Beispiel #1
0
def main():
    # Open Image File as a coloured image
    img = utils.open_image(settings.settingsImagePath)
    # Retrieve filtered image
    walls = utils.apply_vision_filter(img)
    ground = utils.apply_ground_filter(img)
    # Initialize Bot with startup settings
    bot = robot.Robot(x=settings.settingsStartX,
                      y=settings.settingsStartY,
                      direction=settings.settingsFaceDirection,
                      wall_map=walls,
                      ground_map=ground,
                      no_of_squares_per_side=settings.settingsGridSideSquares,
                      cell_side_length=len(img) //
                      settings.settingsGridSideSquares)

    # Initialize user bot scripts
    src = settings.settingsSrcClass(bot)

    # Run setup
    src.setup()
    loop_img = numpy.copy(img)
    while True:
        # Refresh Screen
        utils.refresh_screen(loop_img, bot)
        # Loop
        loop_img = numpy.copy(img)
        ret = src.loop(loop_img)
        if ret == SimulationRunStatus.STOP_SIMULATION:
            # If stop simulation signal, Exit
            break
Beispiel #2
0
def dijkstra(stdscr, matrix, coordinates, animated_flag):
    """This is a Dijkstra's algorithm implementation for a weighted graph.

    This algorithm works with a weighted graph, but changes the given matrix. The weighted graph is simply converted
    from the matrix, and all weights are equal to 1.0. This implementation does not degrade to the BFS algorithm in
    the same named module, because BFS there doesn't use a graph, where neighbors of a node aren't listed in the order
    used in the utils.MOVES dictionary, so the node expansion order is not the same here. This is well visible due
    to the animation of these two algorithms using testovaci_data/test_5.txt input file.

    :param stdscr: a curses screen to animate the process
    :param matrix: a matrix with a pattern to work with
    :param coordinates: start and end points
    :param animated_flag: a flag - do we want to animate the process or not
    :return: the changed matrix, the start and end points coordinates, a number of opened nodes and a length of path
    to be printed either to the terminal or written to the output file
    """
    start_node = coordinates[0]
    end_node = coordinates[1]
    matrix[start_node[1]][start_node[0]] = utils.START_NODE
    matrix[end_node[1]][end_node[0]] = utils.END_NODE

    graph = utils.matrix_to_weighted_graph(matrix)
    distances = {node: float('inf') for node in graph.keys()}
    priority_queue = [(0, start_node)]
    parents = {}
    visited_nodes = set()

    found = False
    distances[start_node] = 0.0

    while len(priority_queue) > 0:
        utils.refresh_screen(stdscr, matrix, animated_flag)

        current_distance, current_node = heapq.heappop(priority_queue)

        if current_node == end_node:
            found = True

        for neighbor, cost in graph[current_node].items():
            neighbor_distance = current_distance + cost

            if distances[neighbor] > neighbor_distance:
                distances[neighbor] = neighbor_distance
                if neighbor != start_node:
                    matrix[neighbor[1]][neighbor[0]] = utils.OPENED_NODE
                    visited_nodes.add(neighbor)
                heapq.heappush(priority_queue, (neighbor_distance, neighbor))
                parents[neighbor] = current_node

        if current_node not in [start_node, end_node]:
            matrix[current_node[1]][current_node[0]] = utils.CLOSED_NODE

        if found:
            break

    path = utils.reconstruct_path(start_node, end_node, parents)
    path_length = len(path)
    node_count = len(visited_nodes)

    for col, row in path[:-1]:
        matrix[row][col] = utils.PATH_NODE
    matrix[end_node[1]][end_node[0]] = utils.END_NODE

    utils.show_path(stdscr, path, animated_flag)
    utils.show_final_message(stdscr, matrix.shape[0], 0, animated_flag)

    return matrix, coordinates, node_count, path_length
 def refresh_screen(self, img: numpy.array) -> bool:
     """Refreshes Screen"""
     utils.refresh_screen(img, self.bot)
     return self.user_pressed_exit(self.waitDuration)
Beispiel #4
0
def random_search(stdscr, matrix, coordinates, animated_flag):
    """This is a Random Search algorithm implementation for an adjacency matrix.

    This algorithm doesn't convert a matrix into graph. It uses utils.MOVES dictionary to get all four possible
    directions of steps and then checks if the next node is valid to move to it.

    :param stdscr: a curses screen to animate the process
    :param matrix: a matrix with a pattern to work with
    :param coordinates: start and end points
    :param animated_flag: a flag - do we want to animate the process or not
    :return: the changed matrix, the start and end points coordinates, a number of opened nodes and a length of path
    to be printed either to the terminal or written to the output file
    """
    start_node = coordinates[0]
    end_node = coordinates[1]
    matrix[start_node[1]][start_node[0]] = utils.START_NODE
    matrix[end_node[1]][end_node[0]] = utils.END_NODE

    node_counter = 0
    found = False
    p = {}
    q = [start_node]

    while q:
        utils.refresh_screen(stdscr, matrix, animated_flag)

        current_node = random.choice(q)
        q.remove(current_node)

        if current_node == end_node:
            found = True

        for move_col, move_row in utils.MOVES.values():
            next_col = current_node[0] + move_col
            next_row = current_node[1] + move_row

            if next_col < 0 or next_col > matrix.shape[1] - 1 \
            or next_row < 0 or next_row > matrix.shape[0] - 1:
                continue
            elif matrix[next_row][next_col] in [
                    utils.FREE_NODE, utils.END_NODE
            ]:
                matrix[next_row][next_col] = utils.OPENED_NODE
                q.append((next_col, next_row))
                p[(next_col, next_row)] = current_node
                node_counter += 1

        if current_node not in [start_node, end_node]:
            matrix[current_node[1]][current_node[0]] = utils.CLOSED_NODE

        if found:
            break

    path = utils.reconstruct_path(start_node, end_node, p)
    path_length = len(path)

    for col, row in path[:-1]:
        matrix[row][col] = utils.PATH_NODE
    matrix[end_node[1]][end_node[0]] = utils.END_NODE

    utils.show_path(stdscr, path, animated_flag)
    utils.show_final_message(stdscr, matrix.shape[0], 0, animated_flag)

    return matrix, coordinates, node_counter, path_length
Beispiel #5
0
def greedy_search(stdscr, matrix, coordinates, animated_flag):
    """This is a Greedy Search algorithm implementation for a weighted graph.

    This algorithm works with a weighted graph, but changes the given matrix. The weighted graph is simply converted
    from the matrix, and all weights are equal to 1.0. Heuristics is built by the utils.build_heuristics(...) function
    and then applied to get the priority of a node to be extended.

    :param stdscr: a curses screen to animate the process
    :param matrix: a matrix with a pattern to work with
    :param coordinates: start and end points
    :param animated_flag: a flag - do we want to animate the process or not
    :return: the changed matrix, the start and end points coordinates, a number of opened nodes and a length of path
    to be printed either to the terminal or written to the output file
    """
    start_node = coordinates[0]
    end_node = coordinates[1]
    matrix[start_node[1]][start_node[0]] = utils.START_NODE
    matrix[end_node[1]][end_node[0]] = utils.END_NODE

    graph = utils.matrix_to_weighted_graph(matrix)
    heuristics = utils.build_heuristics(end_node, graph)
    priority_queue = [(heuristics[start_node], start_node)]
    closed_nodes = set()
    parents = {}

    found = False
    node_counter = 0

    while len(priority_queue) > 0:
        utils.refresh_screen(stdscr, matrix, animated_flag)

        _, current_node = heapq.heappop(priority_queue)

        if current_node == end_node:
            found = True

        for neighbor in graph[current_node].keys():
            if (heuristics[neighbor], neighbor) not in priority_queue and neighbor not in closed_nodes:
                matrix[neighbor[1]][neighbor[0]] = utils.OPENED_NODE
                heapq.heappush(priority_queue, (heuristics[neighbor], neighbor))
                parents[neighbor] = current_node
                node_counter += 1

        closed_nodes.add(current_node)
        if current_node not in [start_node, end_node]:
            matrix[current_node[1]][current_node[0]] = utils.CLOSED_NODE

        if found:
            break

    path = utils.reconstruct_path(start_node, end_node, parents)
    path_length = len(path)

    for col, row in path[:-1]:
        matrix[row][col] = utils.PATH_NODE
    matrix[end_node[1]][end_node[0]] = utils.END_NODE

    utils.show_path(stdscr, path, animated_flag)
    utils.show_final_message(stdscr, matrix.shape[0], 0, animated_flag)

    return matrix, coordinates, node_counter, path_length
 def refresh_screen(self, img: numpy.array) -> bool:
     """Refreshes Screen"""
     utils.refresh_screen(img, self.bot)
     return self.user_pressed_exit(WAIT_DURATION)