Beispiel #1
0
def encode_arithmetic(model, enc, message, context, finish_sent=False, device='cuda', temp=1.0, precision=16, topk=50000):

    context = torch.tensor(context[-1022:], device=device, dtype=torch.long)

    max_val = 2**precision
    threshold = 2**(-precision)
    cur_interval = [0, max_val] # bottom inclusive, top exclusive

    prev = context
    output = context
    past = None

    total_num = 0
    total_num_for_stats = 0
    total_log_probs = 0
    total_kl = 0 # in bits
    total_entropy_ptau = 0
    total_num_sents = 0

    with torch.no_grad():
        i = 0
        sent_finish = False
        while i < len(message) or (finish_sent and not sent_finish):
            logits, past = model(prev.unsqueeze(0), past=past)
            past = limit_past(past)
            logits[0, -1, -1] = -1e20 # endoftext token can't happen
            logits[0, -1, 628] = -1e20 # 2 newlines token can't happen
            logits, indices = logits[0, -1, :].sort(descending=True)
            logits = logits.double()
            logits_temp = logits / temp
            probs_temp = F.softmax(logits_temp, dim=0)
            log_probs_temp = F.log_softmax(logits_temp, dim=0)
            log_probs = F.log_softmax(logits, dim=0)
            
            # conditions for having reached the end of the message
            if i >= len(message):
                selection = 0
                sent_finish = is_sent_finish(indices[selection].item(), enc)
            else:
                # Cutoff low probabilities that would be rounded to 0
                cur_int_range = cur_interval[1]-cur_interval[0]
                cur_threshold = 1/cur_int_range
                k = min(max(2, (probs_temp < cur_threshold).nonzero()[0].item()), topk)
                probs_temp_int = probs_temp[:k] # Cutoff all but top k

                # Rescale to correct range
                probs_temp_int = probs_temp_int/probs_temp_int.sum()*cur_int_range

                # Round probabilities to integers given precision
                probs_temp_int = probs_temp_int.round().long()
                cum_probs = probs_temp_int.cumsum(0)

                # Remove any elements from the bottom if rounding caused the total prob to be too large
                overfill_index = (cum_probs > cur_int_range).nonzero()
                if len(overfill_index) > 0:
                    cum_probs = cum_probs[:overfill_index[0]]

                # Add any mass to the top if removing/rounding causes the total prob to be too small
                cum_probs += cur_int_range-cum_probs[-1] # add

                # Get out resulting probabilities
                probs_final = cum_probs.clone()
                probs_final[1:] = cum_probs[1:] - cum_probs[:-1]

                # Convert to position in range
                cum_probs += cur_interval[0]

                # Get selected index based on binary fraction from message bits
                message_bits = message[i:i+precision]
                if i+precision > len(message):
                    message_bits = message_bits + [0]*(i+precision-len(message))
                message_idx = bits2int(reversed(message_bits))
                selection = (cum_probs > message_idx).nonzero()[0].item()

                # Calculate new range as ints
                new_int_bottom = cum_probs[selection-1] if selection > 0 else cur_interval[0]
                new_int_top = cum_probs[selection]

                # Convert range to bits
                new_int_bottom_bits_inc = list(reversed(int2bits(new_int_bottom, precision)))
                new_int_top_bits_inc = list(reversed(int2bits(new_int_top-1, precision))) # -1 here because upper bound is exclusive

                # Consume most significant bits which are now fixed and update interval
                num_bits_encoded = num_same_from_beg(new_int_bottom_bits_inc, new_int_top_bits_inc)
                i += num_bits_encoded

                new_int_bottom_bits = new_int_bottom_bits_inc[num_bits_encoded:] + [0]*num_bits_encoded
                new_int_top_bits = new_int_top_bits_inc[num_bits_encoded:] + [1]*num_bits_encoded

                cur_interval[0] = bits2int(reversed(new_int_bottom_bits))
                cur_interval[1] = bits2int(reversed(new_int_top_bits))+1 # +1 here because upper bound is exclusive

                # Gather statistics
                total_log_probs += log_probs[selection].item()

                q = probs_final.double()/probs_final.sum()
                logq = q.log()
                total_kl += kl(q, logq, log_probs[:len(q)])
                total_entropy_ptau += entropy(probs_temp, log_probs_temp)
                total_num_for_stats += 1
            
            # Update history with new token
            prev = indices[selection].view(1)
            output = torch.cat((output, prev))
            total_num += 1
            #print(enc.decode(prev.tolist()), message_bits[:num_bits_encoded])
            
            # For text->bits->text
            partial = enc.decode(output[len(context):].tolist())
            if '<eos>' in partial:
                break
            
    avg_NLL = -total_log_probs/total_num_for_stats
    avg_KL = total_kl/total_num_for_stats
    avg_Hq = total_entropy_ptau/total_num_for_stats
    words_per_bit = total_num_for_stats/i

    return output[len(context):].tolist(), avg_NLL, avg_KL, words_per_bit, avg_Hq
Beispiel #2
0
def decode_arithmetic(model, enc, text, context, device='cuda', temp=1.0, precision=16, topk=50000):
    # inp is a list of token indices
    # context is a list of token indices
    inp = enc.encode(text)
    # common BPE error case: 128, 128 (2 newlines) is interpretted as 628 (2 newlines)
    i = 0
    while i < len(inp):
        if inp[i] == 628:
            inp[i] = 198
            inp[i+1:i+1] = [198]
            i += 2
        else:
            i += 1

    context = torch.tensor(context[-1022:], device=device, dtype=torch.long)

    max_val = 2**precision
    threshold = 2**(-precision)
    cur_interval = [0, max_val] # bottom inclusive, top exclusive

    prev = context
    past = None
    message = []
    with torch.no_grad():
        i = 0
        while i < len(inp):
            logits, past = model(prev.unsqueeze(0), past=past)
            past = limit_past(past)
            logits[0, -1, -1] = -1e10 # endoftext can't happen
            logits[0, -1, 628] = -1e10 # 2 newlines can't happen
            logits, indices = logits[0, -1, :].sort(descending=True)
            logits = logits.double()
            logits_temp = logits / temp
            probs_temp = F.softmax(logits_temp, dim=0)
            
            # Cutoff low probabilities that would be rounded to 0
            cur_int_range = cur_interval[1]-cur_interval[0]
            cur_threshold = 1/cur_int_range
            k = min(max(2, (probs_temp < cur_threshold).nonzero()[0].item()), topk)
            probs_temp_int = probs_temp[:k] # Cutoff all but top k

            # Rescale to correct range
            probs_temp_int = probs_temp_int/probs_temp_int.sum()*cur_int_range

            # Round probabilities to integers given precision
            probs_temp_int = probs_temp_int.round().long()
            cum_probs = probs_temp_int.cumsum(0)

            # Remove any elements from the bottom if rounding caused the total prob to be too large
            overfill_index = (cum_probs > cur_int_range).nonzero()
            if len(overfill_index) > 0:
                cum_probs = cum_probs[:overfill_index[0]]
                k = overfill_index[0].item()

            # Add any mass to the top if removing/rounding causes the total prob to be too small
            cum_probs += cur_int_range-cum_probs[-1] # add

            # Covnert to position in range
            cum_probs += cur_interval[0]

            rank = (indices == inp[i]).nonzero().item()

            # Handle most errors that could happen because of BPE with heuristic
            if rank >= k:
                true_token_text = enc.decoder[inp[i]]
                for rank_idx in range(k):
                    prop_token_text = enc.decoder[indices[rank_idx].item()]
                    # common case that is not caught
                    if inp[i] == 128 and indices[rank_idx] == 198:
                        rank = rank_idx
                        inp[i] = indices[rank_idx].item()
                        break
                    
                    # Is there a more likely prefix token that could be the actual token generated?
                    if len(prop_token_text) <= len(true_token_text) and \
                            prop_token_text == true_token_text[:len(prop_token_text)]:
                        rank = rank_idx
                        suffix = true_token_text[len(prop_token_text):]
                        suffix_tokens = enc.encode(suffix) # a list
                        inp[i] = indices[rank_idx].item()
                        inp[i+1:i+1] = suffix_tokens # insert suffix tokens into list
                        break

                    # Is there a more likely longer token that could be the actual token generated?
                    elif len(prop_token_text) > len(true_token_text) and \
                              true_token_text == prop_token_text[:len(true_token_text)]:
                        whole_text = true_token_text
                        num_extra = 1
                        while len(whole_text) < len(prop_token_text):
                            whole_text += enc.decoder[inp[i+num_extra]]
                            num_extra += 1
                        if prop_token_text == whole_text[:len(prop_token_text)]:
                            rank = rank_idx
                            inp[i] = indices[rank_idx].item()
                            for j in range(1, num_extra):
                                del inp[i+j]

                            if len(whole_text) > len(prop_token_text):
                                suffix = whole_text[len(prop_token_text):]
                                suffix_tokens = enc.encode(suffix) # a list
                                inp[i+1:i+1] = suffix_tokens # insert suffix tokens into list
                            break
                else:
                    print('Unable to fix BPE error: token received: %s=%d, text: %s' % (true_token_text, inp[i], text))
                    rank = 0
            
            selection = rank
            
            # Calculate new range as ints
            new_int_bottom = cum_probs[selection-1] if selection > 0 else cur_interval[0]
            new_int_top = cum_probs[selection]

            # Convert range to bits
            new_int_bottom_bits_inc = list(reversed(int2bits(new_int_bottom, precision)))
            new_int_top_bits_inc = list(reversed(int2bits(new_int_top-1, precision))) # -1 here because upper bound is exclusive
            
            # Emit most significant bits which are now fixed and update interval
            num_bits_encoded = num_same_from_beg(new_int_bottom_bits_inc, new_int_top_bits_inc)
            if i == len(inp)-1:
                new_bits = new_int_bottom_bits_inc
            else:
                new_bits = new_int_top_bits_inc[:num_bits_encoded]
            message += new_bits

            new_int_bottom_bits = new_int_bottom_bits_inc[num_bits_encoded:] + [0]*num_bits_encoded
            new_int_top_bits = new_int_top_bits_inc[num_bits_encoded:] + [1]*num_bits_encoded

            cur_interval[0] = bits2int(reversed(new_int_bottom_bits))
            cur_interval[1] = bits2int(reversed(new_int_top_bits))+1 # +1 here because upper bound is exclusive
            
            # Update history with new token
            prev = torch.tensor([inp[i]], device=device, dtype=torch.long)
            #print(enc.decode([inp[i]]), new_bits)
            i += 1
    
    return message