import utils
import glob
from datetime import datetime, timedelta

CSV_DIRECTORY = "input/csv/"
OUTPUT_DIRECTORY = "output/aggregated"
DATE = "20190124"
MINIMUM_WIDTH = 1
start = datetime(2018, 10, 2)
end = datetime(2018, 10, 3) #end day+1!!
SHOWER = "Draconids2018"
STATION = "BEHUMA"


spectrograms = []
for result in utils.perdelta(start, end, timedelta(minutes=5)):
     spectrograms.append("RAD_BEDOUR_"+datetime.strftime(result,"%Y%m%d_%H%M")+"_"+STATION+"_SYS001.png")

aggregated_identifications = {}
csv_files = glob.glob(CSV_DIRECTORY+"*.csv")
for spectrogram in spectrograms:
    dt = datetime.strptime(spectrogram[11:24], "%Y%m%d_%H%M")
    print("{}".format(dt))
    #Step 1: read detection file
    detection_files = {}
    for csv_file in csv_files:
        tmp = utils.read_detection_file_per_spectrogram(csv_file,spectrogram)
        if tmp is not None:        
            detection_files[csv_file] = tmp
    #Step 2: run meteor identification algorithm
    threshold_image = utils.calculate_threshold_image(detection_files)
        if header:
            writer.writeheader()
        writer.writerows(results)


def calculate_distance(image1, image2):
    """Calculate the distance between two images (intersection / union)"""
    intersection = np.sum(image1 & image2)
    union = np.sum(image1 | image2)
    fraction = float(intersection) / float(union)
    return fraction


# generate list of all spectrogram names
spectrograms = []
for result in utils.perdelta(START, END, timedelta(minutes=5)):
    spectrograms.append("RAD_BEDOUR_" +
                        datetime.strftime(result, "%Y%m%d_%H%M") + "_" +
                        STATION + "_SYS001")

csv_files = glob.glob(CSV_DIRECTORY + "*.csv")
write_output([], header=True)  #write only the header
for spectrogram in spectrograms:
    output = []
    # load reference classifications
    spectrogram = spectrogram
    dt = datetime.strptime(spectrogram[11:24], "%Y%m%d_%H%M")
    print "Loading reference classification " + str(dt)
    reference_classification = utils.read_detection_file_per_spectrogram(
        REFERENCE_FILE, spectrogram + ".wav", swap_topbottom=True)
    if reference_classification is None:
Beispiel #3
0
import matplotlib.patches as patches
from PIL import Image
import utils

plt.ioff() # Turn interactive plotting off

PNG_DIRECTORY = "input/png/"
CSV_DIRECTORY = "input/csv/"
OUTPUT_DIRECTORY = "output/"
MASKSIZE = (595, 864)
start = datetime(2016, 8, 19)
end = datetime(2016, 8, 20)
station = "BEHUMA"

spectrograms = []
for result in utils.perdelta(start, end, timedelta(minutes=5)):
     spectrograms.append("RAD_BEDOUR_"+datetime.strftime(result,"%Y%m%d_%H%M")+"_"+station+"_SYS001.png")

csv_files = glob.glob(CSV_DIRECTORY+"*.csv")
date_time, identifications, volunteers = [], [], []
for spectrogram in spectrograms:
    dt = datetime.strptime(spectrogram[11:24], "%Y%m%d_%H%M")
    #Step 1: read detection file
    detection_files = {}
    for csv_file in csv_files:
        tmp = utils.read_detection_file_per_spectrogram(csv_file,spectrogram)
        if tmp is not None:        
            detection_files[csv_file] = tmp
    #Step 2: run meteor identification algorithm
    threshold_image = utils.calculate_threshold_image(detection_files)
    #Step 3: select regions that are above identification threshold
plt.yticks(size=12)
plt.ylim([0,1.2*max(binned.counts)])
plt.xlim([binned.index.min(), binned.index.max()])
plt.grid(axis='x')
ax1.xaxis.set_major_formatter(plt.NullFormatter())
ax1.fill_between(binned.index, 0, binned.counts, alpha=.3, color='blue')
ax1.spines["top"].set_visible(False)    
ax1.spines["right"].set_visible(False)

# Plot radiant altitude
if show_radiant_altitude:
    JDs = map(utils.toJD,rad_pos.keys())
    pos = np.deg2rad(rad_pos.values()).tolist()
    retrieve = interpolate.interp1d(JDs, pos, axis=0)
    ax1b = ax1.twinx()
    for utc in utils.perdelta(min(dt), max(dt), timedelta(minutes=60)):
        RA, Dec = retrieve(utils.toJD(utc))
        equ_coord = sidereal.RADec(RA,Dec)
        h = equ_coord.hourAngle(utc,lon)
        horiz_coord = equ_coord.altAz(h,lat)
        ax1b.set_ylabel('Radiant elevation [$\degree$]',size=14,style='italic',color='green')
        ax1b.scatter(utc,np.rad2deg(horiz_coord.alt),marker='.',color='green')
ax1.autoscale(True,axis='x',tight=True)

ax2 = plt.subplot(2, 1, 2)
ax2.spines["top"].set_visible(False)  
ax2.spines["right"].set_visible(False)  
col_list = [ utils.color_gradient(val) for val in binned.percentage_completed]
plt.bar(binned.index, height=binned.percentage_completed, width=1/24., color = col_list, ec='black')
locs, labels = plt.xticks()
plt.setp(labels, rotation=45)
Beispiel #5
0
plt.yticks(size=12)
plt.ylim([0, 1.2 * max(binned.counts)])
plt.xlim([binned.index.min(), binned.index.max()])
plt.grid(axis='x')
ax1.xaxis.set_major_formatter(plt.NullFormatter())
ax1.fill_between(binned.index, 0, binned.counts, alpha=.3, color='blue')
ax1.spines["top"].set_visible(False)
ax1.spines["right"].set_visible(False)

# Plot radiant altitude
if show_radiant_altitude:
    JDs = map(utils.toJD, rad_pos.keys())
    pos = np.deg2rad(rad_pos.values()).tolist()
    retrieve = interpolate.interp1d(JDs, pos, axis=0)
    ax1b = ax1.twinx()
    for utc in utils.perdelta(min(dt), max(dt), timedelta(minutes=60)):
        RA, Dec = retrieve(utils.toJD(utc))
        equ_coord = sidereal.RADec(RA, Dec)
        h = equ_coord.hourAngle(utc, lon)
        horiz_coord = equ_coord.altAz(h, lat)
        ax1b.set_ylabel('Radiant elevation [$\degree$]',
                        size=14,
                        style='italic',
                        color='green')
        ax1b.scatter(utc,
                     np.rad2deg(horiz_coord.alt),
                     marker='.',
                     color='green')
ax1.autoscale(True, axis='x', tight=True)

ax2 = plt.subplot(2, 1, 2)
        fieldnames = ['spectrogram', 'outlier_threshold', 'cost']
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)    
        if header:
            writer.writeheader()
        writer.writerows(results)

def calculate_distance(image1, image2):
    """Calculate the distance between two images (intersection / union)"""
    intersection = np.sum(image1 & image2)
    union = np.sum(image1 | image2)
    fraction = float(intersection) / float(union)
    return fraction

# generate list of all spectrogram names
spectrograms = []
for result in utils.perdelta(START, END, timedelta(minutes=5)):
     spectrograms.append("RAD_BEDOUR_"+datetime.strftime(result,"%Y%m%d_%H%M")+"_"+STATION+"_SYS001")

csv_files = glob.glob(CSV_DIRECTORY+"*.csv")
write_output([], header=True) #write only the header
for spectrogram in spectrograms:
    output = []
    # load reference classifications
    spectrogram = spectrogram
    dt = datetime.strptime(spectrogram[11:24], "%Y%m%d_%H%M")
    print "Loading reference classification "+str(dt)
    reference_classification = utils.read_detection_file_per_spectrogram(REFERENCE_FILE,spectrogram+".wav", swap_topbottom=True)
    if reference_classification is None:
        continue        
    print("--- %s seconds ---" % (time.time() - start_time))