Beispiel #1
0
def param_init_fflayer(options, params, prefix='ff', nin=None, nout=None, ortho=True):
    """
    Affine transformation + point-wise nonlinearity
    """
    if nin == None:
        nin = options['dim_proj']
    if nout == None:
        nout = options['dim_proj']
    params[_p(prefix,'W')] = xavier_weight(nin, nout)
    params[_p(prefix,'b')] = numpy.zeros((nout,)).astype('float32')

    return params
Beispiel #2
0
def param_init_fclayer(options, params, prefix='fc', nin=None, nout=None, ortho=True):
    """
    Affine transformation + point-wise nonlinearity
    """
    if nin == None:
        nin = options['dim_proj']
    if nout == None:
        nout = options['nCategories']
    params[prefix+'_w'] = theano.shared(value=xavier_weight(nin, nout), borrow=True)
    params[prefix+'_b'] = theano.shared(value=np.zeros((nout,)).astype('float32'), borrow=True)

    return params
 def init_weights(self):
     xavier_weight(self.linear1.weight)
     self.linear1.bias.data.fill_(0)
     xavier_weight(self.linear2.weight)
     self.linear1.bias.data.fill_(0)
     xavier_weight(self.linear3.weight)
     self.linear1.bias.data.fill_(0)
def param_init_fflayer(options,
                       params,
                       prefix='ff',
                       nin=None,
                       nout=None,
                       ortho=True):
    """
    Affine transformation + point-wise nonlinearity
    """
    if nin == None:
        nin = options['dim_proj']
    if nout == None:
        nout = options['dim_proj']
    params[_p(prefix, 'W')] = xavier_weight(nin, nout)
    params[_p(prefix, 'b')] = numpy.zeros((nout, )).astype('float32')

    return params
Beispiel #5
0
 def init_weights(self):
     xavier_weight(self.linear.weight)
     # init.xavier_normal(self.linear.weight)
     self.linear.bias.data.fill_(0)
Beispiel #6
0
 def init_weights(self):
     xavier_weight(self.decoderini.weight)
     self.decoderini.bias.data.fill_(0)