def plot_feature_distr(self, bg, size=50): x, y = bg.dataset_x, bg.dataset_y real = bg.ramdom_kshot_images_dagan(self.k_shot, np.full(size, bg.classes[0]), False) fakes = self.generate(real, self.generate_latent([0] * size)) fake_labels = [np.full((size, ), 'fake of 0')] for classid in bg.classes[1:5]: real = bg.ramdom_kshot_images_dagan(self.k_shot, np.full(size, classid)) fake = self.generate(real, self.generate_latent([classid] * size), False) fakes = np.concatenate([fakes, fake]) fake_labels.append(np.full((size, ), 'fake of {}'.format(classid))) # latent_encoder imgs = np.concatenate([x, fakes]) labels = np.concatenate([ np.full((x.shape[0], ), 'real'), np.full((fakes.shape[0], ), 'fake'), ]) labels = np.concatenate([y, np.concatenate(fake_labels)]) utils.scatter_plot(imgs, labels, self.latent_encoder, 'latent encoder')
def main(): """ A sample main program to test our algorithms. @return: None """ t0 = time.time() # initialize the random generator seed to always use the same set of points seed(0) # creates some points pts = create_points(30) show = True # to display a frame save = False # to save into .png files in "figs" directory scatter_plot(pts, [[]], title="convex hull : initial set", show=show, save=save) print("Points:", pts) # compute the hull hull = Graham(pts, show=show, save=save) print("Hull:", hull) scatter_plot(pts, [hull], title="convex hull : final result", show=True, save=save) t1 = time.time() print("temps en secondes :") print(t1 - t0)
def main(): """ A sample main program to test our algorithms. @return: None """ # initialize the random generator seed to always use the same set of points seed(0) # creates some points pts = create_points(6) show = True # to display a frame save = False # to save into .png files in "figs" directory scatter_plot(pts, [[]], title="convex hull : initial set", show=show, save=save) print("Points:", pts) # compute the hull #hull = exhaustive(pts, show=show, save=save) hull = graham(pts, show=show, save=save) #hull = jarvis(pts, show=show, save=save) #hull = eddy_floyd(pts) print("Hull:", hull) scatter_plot(pts, [hull], title="convex hull : final result", show=True, save=save)
def train_del_outliers(self, column1_set, column2, x_lim_set, y_lim, plot=False): for column1 in column1_set: for x_lim in x_lim_set: self.train.drop( self.train[(self.train[column1] > x_lim) & (self.train[column2] < y_lim)].index, inplace=True) if plot: scatter_plot(train, [column1], [column2]) return self.train
def exhaustive(points, show=True, save=False, detailed=False): """ Returns the vertices comprising the boundaries of convex hull containing all points in the input set. The input 'points' is a list of [x,y] coordinates. Uses a very naive method: iterates over the whole set of convex polygons from size 3 to n :param points: the points from which to find the convex hull :param show: if True, the progress in constructing the hull will be plotted on each iteration in a window :param save: if True, the progress in constructing the hull will be saved on each iteration in a .png file :param detailed: if True, even non convex explored polygons are plotted :return: the convex hull """ i = 3 while i <= len(points): # iterates over the whole set of subset of points for subset in permutations(points, i): if (show or save) and detailed: scatter_plot(points, [subset], title="exhaustive search", show=show, save=save) # only consider convex subsets if is_convex(subset): if (show or save) and not detailed: scatter_plot(points, [subset], title="exhaustive search", show=show, save=save) one_out = False j = 0 # iterates until a point is found outside the polygon while not one_out and j < len(points): point = points[j] if point not in list(subset) and not point_in_polygon( point, list(subset)): one_out = True j = j + 1 if not one_out: return subset i = i + 1 return points
def main(): """ A sample main program to test our algorithms. @return: None """ to=time.time() # initialize the random generator seed to always use the same set of points seed(0) # creates some points pts = create_points(1800) show = True # to display a frame save = False # to save into .png files in "figs" directory scatter_plot(pts, [[]], title="convex hull : initial set", show=show, save=save) print("Points:", pts) # compute the hull #hull = exhaustive(pts, show=show, save=save) print("graham",graham(pts)) hull=graham(pts) print("Hull:", hull) scatter_plot(pts, [hull], title="convex hull : final result", show=True, save=save) print("Temps d'éxecution: %s secondes" %(time.time()-to))
atm = None if VERBOSE: plt.imshow(wsi_mask) plt.savefig(WSI_MASK_PATH, dpi=180) ################################ # Visualise and Quantify Spots # ################################ cluster_preds = pd.read_csv(CLUSTER_PREDICTIONS_PATH, header=0, sep=',') cluster_preds = cluster_preds.rename(columns={'label': 'pred_colour'}) #Scale Affine Transform Matrix to account for DOWNSCALE FACTOR scatter_plot(cluster_preds.spot_x, cluster_preds.spot_y, colors=cluster_preds.pred_colour, alignment=atm, image=WSI_SMALL_CONTOUR_PATH, output=WSI_SMALL_CONTOUR_SPOT_PATH) # transform spot coords to pixel coords spot_x_scale = atm[0, 0] * DOWNSCALE_FACTOR spot_x_offset = atm[0, 2] * DOWNSCALE_FACTOR spot_y_scale = atm[1, 1] * DOWNSCALE_FACTOR spot_y_offset = atm[1, 2] * DOWNSCALE_FACTOR verboseprint( 'x_scale: {0} | x_offset: {1} | y_scale: {2} | y_offset: {3}'.format( spot_x_scale, spot_x_offset, spot_y_scale, spot_y_offset)) cluster_preds_scaled = cluster_preds.apply( transform_spot, args=(spot_x_offset, spot_y_offset, spot_x_scale, spot_y_scale), axis=1)
axis=0, copy=True) preprocessing += "scale_" if len(preprocessing) == 0: preprocessing == "no_preprocessing" else: preprocessing = preprocessing[0:-1] # combined model cluster = run_combine_model(cm_val, tfv_val, loss=LOSS) out_path = os.path.join( CLUSTER_PATH_MODEL, '{}-{}-{}-{}'.format("combined_model", "both_data", LOSS, preprocessing)) scatter_plot(x_points, y_points, colors=cluster, alignment=atm, image=IMG_PATH, output=out_path) save_label(x_points, y_points, cluster, out_path) # single model for gene counts cluster, br_gene = run_single_model(cm_val, loss=LOSS) out_path = os.path.join( CLUSTER_PATH_MODEL, '{}-{}-{}-{}'.format("single_model", "gene_count", LOSS, preprocessing)) scatter_plot(x_points, y_points, colors=cluster, alignment=atm, image=IMG_PATH, output=out_path) save_label(x_points, y_points, cluster, out_path)