def __full_init__(self,
                   X,
                   Y,
                   name=None,
                   pipeline=None,
                   K=5,
                   kernel="euclidean",
                   algo="auto",
                   weights="uniform",
                   kernel_params={},
                   client=None):
     self.X = X
     self.Y = Y
     if name == None:
         name = rando_name()
     self.name = name
     self.pipeline = pipeline
     self.K = K
     self.kernel = kernel
     self.kernel_params = kernel_params
     self.algo = algo
     self.weights = weights
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = KNNRegressorPipeline(pipeline_name, K, kernel,
                                              algo, weights, kernel_params,
                                              client)
     self.response = self.pipeline.run(X=self.X, Y=self.Y, model=self.name)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
 def __full_init__(self,
                   X,
                   Y,
                   name=None,
                   pipeline=None,
                   n_trees=8,
                   client=None):
     self.n_trees = n_trees
     if name == None:
         name = rando_name()
     # else:
     #    todo: add feature to instantiate RFRegressor just from name
     #    i.e. an already created model
     self.name = name
     self.X = X
     self.Y = Y
     self.pipeline = pipeline
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = RFRegressorPipeline(pipeline_name, n_trees, client)
     self.response = self.pipeline.run(X=self.X, Y=self.Y, model=self.name)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
Beispiel #3
0
 def __full_init__(self,
                   dataset,
                   name=None,
                   pipeline=None,
                   init_alpha=None,
                   init_beta=None,
                   trans_cov=None,
                   obs_cov=None,
                   init_cov=None,
                   optimizations=[],
                   client=None):
     if name == None:
         name = rando_name()
     self.name = name
     self.dataset = dataset
     self.pipeline = pipeline
     self.init_alpha = init_alpha
     self.init_beta = init_beta
     self.trans_cov = trans_cov
     self.obs_cov = obs_cov
     self.init_cov = init_cov
     self.optimizations = optimizations
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = KalmanOLSPipeline(pipeline_name, init_alpha,
                                           init_beta, trans_cov, obs_cov,
                                           init_cov, optimizations, client)
     self.response = self.pipeline.run(self.dataset, self.name)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
 def __full_init__(self,
                   dataset,
                   class_column,
                   name=None,
                   pipeline=None,
                   k=5,
                   kernel="euclidean",
                   algo="auto",
                   weights="uniform",
                   kernel_params={},
                   client=None):
     self.class_column = class_column
     if name == None:
         name = rando_name()
     self.name = name
     self.dataset = dataset
     self.pipeline = pipeline
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = KNNClassifierPipeline(pipeline_name, k, kernel,
                                               algo, weights, kernel_params,
                                               client)
     self.response = self.pipeline.run(self.dataset, self.name,
                                       self.class_column)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
Beispiel #5
0
 def __full_init__(self,
                   dataset,
                   name=None,
                   pipeline=None,
                   K=3,
                   kernel="euclidean",
                   client=None):
     if name == None:
         name = rando_name()
     self.name = name
     self.dataset = dataset
     self.pipeline = pipeline
     self.K = K
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = NeighborNetworkGraphPipeline(
             pipeline_name, K, kernel, client)
     self.response = self.pipeline.run(self.dataset, self.name)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
 def __full_init__(self, dataset, name = None, pipeline = None, K = 5, kernel = "euclidean", geodesic = False, kernel_params = {}, client = None):
     if name == None:
         name = rando_name()
     self.name     = name
     self.dataset  = dataset
     self.pipeline = pipeline
     self.kernel   = kernel
     self.kernel_params = kernel_params
     self.K        = K
     self.geodesic = geodesic
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = DistanceMatrixPipeline(name = pipeline_name, 
                                                K    = K, 
                                                kernel = kernel,
                                                geodesic = geodesic,
                                                kernel_params = kernel_params, 
                                                client = client)
     self.response = self.pipeline.run(self.dataset, self.name)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
 def __full_init__(self,
                   label_dataset,
                   matrix=None,
                   matrix_name=None,
                   matrix_type=None,
                   name=None,
                   pipeline=None,
                   alpha=0.1,
                   client=None):
     if name == None:
         name = rando_name()
     self.name = name
     self.label_dataset = label_dataset
     self.pipeline = pipeline
     self.matrix = matrix
     self.matrix_name = matrix_name
     self.matrix_type = matrix_type
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = MatrixAgglomeratorPipeline(name=pipeline_name,
                                                    alpha=alpha,
                                                    client=client)
     self.response = self.pipeline.run(label_dataset=self.label_dataset,
                                       model=self.name,
                                       matrix=matrix,
                                       matrix_name=matrix_name,
                                       matrix_type=matrix_type)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
 def __full_init__(self,
                   X,
                   Y,
                   name=None,
                   pipeline=None,
                   kernel="linear",
                   alpha=1.0,
                   kernel_params={},
                   client=None):
     self.X = X
     self.Y = Y
     if name == None:
         name = rando_name()
     self.name = name
     self.pipeline = pipeline
     self.kernel = kernel
     self.alpha = alpha
     self.kernel_params = kernel_params
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = KernelRidgeRegressorPipeline(
             pipeline_name, kernel, alpha, kernel_params, client)
     self.response = self.pipeline.run(X=self.X, Y=self.Y, model=self.name)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
 def __full_init__(self,
                   matrix,
                   matrix_name=None,
                   matrix_type=None,
                   name=None,
                   pipeline=None,
                   client=None):
     if name == None:
         name = rando_name()
     self.name = name
     self.matrix = matrix
     self.pipeline = pipeline
     self.matrix_name = matrix_name
     self.matrix_type = matrix_type
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = MatrixMinimumSpanningTreePipeline(
             name=pipeline_name, client=client)
     self.response = self.pipeline.run(model=self.name,
                                       matrix=self.matrix,
                                       matrix_name=self.matrix_name,
                                       matrix_type=self.matrix_type)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
 def __full_init__(self, dataset, name = None, pipeline = None, retrain = True, client = None):
     if name == None:
         name = rando_name()
     self.name     = name
     self.dataset  = dataset
     self.pipeline = pipeline
     self.retrain  = retrain
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = BasicA2DPipeline(pipeline_name, retrain, client)
     self.response = self.pipeline.run(self.dataset, self.name)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
 def __full_init__(self, dataset, name = None, pipeline = None, bandwidth = "scott", client = None):
     if name == None:
         name = rando_name()
     self.name     = name
     self.dataset  = dataset
     self.pipeline = pipeline
     self.bandwidth = bandwidth
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = KernelDensityEstimatorPipeline(pipeline_name, bandwidth, client)
     self.response = self.pipeline.run(self.dataset, self.name)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
 def __full_init__(self, dataset, name = None, pipeline = None, rate = 0.1, n_trees = 100, client = None):
     if name == None:
         name = rando_name()
     self.name     = name
     self.dataset  = dataset
     self.pipeline = pipeline
     self.rate  = rate
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = IsolationForestPipeline(pipeline_name, rate, n_trees, client)
     self.response = self.pipeline.run(self.dataset, self.name)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
Beispiel #13
0
 def __full_init__(self, dataset, name = None, pipeline = None, D = 2, affinity = "knn", K = 5, gamma = 1.0, client = None):
     if name == None:
         name = rando_name()
     self.name     = name
     self.dataset  = dataset
     self.pipeline = pipeline
     self.D        = D
     self.K        = K
     self.affinity = affinity
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = LaplacianEigenmapperPipeline(pipeline_name, D, affinity, K, gamma, client)
     self.response = self.pipeline.run(self.dataset, self.name)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
Beispiel #14
0
 def __full_init__(self, dataset, name = None, pipeline = None, D = 2, k = 3, method = "standard", client = None):
     if name == None:
         name = rando_name()
     self.name     = name
     self.dataset  = dataset
     self.pipeline = pipeline
     self.D        = D
     self.k        = k
     self.method   = method
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = LocalLinearEmbedderPipeline(pipeline_name, D, k, method, client)
     self.response = self.pipeline.run(self.dataset, self.name)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
Beispiel #15
0
 def __full_init__(self, dataset, name = None, pipeline = None, D = 2, K = 3, client = None):
     if name == None:
         name = rando_name()
     self.name     = name
     self.dataset  = dataset
     self.pipeline = pipeline
     self.D        = D
     self.K        = K
     self.type     = "raw_isomap"
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = IsomapPipeline(pipeline_name, D, K, client)
     self.response = self.pipeline.run(self.dataset, self.name)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
Beispiel #16
0
 def __full_init__(self, dataset, name = None, pipeline = None, D = 2, kernel = "linear", alpha = 1.0, invert = False, kernel_params = {}, client = None):
     if name == None:
         name = rando_name()
     self.name     = name
     self.dataset  = dataset
     self.pipeline = pipeline
     self.D        = D
     self.kernel   = kernel
     self.alpha    = alpha
     self.invert   = invert
     self.kernel_params = kernel_params
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = KernelPCAPipeline(pipeline_name, D, kernel, alpha, invert, kernel_params, client)
     self.response = self.pipeline.run(self.dataset, self.name)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
 def __full_init__(self,
                   dataset,
                   name=None,
                   pipeline=None,
                   sigma=0.1,
                   client=None):
     if name == None:
         name = rando_name()
     self.name = name
     self.dataset = dataset
     self.pipeline = pipeline
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = PNNClassifierPipeline(pipeline_name, sigma, client)
     self.response = self.pipeline.run(self.dataset, self.name,
                                       self.class_column)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)
Beispiel #18
0
 def __full_init__(self,
                   dataset,
                   name=None,
                   pipeline=None,
                   corr_method="pearson",
                   client=None):
     if name == None:
         name = rando_name()
     self.name = name
     self.dataset = dataset
     self.pipeline = pipeline
     self.corr_method = corr_method
     if self.pipeline == None:
         pipeline_name = rando_name()
         self.pipeline = MinimumSpanningTreePipeline(
             pipeline_name, corr_method, client)
     self.response = self.pipeline.run(self.dataset, self.name)
     try:
         # model will be key if success
         model = self.response['model']
         self.name = model.split("/")[-1]
     except:
         # something went wrong creating the model
         raise StandardError(self.response)