Beispiel #1
0
def webcam(style_transform_path, width=1280, height=720):
    """
    Captures and saves an image, perform style transfer, and again saves the styled image.
    Reads the styled image and show in window. 

    Saving and loading SHOULD BE eliminated, however this produces too much whitening in
    the "generated styled image". This may be caused by the async nature of VideoCapture,
    and I don't know how to fix it. 
    """
    # Device
    device = ("cuda" if torch.cuda.is_available() else "cpu")

    # Load Transformer Network
    print("Loading Transformer Network")
    net = transformer.TransformerNetwork()
    net.load_state_dict(torch.load(style_transform_path))
    net = net.to(device)
    print("Done Loading Transformer Network")

    # Set webcam settings
    cam = cv2.VideoCapture(0)
    cam.set(3, width)
    cam.set(4, height)

    # Main loop
    with torch.no_grad():
        count = 1
        while True:
            # Get webcam input
            ret_val, img = cam.read()

            # Mirror
            img = cv2.flip(img, 1)
            utils.saveimg(img, str(count) + ".png")

            # Free-up unneeded cuda memory
            torch.cuda.empty_cache()

            # Generate image
            content_image = utils.load_image(str(count) + ".png")
            content_tensor = utils.itot(content_image).to(device)
            generated_tensor = net(content_tensor)
            generated_image = utils.ttoi(generated_tensor.detach())
            if (PRESERVE_COLOR):
                generated_image = utils.transfer_color(content_image,
                                                       generated_image)
            utils.saveimg(generated_image, str(count + 1) + ".png")
            img2 = cv2.imread(str(count + 1) + ".png")

            count += 2
            # Show webcam
            cv2.imshow('Demo webcam', img2)
            if cv2.waitKey(1) == 27:
                break  # esc to quit

    # Free-up memories
    cam.release()
    cv2.destroyAllWindows()
Beispiel #2
0
def stylize_folder(style_path, folder_containing_the_content_folder, save_folder, batch_size=1):
    """Stylizes images in a folder by batch
    If the images  are of different dimensions, use transform.resize() or use a batch size of 1
    IMPORTANT: Put content_folder inside another folder folder_containing_the_content_folder

    folder_containing_the_content_folder
        content_folder
            pic1.ext
            pic2.ext
            pic3.ext
            ...

    and saves as the styled images in save_folder as follow:

    save_folder
        pic1.ext
        pic2.ext
        pic3.ext
        ...
    """
    # Device
    device = ("cuda" if torch.cuda.is_available() else "cpu")

    # Image loader
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Lambda(lambda x: x.mul(255))
    ])
    image_dataset = utils.ImageFolderWithPaths(folder_containing_the_content_folder, transform=transform)
    image_loader = torch.utils.data.DataLoader(image_dataset, batch_size=batch_size)

    # Load Transformer Network
    net = transformer.TransformerNetwork()
    net.load_state_dict(torch.load(style_path))
    net = net.to(device)

    # Stylize batches of images
    with torch.no_grad():
        for content_batch, _, path in image_loader:
            # Free-up unneeded cuda memory
            torch.cuda.empty_cache()

            # Generate image
            generated_tensor = net(content_batch.to(device)).detach()

            # Save images
            for i in range(len(path)):
                generated_image = utils.ttoi(generated_tensor[i])
                if (PRESERVE_COLOR):
                    generated_image = utils.transfer_color(content_image, generated_image)
                image_name = os.path.basename(path[i])
                utils.saveimg(generated_image, save_folder + image_name)

#stylize()
    def __getitem__(self, idx):

        inputs = {}

        do_flip = False
        if self.is_train and random.random() > 0.5:
            do_flip = True

        # load from disk
        left_image, background_image = self.load_images(idx, do_flip=do_flip)
        loaded_disparity = self.load_disparity(idx, do_flip=do_flip)

        inputs['left_image'] = left_image
        inputs['background'] = background_image
        inputs['loaded_disparity'] = loaded_disparity

        # resize and/or crop
        inputs = self.prepare_sizes(inputs)

        # match color in background image
        inputs['background'] = transfer_color(np.array(inputs['background']),
                                              np.array(inputs['left_image']))

        # convert scaleless disparity to pixel disparity
        inputs['disparity'] = \
            self.process_disparity(inputs['loaded_disparity'],
                                   max_disparity_range=(50, self.max_disparity))

        # now generate synthetic stereo image
        projection_disparity = inputs['disparity']
        right_image = self.project_image(inputs['left_image'],
                                         projection_disparity,
                                         inputs['background'])

        # augmentation
        right_image = self.augment_synthetic_image(right_image)

        # only keep required keys and prepare for network
        inputs = {
            'image': inputs['left_image'],
            'stereo_image': right_image,
            'disparity': projection_disparity.astype(float),
            'mono_disparity': inputs['loaded_disparity'].astype(float),
        }

        # finally crop to feed width
        for key in ['image', 'stereo_image']:
            inputs[key] = inputs[key].crop(
                (0, 0, self.feed_width, self.feed_height))
        for key in ['disparity', 'mono_disparity']:
            inputs[key] = inputs[key][:, :self.feed_width]

        self.preprocess(inputs)
        return inputs
def webcam(style_transform_path, width=1280, height=720):
    """
    Captures and saves an image, perform style transfer, and again saves the styled image.
    Reads the styled image and show in window. 
    """
    # Device
    device = "cuda" if torch.cuda.is_available() else "cpu"

    # Load Transformer Network
    print("Loading Transformer Network")
    net = transformer.TransformerNetwork()
    net.load_state_dict(torch.load(style_transform_path))
    net = net.to(device)
    print("Done Loading Transformer Network")

    # Set webcam settings
    cam = cv2.VideoCapture(0)
    cam.set(3, width)
    cam.set(4, height)

    # Main loop
    with torch.no_grad():
        while True:
            # Get webcam input
            ret_val, img = cam.read()

            # Mirror
            img = cv2.flip(img, 1)

            # Free-up unneeded cuda memory
            torch.cuda.empty_cache()

            # Generate image
            content_tensor = utils.itot(img).to(device)
            generated_tensor = net(content_tensor)
            generated_image = utils.ttoi(generated_tensor.detach())
            if PRESERVE_COLOR:
                generated_image = utils.transfer_color(img, generated_image)

            generated_image = generated_image / 255

            # Show webcam
            cv2.imshow("Demo webcam", generated_image)
            if cv2.waitKey(1) == 27:
                break  # esc to quit

    # Free-up memories
    cam.release()
    cv2.destroyAllWindows()
Beispiel #5
0
def webcam(style_transform_path, width=1280, height=720):
    # Device
    device = ("cuda" if torch.cuda.is_available() else "cpu")

    # Load Transformer Network
    print("Loading Transformer Network")
    net = transformer.TransformerNetwork()
    net.load_state_dict(torch.load(style_transform_path, map_location=device))
    net = net.to(device)
    print("Done Loading Transformer Network")

    # Set webcam settings
    cam = cv2.VideoCapture(0)
    cam.set(3, width)
    cam.set(4, height)

    # Main loop
    with torch.no_grad():
        count = 1
        while True:
            # Get webcam input
            ret_val, img = cam.read()

            # AI Mirror
            img = cv2.flip(img, 1)

            # Free-up unneeded cuda memory
            torch.cuda.empty_cache()

            # Generate image
            content_tensor = utils.itot(img).to(device)
            generated_tensor = net(content_tensor)
            generated_image = utils.ttoi(generated_tensor.detach())
            if (PRESERVE_COLOR):
                generated_image = utils.transfer_color(content_image,
                                                       generated_image)
            img2 = cv2.imdecode(
                cv2.imencode(".png", generated_image)[1], cv2.IMREAD_UNCHANGED)

            count += 2
            # Show webcam
            cv2.imshow('Demo webcam', img2)
            if cv2.waitKey(1) == 27:
                break  # esc to quit

    # Free-up memories
    cam.release()
    cv2.destroyAllWindows()
Beispiel #6
0
def save(rgb_in, args):
    output_path = args.output_dir + args.output_image
    utils.save_img_rgb(output_path + args.output_ext, rgb_in)
    results = {
        'path': output_path + args.output_ext,
    }
    #preserve original color
    if args.preserve_color:
        generated_img = utils.load_image_bgr(output_path + args.output_ext)
        orig_img = utils.load_image_bgr(args.content_image)
        new_img = utils.transfer_color(orig_img, generated_img)
        utils.save_img_bgr(output_path + "-color_preserved" + args.output_ext,
                           new_img)
        results[
            'color_preserved_path'] = output_path + "-color_preserved" + args.output_ext

    return results
Beispiel #7
0
def stylize_folder_single(style_path, content_folder, save_folder):
    """
    Reads frames/pictures as follows:

    content_folder
        pic1.ext
        pic2.ext
        pic3.ext
        ...

    and saves as the styled images in save_folder as follow:

    save_folder
        pic1.ext
        pic2.ext
        pic3.ext
        ...
    """
    # Device
    device = ("cuda" if torch.cuda.is_available() else "cpu")

    # Load Transformer Network
    net = transformer.TransformerNetwork()
    net.load_state_dict(torch.load(style_path))
    net = net.to(device)

    # Stylize every frame
    images = [img for img in os.listdir(content_folder) if img.endswith(".jpg")]
    with torch.no_grad():
        for image_name in images:
            # Free-up unneeded cuda memory
            torch.cuda.empty_cache()
            
            # Load content image
            content_image = utils.load_image(content_folder + image_name)
            content_tensor = utils.itot(content_image).to(device)

            # Generate image
            generated_tensor = net(content_tensor)
            generated_image = utils.ttoi(generated_tensor.detach())
            if (PRESERVE_COLOR):
                generated_image = utils.transfer_color(content_image, generated_image)
            # Save image
            utils.saveimg(generated_image, save_folder + image_name)
Beispiel #8
0
def stylize():
    # Device
    device = ("cuda" if torch.cuda.is_available() else "cpu")

    # Load Transformer Network
    net = transformer.TransformerNetwork()
    net.load_state_dict(torch.load(STYLE_TRANSFORM_PATH))
    net = net.to(device)

    with torch.no_grad():
        while(1):
            torch.cuda.empty_cache()
            print("Stylize Image~ Press Ctrl+C and Enter to close the program")
            content_image_path = input("Enter the image path: ")
            content_image = utils.load_image(content_image_path)
            starttime = time.time()
            content_tensor = utils.itot(content_image).to(device)
            generated_tensor = net(content_tensor)
            generated_image = utils.ttoi(generated_tensor.detach())
            if (PRESERVE_COLOR):
                generated_image = utils.transfer_color(content_image, generated_image)
            print("Transfer Time: {}".format(time.time() - starttime))
            utils.show(generated_image)
            utils.saveimg(generated_image, "helloworld.jpg")
Beispiel #9
0
def stylize(args):
    """Run the style transfer."""
    device = torch.device("cuda" if args.cuda else "cpu")
    content_img, style_img = get_eval_images(args)
    content_img = content_img.to(device, torch.float)
    style_img = style_img.to(device, torch.float)
    cnn = models.vgg19(pretrained=True).features.to(device).eval()
    cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
    cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)

    print('Building the style transfer model..')
    model, style_losses, content_losses = get_style_model_and_losses(
        cnn, device, cnn_normalization_mean, cnn_normalization_std, style_img,
        content_img)
    print(model)
    start = time.time()
    # input_img = content_img.clone()
    # input_img = style_img.clone()
    input_img = torch.randn_like(content_img).to(device)
    optimizer = get_optimizer(input_img, args)
    print('Optimizing..')
    run = [0]
    losses = []
    while run[0] <= args.num_steps:

        def closure():
            # correct the values of updated input image
            input_img.data.clamp_(0, 1)

            optimizer.zero_grad()
            model(input_img)
            style_score = 0
            content_score = 0

            for sl in style_losses:
                style_score += sl.loss
            for cl in content_losses:
                content_score += cl.loss

            style_score *= args.style_weight / 5
            content_score *= args.content_weight

            if args.reg:
                if args.reg.lower() == "l2":
                    regularizer = args.reg_weight * 0.5 * torch.sum(
                        torch.norm(input_img))
                elif args.reg.lower() == "tv":
                    tv = TVLoss()
                    regularizer = args.reg_weight * tv(input_img)
            else:
                regularizer = 0.0

            if args.lap_weight:
                lap_loss = args.lap_weight * LapStyleLoss(
                    device, content_img)(input_img)
            else:
                lap_loss = 0.0

            loss = style_score + content_score + regularizer + lap_loss
            losses.append(loss.item())
            loss.backward()

            run[0] += 1
            if run[0] % 50 == 0:
                print("run {}:".format(run))
                print('Style Loss : {:4f} Content Loss: {:4f}'.format(
                    style_score.item(), content_score.item()))
                print()

            return loss

        optimizer.step(closure)

    # a last correction...
    input_img.data.clamp_(0, 1)

    print(f"running time {time.time() - start:.2f}s")

    image = input_img.cpu().clone(
    )  # we clone the tensor to not do changes on it
    image = image.squeeze(0)  # remove the fake batch dimension
    image = image.detach().numpy().transpose(1, 2, 0)
    image = (image * 255).astype('uint8')

    if args.color_prev:
        content_img = content_img.cpu().clone().squeeze(
            0).detach().numpy().transpose(1, 2, 0)
        content_img = (content_img * 255).astype('uint8')

        image = transfer_color(content_img, image)

    imsave(
        f"{args.output_image}/{args.content_image.split('/')[-1].replace('.jpg', '')}_"
        f"{args.style_image.split('/')[-1].replace('.jpg', '')}_{args.optimizer}"
        f"{'_' + args.reg if args.reg else ''}"
        f"{'_lap' if args.lap_weight else ''}{'_color_prev' if args.color_prev else ''}_stylize.jpg",
        image)

    plt.plot(losses)
    plt.title("Losses along iterations")
    plt.savefig(
        f"{args.output_image}/{args.content_image.split('/')[-1].replace('.jpg', '')}_"
        f"{args.style_image.split('/')[-1].replace('.jpg', '')}_{args.optimizer}"
        f"{'_' + args.reg if args.reg else ''}"
        f"{'_lap' if args.lap_weight else ''}{'_color_prev' if args.color_prev else ''}_losses.jpg"
    )