print(f'[Adversarial loss]') print(f'GA: {errGAs["adv"]/display_iters:.4f} GB: {errGBs["adv"]/display_iters:.4f}') print(f'[Reconstruction loss]') print(f'GA: {errGAs["recon"]/display_iters:.4f} GB: {errGBs["recon"]/display_iters:.4f}') print(f'[Edge loss]') print(f'GA: {errGAs["edge"]/display_iters:.4f} GB: {errGBs["edge"]/display_iters:.4f}') if loss_config['use_PL'] == True: print(f'[Perceptual loss]') try: print(f'GA: {errGAs["pl"][0]/display_iters:.4f} GB: {errGBs["pl"][0]/display_iters:.4f}') except: print(f'GA: {errGAs["pl"]/display_iters:.4f} GB: {errGBs["pl"]/display_iters:.4f}') # Display images print("----------") wA, tA, _ = train_batchA.get_next_batch() wB, tB, _ = train_batchB.get_next_batch() print("Transformed (masked) results:") showG(tA, tB, model.path_A, model.path_B, batchSize) print("Masks:") showG_mask(tA, tB, model.path_mask_A, model.path_mask_B, batchSize) print("Reconstruction results:") showG(wA, wB, model.path_bgr_A, model.path_bgr_B, batchSize) errGA_sum = errGB_sum = errDA_sum = errDB_sum = 0 for k in ['ttl', 'adv', 'recon', 'edge', 'pl']: errGAs[k] = 0 errGBs[k] = 0 # Save models model.save_weights(path=models_dir)
def train(ITERS): K.set_learning_phase(1) #K.set_learning_phase(0) # set to 0 in inference phase # Number of CPU cores num_cpus = os.cpu_count() # Input/Output resolution RESOLUTION = 64 # 64x64, 128x128, 256x256 assert (RESOLUTION % 64) == 0, "RESOLUTION should be 64, 128, or 256." # Batch size # batchSize = 8 batchSize = 2 # Use motion blurs (data augmentation) # set True if training data contains images extracted from videos use_da_motion_blur = False # Use eye-aware training # require images generated from prep_binary_masks.ipynb use_bm_eyes = True use_bm_eyes = False # Probability of random color matching (data augmentation) prob_random_color_match = 0.5 da_config = { "prob_random_color_match": prob_random_color_match, "use_da_motion_blur": use_da_motion_blur, "use_bm_eyes": use_bm_eyes } session_config = tf.ConfigProto(log_device_placement=False, allow_soft_placement=True) # please do not use the totality of the GPU memory session_config.gpu_options.per_process_gpu_memory_fraction = 0.90 # Path to training images dataDir = '/home/wh/hdd/work/xj/AI_anchors/faceswap-GAN-master' img_dirA = './faces/faceA/aligned_faces' #经过对齐后人脸的文件夹 img_dirB = './faces/faceB/aligned_faces' img_dirA_bm_eyes = "./faces/faceA/binary_masks_eyes" #与对齐人脸对应的mask,用于合成,主要是GAN如果不加mask会差一些 img_dirB_bm_eyes = "./faces/faceB/binary_masks_eyes" # Path to saved model weights models_dir = "./models" #Path(f"models").mkdir(parents=True, exist_ok=True) if not os.path.exists(models_dir): os.mkdir(models_dir) # Architecture configuration arch_config = {} arch_config['IMAGE_SHAPE'] = (RESOLUTION, RESOLUTION, 3) arch_config['use_self_attn'] = True arch_config[ 'norm'] = "instancenorm" # instancenorm, batchnorm, layernorm, groupnorm, none arch_config['model_capacity'] = "standard" # standard, lite # Loss function weights configuration,各种loss的权重系数 loss_weights = {} loss_weights['w_D'] = 0.1 # Discriminator loss_weights['w_recon'] = 1. # L1 reconstruction loss loss_weights['w_edge'] = 0.1 # edge loss loss_weights['w_eyes'] = 30. # reconstruction and edge loss on eyes area loss_weights['w_pl'] = (0.01, 0.1, 0.3, 0.1 ) # perceptual loss (0.003, 0.03, 0.3, 0.3) # Init. loss config. 迭代多少次后会用哪种loss loss_config = {} loss_config[ "gan_training"] = "mixup_LSGAN" # "mixup_LSGAN" or "relativistic_avg_LSGAN" loss_config['use_PL'] = False loss_config['use_mask_hinge_loss'] = False loss_config['m_mask'] = 0. loss_config['lr_factor'] = 1. loss_config['use_cyclic_loss'] = False print('CONFIGURE DONE') print('step1') # Get filenames #train_A = glob.glob(img_dirA+"/*.*") #train_B = glob.glob(img_dirB+"/*.*") train_A = getDirFnPath(img_dirA) train_B = getDirFnPath(img_dirB) train_AnB = train_A + train_B assert len(train_A), "No image found in " + str(img_dirA) assert len(train_B), "No image found in " + str(img_dirB) print("Number of images in folder A: " + str(len(train_A))) print("Number of images in folder B: " + str(len(train_B))) print('step2') #define models global model model = FaceswapGANModel(**arch_config) print('DEFINE MODELS DONE') model.load_weights(path=models_dir) # VGGFace ResNet50, # 用vgg的目的是为了对比提取的特征是否一致(将原始图和生成图用VGG提取固定层feat,然后比较feat的距离) global vggface vggface = VGGFace(include_top=False, model='resnet50', input_shape=(224, 224, 3)) #vggface.summary() model.build_pl_model(vggface_model=vggface) model.build_train_functions(loss_weights=loss_weights, **loss_config) print('BUILD MODELS DONE') if use_bm_eyes: assert len(glob.glob( img_dirA_bm_eyes + "/*.*")), "No binary mask found in " + str(img_dirA_bm_eyes) assert len(glob.glob( img_dirB_bm_eyes + "/*.*")), "No binary mask found in " + str(img_dirB_bm_eyes) assert len(glob.glob(img_dirA_bm_eyes+"/*.*")) == len(train_A), \ "Number of faceA images does not match number of their binary masks. Can be caused by any none image file in the folder." assert len(glob.glob(img_dirB_bm_eyes+"/*.*")) == len(train_B), \ "Number of faceB images does not match number of their binary masks. Can be caused by any none image file in the folder." def show_loss_config(loss_config): for config, value in loss_config.items(): print(f"{config} = {value}") def reset_session(save_path): global model, vggface global train_batchA, train_batchB model.save_weights(path=save_path) del model del vggface del train_batchA del train_batchB K.clear_session() model = FaceswapGANModel(**arch_config) model.load_weights(path=save_path) vggface = VGGFace(include_top=False, model='resnet50', input_shape=(224, 224, 3)) model.build_pl_model(vggface_model=vggface) train_batchA = DataLoader(train_A, train_AnB, batchSize, img_dirA_bm_eyes, RESOLUTION, num_cpus, K.get_session(), **da_config) train_batchB = DataLoader(train_B, train_AnB, batchSize, img_dirB_bm_eyes, RESOLUTION, num_cpus, K.get_session(), **da_config) print('RESET_SESSION DONE') print('step3') # Start training t0 = time.time() gen_iterations = 0 errGA_sum = errGB_sum = errDA_sum = errDB_sum = 0 errGAs = {} errGBs = {} # Dictionaries are ordered in Python 3.6 for k in ['ttl', 'adv', 'recon', 'edge', 'pl']: errGAs[k] = 0 errGBs[k] = 0 display_iters = 300 backup_iters = 5000 TOTAL_ITERS = ITERS // 1 # TOTAL_ITERS = 10000 print('step4') global train_batchA, train_batchB train_batchA = DataLoader(train_A, train_AnB, batchSize, img_dirA_bm_eyes, RESOLUTION, num_cpus, K.get_session(), **da_config) train_batchB = DataLoader(train_B, train_AnB, batchSize, img_dirB_bm_eyes, RESOLUTION, num_cpus, K.get_session(), **da_config) print('step5') print('DATALOADER DONE') show_iters = 50 print("START TRAINING") while gen_iterations <= TOTAL_ITERS: #print(gen_iterations) # Loss function automation if gen_iterations == (TOTAL_ITERS // 5 - display_iters // 2): #clear_output() loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = False loss_config['m_mask'] = 0.0 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Done.") elif gen_iterations == (TOTAL_ITERS // 5 + TOTAL_ITERS // 10 - display_iters // 2): #clear_output() loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = True loss_config['m_mask'] = 0.5 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Complete.") elif gen_iterations == (2 * TOTAL_ITERS // 5 - display_iters // 2): #clear_output() loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = True loss_config['m_mask'] = 0.2 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Done.") elif gen_iterations == (TOTAL_ITERS // 2 - display_iters // 2): #clear_output() loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = True loss_config['m_mask'] = 0.4 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Done.") elif gen_iterations == (2 * TOTAL_ITERS // 3 - display_iters // 2): #clear_output() loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = False loss_config['m_mask'] = 0. loss_config['lr_factor'] = 0.3 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Done.") elif gen_iterations == (8 * TOTAL_ITERS // 10 - display_iters // 2): #clear_output() model.decoder_A.load_weights( "models/decoder_B.h5") # swap decoders model.decoder_B.load_weights( "models/decoder_A.h5") # swap decoders loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = True loss_config['m_mask'] = 0.1 loss_config['lr_factor'] = 0.3 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Done.") elif gen_iterations == (9 * TOTAL_ITERS // 10 - display_iters // 2): #clear_output() loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = False loss_config['m_mask'] = 0.0 loss_config['lr_factor'] = 0.1 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Done.") # Train dicriminators for one batch data_A = train_batchA.get_next_batch( ) # 每次返回一张原始图,一张随机扭曲的图,以及与原始图像对应的mask data_B = train_batchB.get_next_batch() errDA, errDB = model.train_one_batch_D(data_A=data_A, data_B=data_B) errDA_sum += errDA[0] errDB_sum += errDB[0] # Train generators for one batch data_A = train_batchA.get_next_batch() data_B = train_batchB.get_next_batch() errGA, errGB = model.train_one_batch_G(data_A=data_A, data_B=data_B) errGA_sum += errGA[0] errGB_sum += errGB[0] for i, k in enumerate(['ttl', 'adv', 'recon', 'edge', 'pl']): errGAs[k] += errGA[i] errGBs[k] += errGB[i] gen_iterations += 1 if gen_iterations % show_iters == 0: #print('iter: %d, Loss_GA: %f, Loss_G: %f' % (gen_iterations, errGA_sum / display_iters, errGB_sum / display_iters)) # Display loss information #show_loss_config(loss_config) print( '[iter %d] Loss_DA: %f Loss_DB: %f Loss_GA: %f Loss_GB: %f time: %f' % (gen_iterations, float(errDA_sum / show_iters), float(errDB_sum / show_iters), float(errGA_sum / show_iters), float(errGB_sum / show_iters), time.time() - t0)) for k in ['ttl', 'adv', 'recon', 'edge', 'pl']: errGAs[k] = 0 errGBs[k] = 0 errGA_sum = errGB_sum = errDA_sum = errDB_sum = 0 # Display images wA, tA, _ = train_batchA.get_next_batch() wB, tB, _ = train_batchB.get_next_batch() tran_res = showG(tA, tB, model.path_A, model.path_B, batchSize) mask_res = showG_mask(tA, tB, model.path_mask_A, model.path_mask_B, batchSize) rec_res = showG(wA, wB, model.path_bgr_A, model.path_bgr_B, batchSize) #mask_res1 = cv2.cvtColor(mask_res, cv2.COLOR_GRAY2BGR) fname = "./logs/images/tran_mask_rec_%d.jpg" % (gen_iterations) res = np.vstack([tran_res, mask_res, rec_res]) cv2.imwrite(fname, res) #fname = "./logs/images/mask_%d.jpg" % (gen_iterations) #cv2.imwrite(fname, mask_res) # Visualization delete if gen_iterations % display_iters == 0: # Save models model.save_weights(path=models_dir) # Backup models if gen_iterations % backup_iters == 0: bkup_dir = f"{models_dir}/backup_iter{gen_iterations}" #Path(bkup_dir).mkdir(parents=True, exist_ok=True) if not os.path.exists(bkup_dir): os.mkdir(bkup_dir) model.save_weights(path=bkup_dir) print('TRAIN DONE')
def run(img_dirA, img_dirB, TOTAL_ITERS = 40000): global model, vggface img_dirA_bm_eyes = f"{img_dirA}/binary_masks_eyes2" img_dirB_bm_eyes = f"{img_dirB}/binary_masks_eyes2" # Path to saved model weights models_dir = "./models" # Number of CPU cores num_cpus = os.cpu_count() # Input/Output resolution RESOLUTION = 64 # 64x64, 128x128, 256x256 assert (RESOLUTION % 64) == 0, "RESOLUTION should be 64, 128, or 256." # Batch size batchSize = 8 assert (batchSize != 1 and batchSize % 2 == 0) , "batchSize should be an even number." # Use motion blurs (data augmentation) # set True if training data contains images extracted from videos use_da_motion_blur = False # Use eye-aware training # require images generated from prep_binary_masks.ipynb use_bm_eyes = True # Probability of random color matching (data augmentation) prob_random_color_match = 0.5 da_config = { "prob_random_color_match": prob_random_color_match, "use_da_motion_blur": use_da_motion_blur, "use_bm_eyes": use_bm_eyes } # Architecture configuration arch_config = {} arch_config['IMAGE_SHAPE'] = (RESOLUTION, RESOLUTION, 3) arch_config['use_self_attn'] = True arch_config['norm'] = "instancenorm" # instancenorm, batchnorm, layernorm, groupnorm, none arch_config['model_capacity'] = "standard" # standard, lite # VGGFace ResNet50 vggface = VGGFace(include_top=False, model='resnet50', input_shape=(224, 224, 3)) # Loss function weights configuration loss_weights = {} loss_weights['w_D'] = 0.1 # Discriminator loss_weights['w_recon'] = 1. # L1 reconstruction loss loss_weights['w_edge'] = 0.1 # edge loss loss_weights['w_eyes'] = 30. # reconstruction and edge loss on eyes area loss_weights['w_pl'] = (0.01, 0.1, 0.3, 0.1) # perceptual loss (0.003, 0.03, 0.3, 0.3) # Init. loss config. loss_config = {} loss_config["gan_training"] = "mixup_LSGAN" # "mixup_LSGAN" or "relativistic_avg_LSGAN" loss_config['use_PL'] = False loss_config["PL_before_activ"] = False loss_config['use_mask_hinge_loss'] = False loss_config['m_mask'] = 0. loss_config['lr_factor'] = 1. loss_config['use_cyclic_loss'] = False from networks.faceswap_gan_model import FaceswapGANModel model = FaceswapGANModel(**arch_config) model.load_weights(path=models_dir) from colab_demo.vggface_models import RESNET50 vggface = RESNET50(include_top=False, weights=None, input_shape=(224, 224, 3)) vggface.load_weights("rcmalli_vggface_tf_notop_resnet50.h5") #vggface.summary() model.build_pl_model(vggface_model=vggface, before_activ=loss_config["PL_before_activ"]) model.build_train_functions(loss_weights=loss_weights, **loss_config) from data_loader.data_loader import DataLoader # Create ./models directory Path(f"models").mkdir(parents=True, exist_ok=True) # Get filenames faces_A = f"{img_dirA}/raw_faces" faces_B = f"{img_dirB}/raw_faces" train_A = glob.glob(f"{faces_A}/*.*") train_B = glob.glob(f"{faces_B}/*.*") train_AnB = train_A + train_B assert len(train_A), f"No image found in {faces_A}" assert len(train_B), f"No image found in {faces_B}" print ("Number of images in folder A: " + str(len(train_A))) print ("Number of images in folder B: " + str(len(train_B))) if use_bm_eyes: assert len(glob.glob(img_dirA_bm_eyes+"/*.*")), "No binary mask found in " + str(img_dirA_bm_eyes) assert len(glob.glob(img_dirB_bm_eyes+"/*.*")), "No binary mask found in " + str(img_dirB_bm_eyes) assert len(glob.glob(img_dirA_bm_eyes+"/*.*")) == len(train_A), \ "Number of faceA images does not match number of their binary masks. Can be caused by any none image file in the folder." assert len(glob.glob(img_dirB_bm_eyes+"/*.*")) == len(train_B), \ "Number of faceB images does not match number of their binary masks. Can be caused by any none image file in the folder." def show_loss_config(loss_config): for config, value in loss_config.items(): print(f"{config} = {value}") def reset_session(save_path): global model, vggface global train_batchA, train_batchB model.save_weights(path=save_path) del model del vggface del train_batchA del train_batchB K.clear_session() model = FaceswapGANModel(**arch_config) model.load_weights(path=save_path) vggface = VGGFace(include_top=False, model='resnet50', input_shape=(224, 224, 3)) model.build_pl_model(vggface_model=vggface, before_activ=loss_config["PL_before_activ"]) train_batchA = DataLoader(train_A, train_AnB, batchSize, img_dirA_bm_eyes, RESOLUTION, num_cpus, K.get_session(), **da_config) train_batchB = DataLoader(train_B, train_AnB, batchSize, img_dirB_bm_eyes, RESOLUTION, num_cpus, K.get_session(), **da_config) # Start training t0 = time.time() # This try/except is meant to resume training that was accidentally interrupted try: gen_iterations print(f"Resume training from iter {gen_iterations}.") except: gen_iterations = 0 errGA_sum = errGB_sum = errDA_sum = errDB_sum = 0 errGAs = {} errGBs = {} # Dictionaries are ordered in Python 3.6 for k in ['ttl', 'adv', 'recon', 'edge', 'pl']: errGAs[k] = 0 errGBs[k] = 0 display_iters = 300 backup_iters = 5000 global train_batchA, train_batchB train_batchA = DataLoader(train_A, train_AnB, batchSize, img_dirA_bm_eyes, RESOLUTION, num_cpus, K.get_session(), **da_config) train_batchB = DataLoader(train_B, train_AnB, batchSize, img_dirB_bm_eyes, RESOLUTION, num_cpus, K.get_session(), **da_config) clear_output() loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = False loss_config['m_mask'] = 0.0 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Done.") while gen_iterations <= TOTAL_ITERS: # Loss function automation if gen_iterations == (TOTAL_ITERS//5 - display_iters//2): clear_output() loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = False loss_config['m_mask'] = 0.0 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Done.") elif gen_iterations == (TOTAL_ITERS//5 + TOTAL_ITERS//10 - display_iters//2): clear_output() loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = True loss_config['m_mask'] = 0.5 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Complete.") elif gen_iterations == (2*TOTAL_ITERS//5 - display_iters//2): clear_output() loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = True loss_config['m_mask'] = 0.2 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Done.") elif gen_iterations == (TOTAL_ITERS//2 - display_iters//2): clear_output() loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = True loss_config['m_mask'] = 0.4 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Done.") elif gen_iterations == (2*TOTAL_ITERS//3 - display_iters//2): clear_output() loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = False loss_config['m_mask'] = 0. loss_config['lr_factor'] = 0.3 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Done.") elif gen_iterations == (8*TOTAL_ITERS//10 - display_iters//2): clear_output() model.decoder_A.load_weights("models/decoder_B.h5") # swap decoders model.decoder_B.load_weights("models/decoder_A.h5") # swap decoders loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = True loss_config['m_mask'] = 0.1 loss_config['lr_factor'] = 0.3 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Done.") elif gen_iterations == (9*TOTAL_ITERS//10 - display_iters//2): clear_output() loss_config['use_PL'] = True loss_config['use_mask_hinge_loss'] = False loss_config['m_mask'] = 0.0 loss_config['lr_factor'] = 0.1 reset_session(models_dir) print("Building new loss funcitons...") show_loss_config(loss_config) model.build_train_functions(loss_weights=loss_weights, **loss_config) print("Done.") if gen_iterations == 5: print ("working.") # Train dicriminators for one batch data_A = train_batchA.get_next_batch() data_B = train_batchB.get_next_batch() errDA, errDB = model.train_one_batch_D(data_A=data_A, data_B=data_B) errDA_sum +=errDA[0] errDB_sum +=errDB[0] # Train generators for one batch data_A = train_batchA.get_next_batch() data_B = train_batchB.get_next_batch() errGA, errGB = model.train_one_batch_G(data_A=data_A, data_B=data_B) errGA_sum += errGA[0] errGB_sum += errGB[0] for i, k in enumerate(['ttl', 'adv', 'recon', 'edge', 'pl']): errGAs[k] += errGA[i] errGBs[k] += errGB[i] gen_iterations+=1 # Visualization if gen_iterations % display_iters == 0: clear_output() # Display loss information show_loss_config(loss_config) print("----------") print('[iter %d] Loss_DA: %f Loss_DB: %f Loss_GA: %f Loss_GB: %f time: %f' % (gen_iterations, errDA_sum/display_iters, errDB_sum/display_iters, errGA_sum/display_iters, errGB_sum/display_iters, time.time()-t0)) print("----------") print("Generator loss details:") print(f'[Adversarial loss]') print(f'GA: {errGAs["adv"]/display_iters:.4f} GB: {errGBs["adv"]/display_iters:.4f}') print(f'[Reconstruction loss]') print(f'GA: {errGAs["recon"]/display_iters:.4f} GB: {errGBs["recon"]/display_iters:.4f}') print(f'[Edge loss]') print(f'GA: {errGAs["edge"]/display_iters:.4f} GB: {errGBs["edge"]/display_iters:.4f}') if loss_config['use_PL'] == True: print(f'[Perceptual loss]') try: print(f'GA: {errGAs["pl"][0]/display_iters:.4f} GB: {errGBs["pl"][0]/display_iters:.4f}') except: print(f'GA: {errGAs["pl"]/display_iters:.4f} GB: {errGBs["pl"]/display_iters:.4f}') # Display images print("----------") wA, tA, _ = train_batchA.get_next_batch() wB, tB, _ = train_batchB.get_next_batch() print("Transformed (masked) results:") showG(tA, tB, model.path_A, model.path_B, batchSize) print("Masks:") showG_mask(tA, tB, model.path_mask_A, model.path_mask_B, batchSize) print("Reconstruction results:") showG(wA, wB, model.path_bgr_A, model.path_bgr_B, batchSize) errGA_sum = errGB_sum = errDA_sum = errDB_sum = 0 for k in ['ttl', 'adv', 'recon', 'edge', 'pl']: errGAs[k] = 0 errGBs[k] = 0 # Save models model.save_weights(path=models_dir) # Backup models if gen_iterations % backup_iters == 0: bkup_dir = f"{models_dir}/backup_iter{gen_iterations}" Path(bkup_dir).mkdir(parents=True, exist_ok=True) model.save_weights(path=bkup_dir)
print(f'GA: {errGAs["recon"] / display_iters:.4f} GB: {errGBs["recon"] / display_iters:.4f}') print(f'[Edge loss]') print(f'GA: {errGAs["edge"] / display_iters:.4f} GB: {errGBs["edge"] / display_iters:.4f}') if loss_config['use_PL'] == True: print(f'[Perceptual loss]') try: print(f'GA: {errGAs["pl"][0] / display_iters:.4f} GB: {errGBs["pl"][0] / display_iters:.4f}') except: print(f'GA: {errGAs["pl"] / display_iters:.4f} GB: {errGBs["pl"] / display_iters:.4f}') # Display images print("----------") wA, tA, _ = train_batchA.get_next_batch() wB, tB, _ = train_batchB.get_next_batch() print("Transformed (masked) results:") showG(tA, tB, model.path_A, model.path_B, batchSize, "Transformed (masked) results:") print("Masks:") showG_mask(tA, tB, model.path_mask_A, model.path_mask_B, batchSize,"Masks:") print("Reconstruction results:") showG(wA, wB, model.path_bgr_A, model.path_bgr_B, batchSize, "Reconstruction results:") errGA_sum = errGB_sum = errDA_sum = errDB_sum = 0 for k in ['ttl', 'adv', 'recon', 'edge', 'pl']: errGAs[k] = 0 errGBs[k] = 0 # Save models model.save_weights(path=models_dir) # Backup models if gen_iterations % backup_iters == 0: bkup_dir = f"{models_dir}/backup_iter{gen_iterations}"
print("----------") # Display and save images n_batch = 4 dataA = [ train_batchA.get_next_batch()[:2] for i in range(n_batch) ] dataB = [ train_batchB.get_next_batch()[:2] for i in range(n_batch) ] wA = np.concatenate([i[0] for i in dataA]) tA = np.concatenate([i[1] for i in dataA]) wB = np.concatenate([i[0] for i in dataB]) tB = np.concatenate([i[1] for i in dataB]) # print("Transformed (masked) results:") img = showG(tA, tB, model.path_A, model.path_B, batchSize * n_batch) plt.imsave( os.path.join(samples_dir, 'result_%05d.jpg' % gen_iterations), img) # print("Masks:") img = showG_mask(tA, tB, model.path_mask_A, model.path_mask_B, batchSize * n_batch) plt.imsave( os.path.join(samples_dir, 'mask_%05d.jpg' % gen_iterations), img) # print("Reconstruction results:") img = showG(wA, wB, model.path_bgr_A, model.path_bgr_B, batchSize * n_batch) plt.imsave( os.path.join(samples_dir, 'reconstruction_%05d.jpg' % gen_iterations),