def __full_init__(self, X, Y, name=None, pipeline=None, K=5, kernel="euclidean", algo="auto", weights="uniform", kernel_params={}, client=None): self.X = X self.Y = Y if name == None: name = rando_name() self.name = name self.pipeline = pipeline self.K = K self.kernel = kernel self.kernel_params = kernel_params self.algo = algo self.weights = weights if self.pipeline == None: pipeline_name = rando_name() self.pipeline = KNNRegressorPipeline(pipeline_name, K, kernel, algo, weights, kernel_params, client) self.response = self.pipeline.run(X=self.X, Y=self.Y, model=self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, X, Y, name=None, pipeline=None, n_trees=8, client=None): self.n_trees = n_trees if name == None: name = rando_name() # else: # todo: add feature to instantiate RFRegressor just from name # i.e. an already created model self.name = name self.X = X self.Y = Y self.pipeline = pipeline if self.pipeline == None: pipeline_name = rando_name() self.pipeline = RFRegressorPipeline(pipeline_name, n_trees, client) self.response = self.pipeline.run(X=self.X, Y=self.Y, model=self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, dataset, name=None, pipeline=None, init_alpha=None, init_beta=None, trans_cov=None, obs_cov=None, init_cov=None, optimizations=[], client=None): if name == None: name = rando_name() self.name = name self.dataset = dataset self.pipeline = pipeline self.init_alpha = init_alpha self.init_beta = init_beta self.trans_cov = trans_cov self.obs_cov = obs_cov self.init_cov = init_cov self.optimizations = optimizations if self.pipeline == None: pipeline_name = rando_name() self.pipeline = KalmanOLSPipeline(pipeline_name, init_alpha, init_beta, trans_cov, obs_cov, init_cov, optimizations, client) self.response = self.pipeline.run(self.dataset, self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, dataset, class_column, name=None, pipeline=None, k=5, kernel="euclidean", algo="auto", weights="uniform", kernel_params={}, client=None): self.class_column = class_column if name == None: name = rando_name() self.name = name self.dataset = dataset self.pipeline = pipeline if self.pipeline == None: pipeline_name = rando_name() self.pipeline = KNNClassifierPipeline(pipeline_name, k, kernel, algo, weights, kernel_params, client) self.response = self.pipeline.run(self.dataset, self.name, self.class_column) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, dataset, name=None, pipeline=None, K=3, kernel="euclidean", client=None): if name == None: name = rando_name() self.name = name self.dataset = dataset self.pipeline = pipeline self.K = K if self.pipeline == None: pipeline_name = rando_name() self.pipeline = NeighborNetworkGraphPipeline( pipeline_name, K, kernel, client) self.response = self.pipeline.run(self.dataset, self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, dataset, name = None, pipeline = None, K = 5, kernel = "euclidean", geodesic = False, kernel_params = {}, client = None): if name == None: name = rando_name() self.name = name self.dataset = dataset self.pipeline = pipeline self.kernel = kernel self.kernel_params = kernel_params self.K = K self.geodesic = geodesic if self.pipeline == None: pipeline_name = rando_name() self.pipeline = DistanceMatrixPipeline(name = pipeline_name, K = K, kernel = kernel, geodesic = geodesic, kernel_params = kernel_params, client = client) self.response = self.pipeline.run(self.dataset, self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, label_dataset, matrix=None, matrix_name=None, matrix_type=None, name=None, pipeline=None, alpha=0.1, client=None): if name == None: name = rando_name() self.name = name self.label_dataset = label_dataset self.pipeline = pipeline self.matrix = matrix self.matrix_name = matrix_name self.matrix_type = matrix_type if self.pipeline == None: pipeline_name = rando_name() self.pipeline = MatrixAgglomeratorPipeline(name=pipeline_name, alpha=alpha, client=client) self.response = self.pipeline.run(label_dataset=self.label_dataset, model=self.name, matrix=matrix, matrix_name=matrix_name, matrix_type=matrix_type) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, X, Y, name=None, pipeline=None, kernel="linear", alpha=1.0, kernel_params={}, client=None): self.X = X self.Y = Y if name == None: name = rando_name() self.name = name self.pipeline = pipeline self.kernel = kernel self.alpha = alpha self.kernel_params = kernel_params if self.pipeline == None: pipeline_name = rando_name() self.pipeline = KernelRidgeRegressorPipeline( pipeline_name, kernel, alpha, kernel_params, client) self.response = self.pipeline.run(X=self.X, Y=self.Y, model=self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, matrix, matrix_name=None, matrix_type=None, name=None, pipeline=None, client=None): if name == None: name = rando_name() self.name = name self.matrix = matrix self.pipeline = pipeline self.matrix_name = matrix_name self.matrix_type = matrix_type if self.pipeline == None: pipeline_name = rando_name() self.pipeline = MatrixMinimumSpanningTreePipeline( name=pipeline_name, client=client) self.response = self.pipeline.run(model=self.name, matrix=self.matrix, matrix_name=self.matrix_name, matrix_type=self.matrix_type) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, dataset, name = None, pipeline = None, retrain = True, client = None): if name == None: name = rando_name() self.name = name self.dataset = dataset self.pipeline = pipeline self.retrain = retrain if self.pipeline == None: pipeline_name = rando_name() self.pipeline = BasicA2DPipeline(pipeline_name, retrain, client) self.response = self.pipeline.run(self.dataset, self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, dataset, name = None, pipeline = None, bandwidth = "scott", client = None): if name == None: name = rando_name() self.name = name self.dataset = dataset self.pipeline = pipeline self.bandwidth = bandwidth if self.pipeline == None: pipeline_name = rando_name() self.pipeline = KernelDensityEstimatorPipeline(pipeline_name, bandwidth, client) self.response = self.pipeline.run(self.dataset, self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, dataset, name = None, pipeline = None, rate = 0.1, n_trees = 100, client = None): if name == None: name = rando_name() self.name = name self.dataset = dataset self.pipeline = pipeline self.rate = rate if self.pipeline == None: pipeline_name = rando_name() self.pipeline = IsolationForestPipeline(pipeline_name, rate, n_trees, client) self.response = self.pipeline.run(self.dataset, self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, dataset, name = None, pipeline = None, D = 2, affinity = "knn", K = 5, gamma = 1.0, client = None): if name == None: name = rando_name() self.name = name self.dataset = dataset self.pipeline = pipeline self.D = D self.K = K self.affinity = affinity if self.pipeline == None: pipeline_name = rando_name() self.pipeline = LaplacianEigenmapperPipeline(pipeline_name, D, affinity, K, gamma, client) self.response = self.pipeline.run(self.dataset, self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, dataset, name = None, pipeline = None, D = 2, k = 3, method = "standard", client = None): if name == None: name = rando_name() self.name = name self.dataset = dataset self.pipeline = pipeline self.D = D self.k = k self.method = method if self.pipeline == None: pipeline_name = rando_name() self.pipeline = LocalLinearEmbedderPipeline(pipeline_name, D, k, method, client) self.response = self.pipeline.run(self.dataset, self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, dataset, name = None, pipeline = None, D = 2, K = 3, client = None): if name == None: name = rando_name() self.name = name self.dataset = dataset self.pipeline = pipeline self.D = D self.K = K self.type = "raw_isomap" if self.pipeline == None: pipeline_name = rando_name() self.pipeline = IsomapPipeline(pipeline_name, D, K, client) self.response = self.pipeline.run(self.dataset, self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, dataset, name = None, pipeline = None, D = 2, kernel = "linear", alpha = 1.0, invert = False, kernel_params = {}, client = None): if name == None: name = rando_name() self.name = name self.dataset = dataset self.pipeline = pipeline self.D = D self.kernel = kernel self.alpha = alpha self.invert = invert self.kernel_params = kernel_params if self.pipeline == None: pipeline_name = rando_name() self.pipeline = KernelPCAPipeline(pipeline_name, D, kernel, alpha, invert, kernel_params, client) self.response = self.pipeline.run(self.dataset, self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, dataset, name=None, pipeline=None, sigma=0.1, client=None): if name == None: name = rando_name() self.name = name self.dataset = dataset self.pipeline = pipeline if self.pipeline == None: pipeline_name = rando_name() self.pipeline = PNNClassifierPipeline(pipeline_name, sigma, client) self.response = self.pipeline.run(self.dataset, self.name, self.class_column) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)
def __full_init__(self, dataset, name=None, pipeline=None, corr_method="pearson", client=None): if name == None: name = rando_name() self.name = name self.dataset = dataset self.pipeline = pipeline self.corr_method = corr_method if self.pipeline == None: pipeline_name = rando_name() self.pipeline = MinimumSpanningTreePipeline( pipeline_name, corr_method, client) self.response = self.pipeline.run(self.dataset, self.name) try: # model will be key if success model = self.response['model'] self.name = model.split("/")[-1] except: # something went wrong creating the model raise StandardError(self.response)