def split(matrix, uploaded_file_path, timestamp): split_image(uploaded_file_path, matrix) os.remove(uploaded_file_path) json_res = jsonify({ 'dirname': timestamp, 'files': os.listdir(app.config['UPLOAD_FOLDER'] + timestamp) }) json_res.status_code = HTTPStatus.CREATED return json_res
import os import sys import json import subprocess from utils import STATUS, PREFIX from utils import load_yaml, save_yaml, load_images, split_image, gen_tag folder = sys.argv[1] image_dict = {} image_set = set() for image in load_images(): if image.get(STATUS, None) is not None: image_set.add(image['name']) image_repo, image_tag = split_image(image['name']) image_dict[image_repo] = { "full": image['name'], "repo": image_repo, "tag": image_tag, } replaces = {} current = "" def reg(s): return s.replace('/', '\/') def replace_container(c):
from utils import AUTH_CONFIG, STATUS, PREFIX from utils import gen_tag, split_image, load_images client = docker.from_env() images = load_images() for entry in images: image = entry['name'] status = entry.get(STATUS, None) if status is not None: continue relabel = gen_tag(image) relabel_image = PREFIX + ":" + relabel image_repo, image_tag = split_image(image) print("Remapping {} to {}".format(image, relabel_image)) cmd = ['sudo', 'docker', 'pull', image] subprocess.run(cmd) cmd = ['sudo', 'docker', 'tag', image, relabel_image] subprocess.run(cmd) cmd = [ 'sudo', 'docker', 'login', '--username='******'username'], '--password='******'password'], PREFIX.split('/')[0] ] subprocess.run(cmd) cmd = ['sudo', 'docker', 'push', PREFIX + ":" + relabel] subprocess.run(cmd) #client.images.push(PREFIX, tag=relabel, auth_config=AUTH_CONFIG)
from utils import split_image, pack_sequences from chars import * import matplotlib.pyplot as plt if __name__ == '__main__': model_f, img_f = sys.argv[1:] model = OCRModel(num_chars=NUM_TOKENS) device = torch.device('cpu') model.load_state_dict(torch.load(model_f, map_location=device)) model.eval() img = cv2.imread(img_f) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) images = split_image(img) logits = model.encoder(pack_sequences([images], device), device) logits, input_lengths = nn.utils.rnn.pad_packed_sequence(logits, batch_first=False) probs, ids = logits.view(len(images), -1).softmax(dim=1).max(dim=1) chars = [ids2chars[int(i)] for i in ids] h, w = img.shape ratio = 2 img = cv2.resize(img, (int(w * ratio), int(h * ratio)), interpolation=cv2.INTER_NEAREST) plt.imshow(img, cmap='gray') x = [14 * i + 7 / 2 for i in range(len(images))] heights = probs.detach().numpy()
from PIL import Image from utils import key, encryptChannel, decryptChannel, split_image keySpace=256 imgPath='input.jpeg' # Open the image using PIL im = Image.open(imgPath, 'r') # Resize the image to 256*256 pixels # im = im.resize((256, 256), Image.ANTIALIAS) # Extract pizel values img0, img1 = split_image(im.getdata()) rVal, gVal, bVal = zip(*im.getdata()) rVal0, gVal0, bVal0 = zip(*img0) rVal1, gVal1, bVal1 = zip(*img1) partImg = Image.new(im.mode, im.size) partImg.putdata(list(zip(rVal0, gVal0, bVal0))) partImg.save("part1.jpg") partImg = Image.new(im.mode, im.size) partImg.putdata(list(zip(rVal1, gVal1, bVal1))) partImg.save("part2.jpg") newImg = Image.new(im.mode, im.size) newImg.putdata(list(zip(rVal, gVal, bVal)))