self.stochastic_indices[index] try: return p.logp + logp_of_set(p.extended_children) except ZeroProbability: return -Inf
def get_logp_plus_loglike(self): return logp_of_set(self.variables_with_logp)
def _get_logp_plus_loglike(self): sum = logp_of_set(self.markov_blanket) if self.verbose>1: print '\t' + self._id + ' Current log-likelihood plus current log-probability', sum return sum
def _get_loglike(self): # Fetch log-probability (as sum of childrens' log probability) sum = logp_of_set(self.children) if self.verbose>1: print '\t' + self._id + ' Current log-likelihood ', sum return sum