Beispiel #1
0
    def main(self):
        print('Starting Training...')
        loss_hist = Averager()
        loss = []
        validation_losses = []
        precisions = []
        itr = 1

        for epoch in range(self.num_epochs):
            self.model.train()
            loss_hist.reset()

            for images, targets in self.train_data_loader:

                images = list(image.to(self.device) for image in images)
                #         targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
                targets = [{k: v.long().to(self.device)
                            for k, v in t.items()} for t in targets]

                loss_dict = self.model(images, targets)

                losses = sum(loss for loss in loss_dict.values())
                self.validate()
                loss_value = losses.item()

                loss_hist.send(loss_value)
                loss.append(loss_value)

                self.optimizer.zero_grad()
                losses.backward()
                self.optimizer.step()

                if math.isnan(loss_value):
                    plot_grad_flow(self.model.named_parameters())
                    raise ValueError('Loss is nan')
                if itr % 50 == 0:
                    print(f"Iteration #{itr} loss: {loss_value}")

                itr += 1

            # update the learning rate
            if self.lr_scheduler is not None:
                self.lr_scheduler.step()

            if self.val_dataset:
                precision, validation_loss = self.validate()
                precisions.append(precision)
                validation_losses.append(validation_loss)
                print(f'Mean Precision for Validation Data: {precision}')
                print(f'Validation Loss: {validation_loss}')
            print(f"Epoch #{epoch} loss: {loss_hist.value}")
        print('Finished!')
        return loss, precisions, validation_losses
def validate(val_loader, model, device):
    model.eval()
    itr = 1
    loss_hist = Averager()
    loss_hist.reset()
    for images, targets, image_ids in val_loader:
        images = list(image.to(device) for image in images)
        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
        loss_dict = model(images, targets)
        losses = sum(loss for loss in loss_dict)
        loss_value = losses.item()
        loss_hist.send(loss_value)
        if itr % 20 == 0:
            print(f"Iteration: {itr} loss: {loss_hist.value}")
        itr += 1
    return loss_hist.value
Beispiel #3
0
    def train(self, opt):
        # src, tar dataloaders
        src_dataset, tar_dataset, valid_loader = self.dataloader(opt)
        src_dataset_size = src_dataset.total_data_size
        tar_dataset_size = tar_dataset.total_data_size
        train_size = max([src_dataset_size, tar_dataset_size])
        iters_per_epoch = int(train_size / opt.batch_size)

        # Modify train size. Make sure both are of same size.
        # Modify training loop to continue giving src loss after tar is done.

        self.model.train()
        self.global_discriminator.train()
        self.local_discriminator.train()
        start_iter = 0

        if opt.continue_model != '':
            self.load(opt.continue_model)
            print(" [*] Load SUCCESS")

        # loss averager
        cls_loss_avg = Averager()
        sim_loss_avg = Averager()
        loss_avg = Averager()

        # training loop
        print('training start !')
        start_time = time.time()
        best_accuracy = -1
        best_norm_ED = 1e+6
        # i = start_iter
        gamma = 0
        omega = 1
        epoch = 0
        for step in range(start_iter, opt.num_iter + 1):
            epoch = step // iters_per_epoch
            if opt.decay_flag and step > (opt.num_iter // 2):
                self.d_image_opt.param_groups[0]['lr'] -= (opt.lr /
                                                           (opt.num_iter // 2))
                self.d_inst_opt.param_groups[0]['lr'] -= (opt.lr /
                                                          (opt.num_iter // 2))

            src_image, src_labels = src_dataset.get_batch()
            src_image = src_image.to(device)
            src_text, src_length = self.converter.encode(
                src_labels, batch_max_length=opt.batch_max_length)

            tar_image, tar_labels = tar_dataset.get_batch()
            tar_image = tar_image.to(device)
            tar_text, tar_length = self.converter.encode(
                tar_labels, batch_max_length=opt.batch_max_length)

            # Set gradient to zero...
            self.model.zero_grad()
            # Domain classifiers
            self.global_discriminator.zero_grad()
            self.local_discriminator.zero_grad()

            # Attention # align with Attention.forward
            src_preds, src_global_feature, src_local_feature = self.model(
                src_image, src_text[:, :-1])
            # src_global_feature = self.model.visual_feature
            # src_local_feature = self.model.Prediction.context_history
            target = src_text[:, 1:]  # without [GO] Symbol
            src_cls_loss = self.criterion(
                src_preds.view(-1, src_preds.shape[-1]),
                target.contiguous().view(-1))
            src_global_feature = src_global_feature.view(
                src_global_feature.shape[0], -1)
            src_local_feature = src_local_feature.view(
                -1, src_local_feature.shape[-1])

            tar_preds, tar_global_feature, tar_local_feature = self.model(
                tar_image, tar_text[:, :-1], is_train=False)
            # tar_global_feature = self.model.visual_feature
            # tar_local_feature = self.model.Prediction.context_history
            tar_global_feature = tar_global_feature.view(
                tar_global_feature.shape[0], -1)
            tar_local_feature = tar_local_feature.view(
                -1, tar_local_feature.shape[-1])

            src_local_feature, tar_local_feature = filter_local_features(
                opt, src_local_feature, src_preds, tar_local_feature,
                tar_preds)

            # Add domain adaption elements
            # setup hyperparameter
            if step % 2000 == 0:
                p = float(step + start_iter) / opt.num_iter
                gamma = 2. / (1. + np.exp(-10 * p)) - 1
                omega = 1 - 1. / (1. + np.exp(-10 * p))
            self.global_discriminator.module.set_beta(gamma)
            self.local_discriminator.module.set_beta(gamma)

            src_d_img_score = self.global_discriminator(src_global_feature)
            src_d_inst_score = self.local_discriminator(src_local_feature)
            tar_d_img_score = self.global_discriminator(tar_global_feature)
            tar_d_inst_score = self.local_discriminator(tar_local_feature)

            src_d_img_loss = self.D_criterion(
                src_d_img_score,
                torch.zeros_like(src_d_img_score).to(device))
            src_d_inst_loss = self.D_criterion(
                src_d_inst_score,
                torch.zeros_like(src_d_inst_score).to(device))
            tar_d_img_loss = self.D_criterion(
                tar_d_img_score,
                torch.ones_like(tar_d_img_score).to(device))
            tar_d_inst_loss = self.D_criterion(
                tar_d_inst_score,
                torch.ones_like(tar_d_inst_score).to(device))
            d_img_loss = src_d_img_loss + tar_d_img_loss
            d_inst_loss = src_d_inst_loss + tar_d_inst_loss

            # Add domain loss
            loss = src_cls_loss.mean() + omega * (d_img_loss.mean() +
                                                  d_inst_loss.mean())
            loss_avg.add(loss)
            cls_loss_avg.add(src_cls_loss)
            sim_loss_avg.add(d_img_loss + d_inst_loss)

            # frcnn backward
            loss.backward()
            # clip_gradient(self.model, 10.)
            torch.nn.utils.clip_grad_norm_(
                self.model.parameters(),
                opt.grad_clip)  # gradient clipping with 5 (Default)
            # frcnn optimizer update
            self.optimizer.step()
            # domain optimizer update
            self.d_inst_opt.step()
            self.d_image_opt.step()

            # validation part
            if step % opt.valInterval == 0:

                elapsed_time = time.time() - start_time
                print(
                    f'[{step}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} CLS_Loss: {cls_loss_avg.val():0.5f} SIMI_Loss: {sim_loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}'
                )
                # for log
                with open(
                        f'./saved_models/{opt.experiment_name}/log_train.txt',
                        'a') as log:
                    log.write(
                        f'[{step}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}\n'
                    )
                    loss_avg.reset()
                    cls_loss_avg.reset()
                    sim_loss_avg.reset()

                    self.model.eval()
                    with torch.no_grad():
                        valid_loss, current_accuracy, current_norm_ED, preds, labels, infer_time, length_of_data = validation(
                            self.model, self.criterion, valid_loader,
                            self.converter, opt)

                    self.print_prediction_result(preds, labels, log)

                    valid_log = f'[{step}/{opt.num_iter}] valid loss: {valid_loss:0.5f}'
                    valid_log += f' accuracy: {current_accuracy:0.3f}, norm_ED: {current_norm_ED:0.2f}'
                    print(valid_log)
                    log.write(valid_log + '\n')

                    self.model.train()
                    self.global_discriminator.train()
                    self.local_discriminator.train()

                    # keep best accuracy model

                    if current_accuracy > best_accuracy:
                        best_accuracy = current_accuracy
                        save_name = f'./saved_models/{opt.experiment_name}/best_accuracy.pth'
                        self.save(opt, save_name)
                    if current_norm_ED < best_norm_ED:
                        best_norm_ED = current_norm_ED
                        save_name = f'./saved_models/{opt.experiment_name}/best_norm_ED.pth'
                        self.save(opt, save_name)

                    best_model_log = f'best_accuracy: {best_accuracy:0.3f}, best_norm_ED: {best_norm_ED:0.2f}'
                    print(best_model_log)
                    log.write(best_model_log + '\n')

            # save model per 1e+5 iter.
            if (step + 1) % 1e+5 == 0:
                save_name = f'./saved_models/{opt.experiment_name}/iter_{step+1}.pth'
                self.save(opt, save_name)
def train(opt):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    # opt.select_data = opt.select_data.split('-')#[MJ,ST]
    # opt.batch_ratio = opt.batch_ratio.split('-')#[0.5,0.5]
    # train_dataset = Batch_Balanced_Dataset(opt)

    # log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
    # valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
    # train_dataset = iiit5k_dataset_builder("/media/ps/hd1/lll/textRecognition/SAR/IIIT5K/train",
    #     "/media/ps/hd1/lll/textRecognition/SAR/IIIT5K/traindata.mat",opt)
    
    # train_dataset = PpocrDataset("/home/ldl/桌面/论文/文本识别/data/paddleocr",
    # "/home/ldl/桌面/论文/文本识别/data/paddleocr/label/train.txt",6625*100)
    


    # train_dataset_chinese = TextRecognition(4068*75,opt.charalength,opt.chinesefile)
    # train_dataset_english = TextRecognition(4068*25,opt.charalength,opt.englishfile)
    # train_dataset = ConcatDataset([train_dataset_chinese,train_dataset_english])
    train_dataset_xunfeieng = mytrdg_cutimg_dataset(total_img_path='/home/ldl/桌面/论文/文本识别/data/finish_data/eng_image/train/img',
        annotation_path='/home/ldl/桌面/论文/文本识别/data/finish_data/eng_image/train/gt')
    train_dataset_xunfeichn = mytrdg_cutimg_dataset(total_img_path='/home/ldl/桌面/论文/文本识别/data/finish_data/lan_image/train/img',
        annotation_path='/home/ldl/桌面/论文/文本识别/data/finish_data/lan_image/train/gt')
    train_dataset = ConcatDataset([train_dataset_xunfeichn,train_dataset_xunfeieng])
    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=opt.batch_size,
        shuffle=True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid)

    # valid_dataset = iiit5k_dataset_builder("/media/ps/hd1/lll/textRecognition/SAR/IIIT5K/test",
    #     "/media/ps/hd1/lll/textRecognition/SAR/IIIT5K/testdata.mat",opt)
    # valid_dataset_chinese = TextRecognition(1001,opt.charalength,opt.chinesefile)
    # valid_dataset_english = TextRecognition(1001,opt.charalength,opt.englishfile)
    # valid_dataset = ConcatDataset([valid_dataset_chinese,valid_dataset_english])

    valid_dataset_xunfeieng = mytrdg_cutimg_dataset(total_img_path='/home/ldl/桌面/论文/文本识别/data/finish_data/eng_image/test/img',
        annotation_path='/home/ldl/桌面/论文/文本识别/data/finish_data/eng_image/test/gt')
    valid_dataset_xunfeichn = mytrdg_cutimg_dataset(total_img_path='/home/ldl/桌面/论文/文本识别/data/finish_data/lan_image/test/img',
        annotation_path='/home/ldl/桌面/论文/文本识别/data/finish_data/lan_image/test/gt')
    valid_dataset = ConcatDataset([valid_dataset_xunfeichn,valid_dataset_xunfeieng])

    # valid_dataset = PpocrDataset("/home/ldl/桌面/论文/文本识别/data/paddleocr/Synthetic_Chinese_String_Dataset/images",
    # "/home/ldl/桌面/论文/文本识别/data/paddleocr/Synthetic_Chinese_String_Dataset/test.txt",6625,
    #     split='jpg')
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size,
        shuffle=True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid)
    # log.write(valid_dataset_log)
    print('-' * 80)
    # log.write('-' * 80 + '\n')
    # log.close()
    
    """ model configuration """
    if 'CTC' in opt.Prediction:
        if opt.baiduCTC:
            converter = CTCLabelConverterForBaiduWarpctc(opt.character)
        else:
            converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    if opt.num_gpu > 1:
    
        model = torch.nn.DataParallel(model).to(device)
    else:
        model.to(device)
    model.train()
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    print("Model:")
    # print(model)

    """ setup loss """
    if 'CTC' in opt.Prediction:
        if opt.baiduCTC:
            # need to install warpctc. see our guideline.
            from warpctc_pytorch import CTCLoss 
            criterion = CTCLoss()
        else:
            criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    print(f"Train dataset length {len(train_dataset)}")
    print(f"Train dataset length {len(valid_dataset)}")
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    # if opt.adam:
    #     optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
    # else:
    #     optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
    optimizer = optim.Adam(filtered_parameters,lr=0.0001)
    print("Optimizer:")
    print(optimizer)

    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    # if opt.saved_model != '':
    #     try:
    #         start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
    #         print(f'continue to train, start_iter: {start_iter}')
    #     except:
    #         pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter
    epoch = 0
    train_iter_loader = iter(train_loader)

    while(True):
        # train part
        try:

            image_tensors, labels = train_iter_loader.next()
            # if len(labels)>80:
            #     print(labels)
            print("{:4}".format(iteration),end='\r')
        except StopIteration:
            epoch += 1
            print(f"epoch:{epoch}")
            # if epoch >= 1:
            #     break
            # train_loader = torch.utils.data.DataLoader(
            #     train_dataset, batch_size=opt.batch_size,
            #     shuffle=True,  # 'True' to check training progress with validation function.
            #     num_workers=int(opt.workers),
            #     collate_fn=AlignCollate_valid)
            train_iter_loader = iter(train_loader)
            continue
        image = image_tensors.to(device)
        text, length = converter.encode(labels, batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        if 'CTC' in opt.Prediction:
            preds = model(image, text)
            preds_size = torch.IntTensor([preds.size(1)] * preds.size(0))
            if opt.baiduCTC:
                preds = preds.permute(1, 0, 2)  # to use CTCLoss format
                cost = criterion(preds, text, preds_size, length) / batch_size
            else:
                preds = preds.log_softmax(2).permute(1, 0, 2)
                try:
                    cost = criterion(preds, text, preds_size, length)
                except Exception:
                    print(preds.shape,preds_size.shape)
                    raise ''

        else:
            preds = model(image, text[:, :-1])  # align with Attention.forward
            target = text[:, 1:]  # without [GO] Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        # validation part
        if (iteration + 1) % opt.valInterval == 0 or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0' 
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.exp_name}/log_train.txt', 'a') as log:
                model.eval()
                print("validation")
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)
                model.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy >= best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/best_accuracy.pth')
                if current_norm_ED >= best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5], confidence_score[:5]):
                    if 'Attn' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (iteration + 1) % 1e+4 == 0:
            torch.save(
                model.state_dict(), f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth')
        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
Beispiel #5
0
def train(opt):

    if opt.use_tb:
        tb_dir = f'/home_hongdo/{getpass.getuser()}/tb/{opt.experiment_name}'
        print('tensorboard : ', tb_dir)
        if not os.path.exists(tb_dir):
            os.makedirs(tb_dir)
        writer = SummaryWriter(log_dir=tb_dir)
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    # log = open(f'./saved_models/{opt.experiment_name}/log_dataset.txt', 'a')
    log = open(f'{save_dir}/{opt.experiment_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    """ model configuration """
    converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3

    # sekim for transfer learning
    model = Model(opt, 38)

    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)

    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))

    # sekim change last layer
    in_feature = model.module.Prediction.generator.in_features
    model.module.Prediction.attention_cell.rnn = nn.LSTMCell(
        256 + opt.num_class, 256).to(device)
    model.module.Prediction.generator = nn.Linear(in_feature,
                                                  opt.num_class).to(device)

    print(model.module.Prediction.generator)
    print("Model:")
    print(model)

    model.train()
    """ setup loss """
    criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
        device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)
    """ final options """

    # with open(f'./saved_models/{opt.experiment_name}/opt.txt', 'a') as opt_file:
    with open(f'{save_dir}/{opt.experiment_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0

    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print("-------------------------------------------------")
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    i = start_iter

    while (True):
        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        text, length = converter.encode(labels,
                                        batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        preds = model(image, text[:, :-1])  # align with Attention.forward
        target = text[:, 1:]  # without [GO] Symbol
        cost = criterion(preds.view(-1, preds.shape[-1]),
                         target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        # validation part
        if i % opt.valInterval == 0:
            elapsed_time = time.time() - start_time
            # for log
            with open(f'{save_dir}/{opt.experiment_name}/log_train.txt',
                      'a') as log:
                # with open(f'./saved_models/{opt.experiment_name}/log_train.txt', 'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)

                model.train()

                # training loss and validation loss

                loss_log = f'[{i}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg.reset()
                if opt.use_tb:
                    writer.add_scalar('OCR_loss/train_loss', loss_avg.val(), i)
                    writer.add_scalar('OCR_loss/validation_loss', valid_loss,
                                      i)

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    # torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_accuracy.pth')
                    torch.save(
                        model.state_dict(),
                        f'{save_dir}/{opt.experiment_name}/best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    # torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_norm_ED.pth')
                    torch.save(
                        model.state_dict(),
                        f'{save_dir}/{opt.experiment_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):

                    gt = gt[:gt.find('[s]')]
                    pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (i + 1) % 1e+5 == 0:
            # torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')
            torch.save(model.state_dict(),
                       f'{save_dir}/{opt.experiment_name}/iter_{i + 1}.pth')

        if i == opt.num_iter:
            print('end the training')
            sys.exit()
        i += 1
def train(opt):
    plotDir = os.path.join(opt.exp_dir,opt.exp_name,'plots')
    if not os.path.exists(plotDir):
        os.makedirs(plotDir)
    
    lib.print_model_settings(locals().copy())

    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')

    #considering the real images for discriminator
    opt.batch_size = opt.batch_size*2

    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(os.path.join(opt.exp_dir,opt.exp_name,'log_dataset.txt'), 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size,
        shuffle=False,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    
    model = AdaINGen(opt)
    ocrModel = Model(opt)
    disModel = MsImageDisV1(opt)
    
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)

    
    #  weight initialization
    for currModel in [model, ocrModel, disModel]:
        for name, param in currModel.named_parameters():
            if 'localization_fc2' in name:
                print(f'Skip {name} as it is already initialized')
                continue
            try:
                if 'bias' in name:
                    init.constant_(param, 0.0)
                elif 'weight' in name:
                    init.kaiming_normal_(param)
            except Exception as e:  # for batchnorm.
                if 'weight' in name:
                    param.data.fill_(1)
                continue
    
    
    # data parallel for multi-GPU
    ocrModel = torch.nn.DataParallel(ocrModel).to(device)
    if not opt.ocrFixed:
        ocrModel.train()
    else:
        ocrModel.module.Transformation.eval()
        ocrModel.module.FeatureExtraction.eval()
        ocrModel.module.AdaptiveAvgPool.eval()
        # ocrModel.module.SequenceModeling.eval()
        ocrModel.module.Prediction.eval()

    model = torch.nn.DataParallel(model).to(device)
    model.train()
    
    disModel = torch.nn.DataParallel(disModel).to(device)
    disModel.train()

    if opt.modelFolderFlag:
        
        if len(glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth")))>0:
            opt.saved_synth_model = glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth"))[-1]
        
        if len(glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_dis.pth")))>0:
            opt.saved_dis_model = glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_dis.pth"))[-1]

    #loading pre-trained model
    if opt.saved_ocr_model != '' and opt.saved_ocr_model != 'None':
        print(f'loading pretrained ocr model from {opt.saved_ocr_model}')
        if opt.FT:
            ocrModel.load_state_dict(torch.load(opt.saved_ocr_model), strict=False)
        else:
            ocrModel.load_state_dict(torch.load(opt.saved_ocr_model))
    print("OCRModel:")
    print(ocrModel)

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        print(f'loading pretrained synth model from {opt.saved_synth_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_synth_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_synth_model))
    print("SynthModel:")
    print(model)

    if opt.saved_dis_model != '' and opt.saved_dis_model != 'None':
        print(f'loading pretrained discriminator model from {opt.saved_dis_model}')
        if opt.FT:
            disModel.load_state_dict(torch.load(opt.saved_dis_model), strict=False)
        else:
            disModel.load_state_dict(torch.load(opt.saved_dis_model))
    print("DisModel:")
    print(disModel)

    """ setup loss """
    if 'CTC' in opt.Prediction:
        ocrCriterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        ocrCriterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0
    
    recCriterion = torch.nn.L1Loss()
    styleRecCriterion = torch.nn.L1Loss()

    # loss averager
    loss_avg_ocr = Averager()
    loss_avg = Averager()
    loss_avg_dis = Averager()

    loss_avg_ocrRecon_1 = Averager()
    loss_avg_ocrRecon_2 = Averager()
    loss_avg_gen = Averager()
    loss_avg_imgRecon = Averager()
    loss_avg_styRecon = Averager()

    ##---------------------------------------##
    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.optim=='adam':
        optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, opt.beta2), weight_decay=opt.weight_decay)
    else:
        optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps, weight_decay=opt.weight_decay)
    print("SynthOptimizer:")
    print(optimizer)
    

    #filter parameters for OCR training
    ocr_filtered_parameters = []
    ocr_params_num = []
    for p in filter(lambda p: p.requires_grad, ocrModel.parameters()):
        ocr_filtered_parameters.append(p)
        ocr_params_num.append(np.prod(p.size()))
    print('OCR Trainable params num : ', sum(ocr_params_num))


    # setup optimizer
    if opt.optim=='adam':
        ocr_optimizer = optim.Adam(ocr_filtered_parameters, lr=opt.lr, betas=(opt.beta1, opt.beta2), weight_decay=opt.weight_decay)
    else:
        ocr_optimizer = optim.Adadelta(ocr_filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps, weight_decay=opt.weight_decay)
    print("OCROptimizer:")
    print(ocr_optimizer)

    #filter parameters for OCR training
    dis_filtered_parameters = []
    dis_params_num = []
    for p in filter(lambda p: p.requires_grad, disModel.parameters()):
        dis_filtered_parameters.append(p)
        dis_params_num.append(np.prod(p.size()))
    print('Dis Trainable params num : ', sum(dis_params_num))

    # setup optimizer
    if opt.optim=='adam':
        dis_optimizer = optim.Adam(dis_filtered_parameters, lr=opt.lr, betas=(opt.beta1, opt.beta2), weight_decay=opt.weight_decay)
    else:
        dis_optimizer = optim.Adadelta(dis_filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps, weight_decay=opt.weight_decay)
    print("DisOptimizer:")
    print(dis_optimizer)
    ##---------------------------------------##

    """ final options """
    with open(os.path.join(opt.exp_dir,opt.exp_name,'opt.txt'), 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    
    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        try:
            start_iter = int(opt.saved_synth_model.split('_')[-2].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    
    #get schedulers
    scheduler = get_scheduler(optimizer,opt)
    ocr_scheduler = get_scheduler(ocr_optimizer,opt)
    dis_scheduler = get_scheduler(dis_optimizer,opt)

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    best_accuracy_ocr = -1
    best_norm_ED_ocr = -1
    iteration = start_iter
    cntr=0


    while(True):
        # train part
        
        if opt.lr_policy !="None":
            scheduler.step()
            ocr_scheduler.step()
            dis_scheduler.step()
            
        image_tensors_all, labels_1_all, labels_2_all = train_dataset.get_batch()
        
        # ## comment
        # pdb.set_trace()
        # for imgCntr in range(image_tensors.shape[0]):
        #     save_image(tensor2im(image_tensors[imgCntr]),'temp/'+str(imgCntr)+'.png')
        # pdb.set_trace()
        # ###
        # print(cntr)
        cntr+=1
        disCnt = int(image_tensors_all.size(0)/2)
        image_tensors, image_tensors_real, labels_gt, labels_2 = image_tensors_all[:disCnt], image_tensors_all[disCnt:disCnt+disCnt], labels_1_all[:disCnt], labels_2_all[:disCnt]

        image = image_tensors.to(device)
        image_real = image_tensors_real.to(device)
        batch_size = image.size(0)

        
        ##-----------------------------------##
        #generate text(labels) from ocr.forward
        if opt.ocrFixed:
            # ocrModel.eval()
            length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
            text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
            
            if 'CTC' in opt.Prediction:
                preds = ocrModel(image, text_for_pred)
                preds = preds[:, :text_for_loss.shape[1] - 1, :]
                preds_size = torch.IntTensor([preds.size(1)] * batch_size)
                _, preds_index = preds.max(2)
                labels_1 = converter.decode(preds_index.data, preds_size.data)
            else:
                preds = ocrModel(image, text_for_pred, is_train=False)
                _, preds_index = preds.max(2)
                labels_1 = converter.decode(preds_index, length_for_pred)
                for idx, pred in enumerate(labels_1):
                    pred_EOS = pred.find('[s]')
                    labels_1[idx] = pred[:pred_EOS]  # prune after "end of sentence" token ([s])
            # ocrModel.train()
        else:
            labels_1 = labels_gt
        
        ##-----------------------------------##

        text_1, length_1 = converter.encode(labels_1, batch_max_length=opt.batch_max_length)
        text_2, length_2 = converter.encode(labels_2, batch_max_length=opt.batch_max_length)
        
        #forward pass from style and word generator
        images_recon_1, images_recon_2, style = model(image, text_1, text_2)

        if 'CTC' in opt.Prediction:
            
            if not opt.ocrFixed:
                #ocr training with orig image
                preds_ocr = ocrModel(image, text_1)
                preds_size_ocr = torch.IntTensor([preds_ocr.size(1)] * batch_size)
                preds_ocr = preds_ocr.log_softmax(2).permute(1, 0, 2)

                ocrCost_train = ocrCriterion(preds_ocr, text_1, preds_size_ocr, length_1)

            
            #content loss for reconstructed images
            preds_1 = ocrModel(images_recon_1, text_1)
            preds_size_1 = torch.IntTensor([preds_1.size(1)] * batch_size)
            preds_1 = preds_1.log_softmax(2).permute(1, 0, 2)

            preds_2 = ocrModel(images_recon_2, text_2)
            preds_size_2 = torch.IntTensor([preds_2.size(1)] * batch_size)
            preds_2 = preds_2.log_softmax(2).permute(1, 0, 2)
            ocrCost_1 = ocrCriterion(preds_1, text_1, preds_size_1, length_1)
            ocrCost_2 = ocrCriterion(preds_2, text_2, preds_size_2, length_2)
            # ocrCost = 0.5*( ocrCost_1 + ocrCost_2 )

        else:
            if not opt.ocrFixed:
                #ocr training with orig image
                preds_ocr = ocrModel(image, text_1[:, :-1])  # align with Attention.forward
                target_ocr = text_1[:, 1:]  # without [GO] Symbol

                ocrCost_train = ocrCriterion(preds_ocr.view(-1, preds_ocr.shape[-1]), target_ocr.contiguous().view(-1))

            #content loss for reconstructed images
            preds_1 = ocrModel(images_recon_1, text_1[:, :-1], is_train=False)  # align with Attention.forward
            target_1 = text_1[:, 1:]  # without [GO] Symbol

            preds_2 = ocrModel(images_recon_2, text_2[:, :-1], is_train=False)  # align with Attention.forward
            target_2 = text_2[:, 1:]  # without [GO] Symbol

            ocrCost_1 = ocrCriterion(preds_1.view(-1, preds_1.shape[-1]), target_1.contiguous().view(-1))
            ocrCost_2 = ocrCriterion(preds_2.view(-1, preds_2.shape[-1]), target_2.contiguous().view(-1))
            # ocrCost = 0.5*(ocrCost_1+ocrCost_2)
        
        if not opt.ocrFixed:
            #training OCR
            ocrModel.zero_grad()
            ocrCost_train.backward()
            # torch.nn.utils.clip_grad_norm_(ocrModel.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
            ocr_optimizer.step()
            #if ocr is fixed; ignore this loss
            loss_avg_ocr.add(ocrCost_train)
        else:
            loss_avg_ocr.add(torch.tensor(0.0))

        
        #Domain discriminator: Dis update
        disModel.zero_grad()
        disCost = opt.disWeight*0.5*(disModel.module.calc_dis_loss(images_recon_1.detach(), image_real) + disModel.module.calc_dis_loss(images_recon_2.detach(), image))
        disCost.backward()
        # torch.nn.utils.clip_grad_norm_(disModel.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        dis_optimizer.step()
        loss_avg_dis.add(disCost)
        
        # #[Style Encoder] + [Word Generator] update
        #Adversarial loss
        disGenCost = 0.5*(disModel.module.calc_gen_loss(images_recon_1)+disModel.module.calc_gen_loss(images_recon_2))

        #Input reconstruction loss
        recCost = recCriterion(images_recon_1,image)

        #Pair style reconstruction loss
        if opt.styleReconWeight == 0.0:
            styleRecCost = torch.tensor(0.0)
        else:
            if opt.styleDetach:
                styleRecCost = styleRecCriterion(model(images_recon_2, None, None, styleFlag=True), style.detach())
            else:
                styleRecCost = styleRecCriterion(model(images_recon_2, None, None, styleFlag=True), style)

        #OCR Content cost
        ocrCost = 0.5*(ocrCost_1+ocrCost_2)

        cost = opt.ocrWeight*ocrCost + opt.reconWeight*recCost + opt.disWeight*disGenCost + opt.styleReconWeight*styleRecCost

        model.zero_grad()
        ocrModel.zero_grad()
        disModel.zero_grad()
        cost.backward()
        # torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()
        loss_avg.add(cost)

        #Individual losses
        loss_avg_ocrRecon_1.add(opt.ocrWeight*0.5*ocrCost_1)
        loss_avg_ocrRecon_2.add(opt.ocrWeight*0.5*ocrCost_2)
        loss_avg_gen.add(opt.disWeight*disGenCost)
        loss_avg_imgRecon.add(opt.reconWeight*recCost)
        loss_avg_styRecon.add(opt.styleReconWeight*styleRecCost)

        # validation part
        if (iteration + 1) % opt.valInterval == 0 or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0' 
            
            #Save training images
            os.makedirs(os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration)), exist_ok=True)
            for trImgCntr in range(batch_size):
                try:
                    save_image(tensor2im(image[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_input_'+labels_gt[trImgCntr]+'.png'))
                    save_image(tensor2im(images_recon_1[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_recon_'+labels_1[trImgCntr]+'.png'))
                    save_image(tensor2im(images_recon_2[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_pair_'+labels_2[trImgCntr]+'.png'))
                except:
                    print('Warning while saving training image')
            
            elapsed_time = time.time() - start_time
            # for log
            
            with open(os.path.join(opt.exp_dir,opt.exp_name,'log_train.txt'), 'a') as log:
                model.eval()
                ocrModel.module.Transformation.eval()
                ocrModel.module.FeatureExtraction.eval()
                ocrModel.module.AdaptiveAvgPool.eval()
                ocrModel.module.SequenceModeling.eval()
                ocrModel.module.Prediction.eval()
                disModel.eval()
                
                with torch.no_grad():                    
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation_synth_lrw_res(
                        iteration, model, ocrModel, disModel, recCriterion, styleRecCriterion, ocrCriterion, valid_loader, converter, opt)
                model.train()
                if not opt.ocrFixed:
                    ocrModel.train()
                else:
                #     ocrModel.module.Transformation.eval()
                #     ocrModel.module.FeatureExtraction.eval()
                #     ocrModel.module.AdaptiveAvgPool.eval()
                    ocrModel.module.SequenceModeling.train()
                #     ocrModel.module.Prediction.eval()

                disModel.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train OCR loss: {loss_avg_ocr.val():0.5f}, Train Synth loss: {loss_avg.val():0.5f}, Train Dis loss: {loss_avg_dis.val():0.5f}, Valid OCR loss: {valid_loss[0]:0.5f}, Valid Synth loss: {valid_loss[1]:0.5f}, Valid Dis loss: {valid_loss[2]:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                

                current_model_log_ocr = f'{"Current_accuracy_OCR":17s}: {current_accuracy[0]:0.3f}, {"Current_norm_ED_OCR":17s}: {current_norm_ED[0]:0.2f}'
                current_model_log_1 = f'{"Current_accuracy_recon":17s}: {current_accuracy[1]:0.3f}, {"Current_norm_ED_recon":17s}: {current_norm_ED[1]:0.2f}'
                current_model_log_2 = f'{"Current_accuracy_pair":17s}: {current_accuracy[2]:0.3f}, {"Current_norm_ED_pair":17s}: {current_norm_ED[2]:0.2f}'
                
                #plotting
                lib.plot.plot(os.path.join(plotDir,'Train-OCR-Loss'), loss_avg_ocr.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-Synth-Loss'), loss_avg.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-Dis-Loss'), loss_avg_dis.val().item())
                
                lib.plot.plot(os.path.join(plotDir,'Train-OCR-Recon1-Loss'), loss_avg_ocrRecon_1.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-OCR-Recon2-Loss'), loss_avg_ocrRecon_2.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-Gen-Loss'), loss_avg_gen.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-ImgRecon1-Loss'), loss_avg_imgRecon.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-StyRecon2-Loss'), loss_avg_styRecon.val().item())

                lib.plot.plot(os.path.join(plotDir,'Valid-OCR-Loss'), valid_loss[0].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-Synth-Loss'), valid_loss[1].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-Dis-Loss'), valid_loss[2].item())

                lib.plot.plot(os.path.join(plotDir,'Valid-OCR-Recon1-Loss'), valid_loss[3].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-OCR-Recon2-Loss'), valid_loss[4].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-Gen-Loss'), valid_loss[5].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-ImgRecon1-Loss'), valid_loss[6].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-StyRecon2-Loss'), valid_loss[7].item())

                lib.plot.plot(os.path.join(plotDir,'Orig-OCR-WordAccuracy'), current_accuracy[0])
                lib.plot.plot(os.path.join(plotDir,'Recon-OCR-WordAccuracy'), current_accuracy[1])
                lib.plot.plot(os.path.join(plotDir,'Pair-OCR-WordAccuracy'), current_accuracy[2])

                lib.plot.plot(os.path.join(plotDir,'Orig-OCR-CharAccuracy'), current_norm_ED[0])
                lib.plot.plot(os.path.join(plotDir,'Recon-OCR-CharAccuracy'), current_norm_ED[1])
                lib.plot.plot(os.path.join(plotDir,'Pair-OCR-CharAccuracy'), current_norm_ED[2])
                

                # keep best accuracy model (on valid dataset)
                if current_accuracy[1] > best_accuracy:
                    best_accuracy = current_accuracy[1]
                    torch.save(model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy.pth'))
                    torch.save(disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy_dis.pth'))
                if current_norm_ED[1] > best_norm_ED:
                    best_norm_ED = current_norm_ED[1]
                    torch.save(model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED.pth'))
                    torch.save(disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED_dis.pth'))
                best_model_log = f'{"Best_accuracy_Recon":17s}: {best_accuracy:0.3f}, {"Best_norm_ED_Recon":17s}: {best_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy[0] > best_accuracy_ocr:
                    best_accuracy_ocr = current_accuracy[0]
                    if not opt.ocrFixed:
                        torch.save(ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy_ocr.pth'))
                if current_norm_ED[0] > best_norm_ED_ocr:
                    best_norm_ED_ocr = current_norm_ED[0]
                    if not opt.ocrFixed:
                        torch.save(ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED_ocr.pth'))
                best_model_log_ocr = f'{"Best_accuracy_ocr":17s}: {best_accuracy_ocr:0.3f}, {"Best_norm_ED_ocr":17s}: {best_norm_ED_ocr:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log_ocr}\n{current_model_log_1}\n{current_model_log_2}\n{best_model_log_ocr}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":32s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                
                for gt_ocr, pred_ocr, confidence_ocr, gt_1, pred_1, confidence_1, gt_2, pred_2, confidence_2 in zip(labels[0][:5], preds[0][:5], confidence_score[0][:5], labels[1][:5], preds[1][:5], confidence_score[1][:5], labels[2][:5], preds[2][:5], confidence_score[2][:5]):
                    if 'Attn' in opt.Prediction:
                        # gt_ocr = gt_ocr[:gt_ocr.find('[s]')]
                        pred_ocr = pred_ocr[:pred_ocr.find('[s]')]

                        # gt_1 = gt_1[:gt_1.find('[s]')]
                        pred_1 = pred_1[:pred_1.find('[s]')]

                        # gt_2 = gt_2[:gt_2.find('[s]')]
                        pred_2 = pred_2[:pred_2.find('[s]')]

                    predicted_result_log += f'{"ocr"}: {gt_ocr:27s} | {pred_ocr:25s} | {confidence_ocr:0.4f}\t{str(pred_ocr == gt_ocr)}\n'
                    predicted_result_log += f'{"recon"}: {gt_1:25s} | {pred_1:25s} | {confidence_1:0.4f}\t{str(pred_1 == gt_1)}\n'
                    predicted_result_log += f'{"pair"}: {gt_2:26s} | {pred_2:25s} | {confidence_2:0.4f}\t{str(pred_2 == gt_2)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

                loss_avg_ocr.reset()
                loss_avg.reset()
                loss_avg_dis.reset()

                loss_avg_ocrRecon_1.reset()
                loss_avg_ocrRecon_2.reset()
                loss_avg_gen.reset()
                loss_avg_imgRecon.reset()
                loss_avg_styRecon.reset()

            lib.plot.flush()

        lib.plot.tick()

        # save model per 1e+5 iter.
        if (iteration) % 1e+5 == 0:
            torch.save(
                model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_'+str(iteration+1)+'_synth.pth'))
            if not opt.ocrFixed:
                torch.save(
                    ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_'+str(iteration+1)+'_ocr.pth'))
            torch.save(
                disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_'+str(iteration+1)+'_dis.pth'))

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
Beispiel #7
0
def train(opt):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    """ model configuration """
    if 'CTC' in opt.Prediction:
        if opt.baiduCTC:
            converter = CTCLabelConverterForBaiduWarpctc(opt.character)
        else:
            converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    print("Model:")
    print(model)
    """ setup loss """
    if 'CTC' in opt.Prediction:
        if opt.baiduCTC:
            # need to install warpctc. see our guideline.
            from warpctc_pytorch import CTCLoss
            criterion = CTCLoss()
        else:
            criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter

    while (True):
        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        text, length = converter.encode(labels,
                                        batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        if 'CTC' in opt.Prediction:
            preds = model(image, text)
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            if opt.baiduCTC:
                preds = preds.permute(1, 0, 2)  # to use CTCLoss format
                cost = criterion(preds, text, preds_size, length) / batch_size
            else:
                preds = preds.log_softmax(2).permute(1, 0, 2)
                cost = criterion(preds, text, preds_size, length)

        else:
            preds = model(image, text[:, :-1])  # align with Attention.forward
            target = text[:, 1:]  # without [GO] Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        # validation part
        if (
                iteration + 1
        ) % opt.valInterval == 0 or iteration == 0:  # To see training progress, we also conduct validation when 'iteration == 0'
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.exp_name}/log_train.txt',
                      'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)
                model.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    if 'Attn' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (iteration + 1) % 1e+5 == 0:
            torch.save(
                model.state_dict(),
                f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth')

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
    def train(self, opt):
        # Add custom dataset add cfgs from da-faster-rcnn
        # Make sure you change the imdb_name in factory.py
        """
        Dummy format:

        args.src_dataset == '$YOUR_DATASET_NAME'
        args.src_imdb_name = '$YOUR_DATASET_NAME_2007_trainval'
        args.src_imdbval_name = '$YOUR_DATASET_NAME_2007_test'
        args.set_cfgs = [...]
        """

        # src, tar dataloaders
        src_dataset, tar_dataset, valid_loader = self.dataloader(opt)
        src_dataset_size = src_dataset.total_data_size
        tar_dataset_size = tar_dataset.total_data_size
        train_size = max([src_dataset_size, tar_dataset_size])

        self.model.train()

        start_iter = 0

        if opt.continue_model != '':
            self.load(opt.continue_model)
            print(" [*] Load SUCCESS")
            # if opt.decay_flag and start_iter > (opt.num_iter // 2):
            #     self.d_image_opt.param_groups[0]['lr'] -= (opt.lr / (opt.num_iter // 2)) * (
            #             start_iter - opt.num_iter // 2)
            #     self.d_inst_opt.param_groups[0]['lr'] -= (opt.lr / (opt.num_iter // 2)) * (
            #             start_iter - opt.num_iter // 2)

        # loss averager
        cls_loss_avg = Averager()
        sim_loss_avg = Averager()
        loss_avg = Averager()

        # training loop
        print('training start !')
        start_time = time.time()
        best_accuracy = -1
        best_norm_ED = 1e+6

        for step in range(start_iter, opt.num_iter + 1):

            src_image, src_labels = src_dataset.get_batch()
            src_image = src_image.to(device)
            src_text, src_length = self.converter.encode(
                src_labels, batch_max_length=opt.batch_max_length)

            tar_image, tar_labels = tar_dataset.get_batch()
            tar_image = tar_image.to(device)
            tar_text, tar_length = self.converter.encode(
                tar_labels, batch_max_length=opt.batch_max_length)

            # Set gradient to zero...
            self.model.zero_grad()

            # Attention # align with Attention.forward
            src_preds, src_global_feature, src_local_feature = self.model(
                src_image, src_text[:, :-1])
            target = src_text[:, 1:]  # without [GO] Symbol
            src_cls_loss = self.criterion(
                src_preds.view(-1, src_preds.shape[-1]),
                target.contiguous().view(-1))

            src_local_feature = src_local_feature.view(
                -1, src_local_feature.shape[-1])
            # TODO
            tar_preds, tar_global_feature, tar_local_feature = self.model(
                tar_image, tar_text[:, :-1], is_train=False)

            tar_local_feature = tar_local_feature.view(
                -1, tar_local_feature.shape[-1])

            d_inst_loss = coral_loss(src_local_feature, src_preds,
                                     tar_local_feature, tar_preds)
            # Add domain loss
            loss = src_cls_loss.mean() + 0.1 * d_inst_loss.mean()
            loss_avg.add(loss)
            cls_loss_avg.add(src_cls_loss)
            sim_loss_avg.add(d_inst_loss)

            # frcnn backward
            loss.backward()
            torch.nn.utils.clip_grad_norm_(
                self.model.parameters(),
                opt.grad_clip)  # gradient clipping with 5 (Default)
            # frcnn optimizer update
            self.optimizer.step()

            # validation part
            if step % opt.valInterval == 0:

                elapsed_time = time.time() - start_time
                print(
                    f'[{step}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} CLS_Loss: {cls_loss_avg.val():0.5f} SIMI_Loss: {sim_loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}'
                )
                # for log
                with open(
                        f'./saved_models/{opt.experiment_name}/log_train.txt',
                        'a') as log:
                    log.write(
                        f'[{step}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}\n'
                    )
                    loss_avg.reset()
                    cls_loss_avg.reset()
                    sim_loss_avg.reset()

                    self.model.eval()
                    with torch.no_grad():
                        valid_loss, current_accuracy, current_norm_ED, preds, labels, infer_time, length_of_data = validation(
                            self.model, self.criterion, valid_loader,
                            self.converter, opt)

                    self.print_prediction_result(preds, labels, log)

                    valid_log = f'[{step}/{opt.num_iter}] valid loss: {valid_loss:0.5f}'
                    valid_log += f' accuracy: {current_accuracy:0.3f}, norm_ED: {current_norm_ED:0.2f}'
                    print(valid_log)
                    log.write(valid_log + '\n')

                    self.model.train()

                    # keep best accuracy model
                    if current_accuracy > best_accuracy:
                        best_accuracy = current_accuracy
                        save_name = f'./saved_models/{opt.experiment_name}/best_accuracy.pth'
                        self.save(opt, save_name)
                    if current_norm_ED < best_norm_ED:
                        best_norm_ED = current_norm_ED
                        save_name = f'./saved_models/{opt.experiment_name}/best_norm_ED.pth'
                        self.save(opt, save_name)

                    best_model_log = f'best_accuracy: {best_accuracy:0.3f}, best_norm_ED: {best_norm_ED:0.2f}'
                    print(best_model_log)
                    log.write(best_model_log + '\n')

            # save model per 1e+5 iter.
            if (step + 1) % 1e+5 == 0:
                save_name = f'./saved_models/{opt.experiment_name}/iter_{step+1}.pth'
                self.save(opt, save_name)
def train(opt):
    lib.print_model_settings(locals().copy())

    # train_transform =  transforms.Compose([
    #     # transforms.RandomResizedCrop(input_size),
    #     transforms.Resize((opt.imgH, opt.imgW)),
    #     # transforms.RandomHorizontalFlip(),
    #     transforms.ToTensor(),
    #     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    # ])

    # val_transform = transforms.Compose([
    #     transforms.Resize((opt.imgH, opt.imgW)),
    #     # transforms.CenterCrop(input_size),
    #     transforms.ToTensor(),
    #     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    # ])

    AlignFontCollateObj = AlignFontCollate(imgH=opt.imgH,
                                           imgW=opt.imgW,
                                           keep_ratio_with_pad=opt.PAD)
    train_dataset = fontDataset(imgDir=opt.train_img_dir,
                                annFile=opt.train_ann_file,
                                transform=None,
                                numClasses=opt.numClasses)
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=opt.batch_size,
        shuffle=
        False,  # 'True' to check training progress with validation function.
        sampler=data_sampler(train_dataset,
                             shuffle=True,
                             distributed=opt.distributed),
        num_workers=int(opt.workers),
        collate_fn=AlignFontCollateObj,
        pin_memory=True,
        drop_last=False)
    # numClasses = len(train_dataset.Idx2F)
    numClasses = np.unique(train_dataset.fontIdx).size

    train_loader = sample_data(train_loader)
    print('-' * 80)
    numTrainSamples = len(train_dataset)

    # valid_dataset = LmdbStyleDataset(root=opt.valid_data, opt=opt)
    valid_dataset = fontDataset(imgDir=opt.train_img_dir,
                                annFile=opt.val_ann_file,
                                transform=None,
                                F2Idx=train_dataset.F2Idx,
                                Idx2F=train_dataset.Idx2F,
                                numClasses=opt.numClasses)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        False,  # 'True' to check training progress with validation function.
        sampler=data_sampler(valid_dataset,
                             shuffle=False,
                             distributed=opt.distributed),
        num_workers=int(opt.workers),
        collate_fn=AlignFontCollateObj,
        pin_memory=True,
        drop_last=False)
    numTestSamples = len(valid_dataset)

    print('numClasses', numClasses)
    print('numTrainSamples', numTrainSamples)
    print('numTestSamples', numTestSamples)

    vggFontModel = VGGFontModel(models.vgg19(pretrained=opt.preTrained),
                                numClasses).to(device)
    for name, param in vggFontModel.classifier.named_parameters():
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            print('Exception in weight init' + name)
            if 'weight' in name:
                param.data.fill_(1)
            continue

    if opt.optim == "sgd":
        print('SGD optimizer')
        optimizer = optim.SGD(vggFontModel.parameters(),
                              lr=opt.lr,
                              momentum=0.9)
    elif opt.optim == "adam":
        print('Adam optimizer')
        optimizer = optim.Adam(vggFontModel.parameters(), lr=opt.lr)
    #get schedulers
    scheduler = get_scheduler(optimizer, opt)

    criterion = torch.nn.CrossEntropyLoss()

    if opt.modelFolderFlag:
        if len(
                glob.glob(
                    os.path.join(opt.exp_dir, opt.exp_name,
                                 "iter_*_vggFont.pth"))) > 0:
            opt.saved_font_model = glob.glob(
                os.path.join(opt.exp_dir, opt.exp_name,
                             "iter_*_vggFont.pth"))[-1]

    ## Loading pre-trained files
    if opt.saved_font_model != '' and opt.saved_font_model != 'None':
        print(f'loading pretrained synth model from {opt.saved_font_model}')
        checkpoint = torch.load(opt.saved_font_model,
                                map_location=lambda storage, loc: storage)

        vggFontModel.load_state_dict(checkpoint['vggFontModel'])
        optimizer.load_state_dict(checkpoint["optimizer"])
        scheduler.load_state_dict(checkpoint["scheduler"])

    # print('Model Initialization')
    #
    # print('Loaded checkpoint')

    if opt.distributed:
        vggFontModel = torch.nn.parallel.DistributedDataParallel(
            vggFontModel,
            device_ids=[opt.local_rank],
            output_device=opt.local_rank,
            broadcast_buffers=False,
            find_unused_parameters=True)
        vggFontModel.train()

    # print('Loaded distributed')

    if opt.distributed:
        vggFontModel_module = vggFontModel.module
    else:
        vggFontModel_module = vggFontModel

    # print('Loading module')

    # loss averager
    loss_train = Averager()
    loss_val = Averager()
    train_acc = Averager()
    val_acc = Averager()
    train_acc_5 = Averager()
    val_acc_5 = Averager()
    """ final options """
    with open(os.path.join(opt.exp_dir, opt.exp_name, 'opt.txt'),
              'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0

    if opt.saved_font_model != '' and opt.saved_font_model != 'None':
        try:
            start_iter = int(opt.saved_font_model.split('_')[-2].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    iteration = start_iter

    cntr = 0
    # trainCorrect=0
    # tCntr=0
    while (True):
        # print(cntr)
        # train part

        start_time = time.time()
        if not opt.testFlag:

            image_input_tensors, labels_gt = next(train_loader)
            image_input_tensors = image_input_tensors.to(device)
            labels_gt = labels_gt.view(-1).to(device)
            preds = vggFontModel(image_input_tensors)

            loss = criterion(preds, labels_gt)

            vggFontModel.zero_grad()
            loss.backward()
            optimizer.step()

            # _, preds_max = preds.max(dim=1)
            # trainCorrect += (preds_max == labels_gt).sum()
            # tCntr+=preds_max.shape[0]

            acc1, acc5 = getNumCorrect(preds,
                                       labels_gt,
                                       topk=(1, min(numClasses, 5)))
            train_acc.addScalar(acc1, preds.shape[0])
            train_acc_5.addScalar(acc5, preds.shape[0])

            loss_train.add(loss)

            if opt.lr_policy != "None":
                scheduler.step()

        # print
        if get_rank() == 0:
            if (
                    iteration + 1
            ) % opt.valInterval == 0 or iteration == 0 or opt.testFlag:  # To see training progress, we also conduct validation when 'iteration == 0'
                #validation
                # iCntr=torch.tensor(0.0).to(device)
                # valCorrect=torch.tensor(0.0).to(device)
                vggFontModel.eval()
                print('Inside val', iteration)

                for vCntr, (image_input_tensors,
                            labels_gt) in enumerate(valid_loader):
                    # print('vCntr--',vCntr)
                    if opt.debugFlag and vCntr > 2:
                        break

                    with torch.no_grad():
                        image_input_tensors = image_input_tensors.to(device)
                        labels_gt = labels_gt.view(-1).to(device)

                        preds = vggFontModel(image_input_tensors)
                        loss = criterion(preds, labels_gt)
                        loss_val.add(loss)

                        # _, preds_max = preds.max(dim=1)
                        # valCorrect += (preds_max == labels_gt).sum()
                        # iCntr+=preds_max.shape[0]

                        acc1, acc5 = getNumCorrect(preds,
                                                   labels_gt,
                                                   topk=(1, min(numClasses,
                                                                5)))
                        val_acc.addScalar(acc1, preds.shape[0])
                        val_acc_5.addScalar(acc5, preds.shape[0])

                vggFontModel.train()
                elapsed_time = time.time() - start_time

                #DO HERE
                with open(
                        os.path.join(opt.exp_dir, opt.exp_name,
                                     'log_train.txt'), 'a') as log:
                    # print('COUNT-------',val_acc_5.n_count)
                    # training loss and validation loss
                    loss_log = f'[{iteration+1}/{opt.num_iter}]  \
                        Train loss: {loss_train.val():0.5f}, Val loss: {loss_val.val():0.5f}, \
                        Train Top-1 Acc: {train_acc.val()*100:0.5f}, Train Top-5 Acc: {train_acc_5.val()*100:0.5f}, \
                        Val Top-1 Acc: {val_acc.val()*100:0.5f}, Val Top-5 Acc: {val_acc_5.val()*100:0.5f}, \
                        Elapsed_time: {elapsed_time:0.5f}'

                    #plotting
                    lib.plot.plot(os.path.join(opt.plotDir, 'Train-Loss'),
                                  loss_train.val().item())
                    lib.plot.plot(os.path.join(opt.plotDir, 'Val-Loss'),
                                  loss_val.val().item())
                    lib.plot.plot(os.path.join(opt.plotDir, 'Train-Top-1-Acc'),
                                  train_acc.val() * 100)
                    lib.plot.plot(os.path.join(opt.plotDir, 'Train-Top-5-Acc'),
                                  train_acc_5.val() * 100)
                    lib.plot.plot(os.path.join(opt.plotDir, 'Val-Top-1-Acc'),
                                  val_acc.val() * 100)
                    lib.plot.plot(os.path.join(opt.plotDir, 'Val-Top-5-Acc'),
                                  val_acc_5.val() * 100)

                    print(loss_log)
                    log.write(loss_log + "\n")

                    loss_train.reset()
                    loss_val.reset()
                    train_acc.reset()
                    val_acc.reset()
                    train_acc_5.reset()
                    val_acc_5.reset()
                    # trainCorrect=0
                    # tCntr=0

                lib.plot.flush()

            # save model per 30000 iter.
            if (iteration) % 15000 == 0:
                torch.save(
                    {
                        'vggFontModel': vggFontModel_module.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'scheduler': scheduler.state_dict()
                    },
                    os.path.join(opt.exp_dir, opt.exp_name, 'iter_' +
                                 str(iteration + 1) + '_vggFont.pth'))

            lib.plot.tick()

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
        cntr += 1
def train(opt):
    print(opt.local_rank)
    opt.device = torch.device('cuda:{}'.format(opt.local_rank))
    device = opt.device
    """ dataset preparation """
    train_dataset = Batch_Balanced_Dataset(opt)

    valid_loader = train_dataset.getValDataloader()
    print('-' * 80)
    """ model configuration """
    if 'CTC' == opt.Prediction:
        converter = CTCLabelConverter(opt.character, opt)
    elif 'Attn' == opt.Prediction:
        converter = AttnLabelConverter(opt.character, opt)
    elif 'CTC_Attn' == opt.Prediction:
        converter = CTCLabelConverter(opt.character, opt), AttnLabelConverter(
            opt.character, opt)

    opt.num_class = len(opt.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)

    model.to(opt.device)

    print(model)
    print('model input parameters', opt.rgb, opt.imgH, opt.imgW,
          opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length,
          opt.Transformation, opt.FeatureExtraction, opt.SequenceModeling,
          opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue
    """ setup loss """
    if 'CTC' == opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    elif 'Attn' == opt.Prediction:
        criterion = torch.nn.CrossEntropyLoss(
            ignore_index=0).to(device), torch.nn.MSELoss(
                reduction="sum").to(device)
        # ignore [GO] token = ignore index 0
    elif 'CTC_Attn' == opt.Prediction:
        criterion = torch.nn.CTCLoss(
            zero_infinity=True).to(device), torch.nn.CrossEntropyLoss(
                ignore_index=0).to(device), torch.nn.MSELoss(
                    reduction='sum').to(device)

    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))

    if opt.local_rank == 0:
        print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.sgd:
        optimizer = optim.SGD(filtered_parameters,
                              lr=opt.lr,
                              momentum=0.9,
                              weight_decay=opt.weight_decay)
    elif opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    if opt.local_rank == 0:
        print("Optimizer:")
        print(optimizer)

    if opt.sync_bn:
        model = apex.parallel.convert_syncbn_model(model)

    if opt.amp > 1:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level="O" + str(opt.amp),
                                          keep_batchnorm_fp32=True,
                                          loss_scale="dynamic")
    else:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level="O" + str(opt.amp))

    # data parallel for multi-GPU
    model = DDP(model)

    if opt.continue_model != '':
        print(f'loading pretrained model from {opt.continue_model}')
        try:
            model.load_state_dict(
                torch.load(opt.continue_model,
                           map_location=torch.device(
                               'cuda', torch.cuda.current_device())))
        except:
            traceback.print_exc()
            print(f'COPYING pretrained model from {opt.continue_model}')
            pretrained_dict = torch.load(opt.continue_model,
                                         map_location=torch.device(
                                             'cuda',
                                             torch.cuda.current_device()))

            model_dict = model.state_dict()
            pretrained_dict2 = dict()
            for k, v in pretrained_dict.items():
                if opt.Prediction == 'Attn':
                    if 'module.Prediction_attn.' in k:
                        k = k.replace('module.Prediction_attn.',
                                      'module.Prediction.')
                if k in model_dict and model_dict[k].shape == v.shape:
                    pretrained_dict2[k] = v

            model_dict.update(pretrained_dict2)
            model.load_state_dict(model_dict)

    model.train()
    """ final options """
    with open(f'./saved_models/{opt.experiment_name}/opt.txt',
              'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        opt_log += str(model)
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = 1e+6
    i = start_iter

    ct = opt.batch_mul
    model.zero_grad()

    dist.barrier()
    while (True):
        # train part
        start = time.time()
        image, labels, pos = train_dataset.sync_get_batch()
        end = time.time()
        data_t = end - start

        start = time.time()
        batch_size = image.size(0)

        if 'CTC' == opt.Prediction:
            text, length = converter.encode(
                labels, batch_max_length=opt.batch_max_length)
            preds = model(image, text).log_softmax(2)
            preds_size = torch.IntTensor([preds.size(1)] *
                                         batch_size).to(device)
            preds = preds.permute(1, 0, 2)  # to use CTCLoss format

            # To avoid ctc_loss issue, disabled cudnn for the computation of the ctc_loss
            # https://github.com/jpuigcerver/PyLaia/issues/16
            torch.backends.cudnn.enabled = False
            cost = criterion(preds, text, preds_size, length)
            torch.backends.cudnn.enabled = True
        elif 'Attn' == opt.Prediction:
            text, length = converter.encode(
                labels, batch_max_length=opt.batch_max_length)
            preds = model(image, text[:, :-1])  # align with Attention.forward
            preds_attn = preds[0]
            preds_alpha = preds[1]
            target = text[:, 1:]  # without [GO] Symbol
            cost = criterion[0](preds_attn.view(-1, preds_attn.shape[-1]),
                                target.contiguous().view(-1))

            if opt.posreg_w > 0.001:
                cost_pos = alpha_loss(preds_alpha, pos, opt, criterion[1])
                print('attn_cost = ', cost, 'pos_cost = ',
                      cost_pos * opt.posreg_w)
                cost += opt.posreg_w * cost_pos
            else:
                print('attn_cost = ', cost_attn)

        elif 'CTC_Attn' == opt.Prediction:
            text_ctc, length_ctc = converter[0].encode(
                labels, batch_max_length=opt.batch_max_length)
            text_attn, length_attn = converter[1].encode(
                labels, batch_max_length=opt.batch_max_length)
            """ ctc prediction and loss """

            #should input text_attn here
            preds = model(image, text_attn[:, :-1])
            preds_ctc = preds[0].log_softmax(2)

            preds_ctc_size = torch.IntTensor([preds_ctc.size(1)] *
                                             batch_size).to(device)
            preds_ctc = preds_ctc.permute(1, 0, 2)  # to use CTCLoss format

            # To avoid ctc_loss issue, disabled cudnn for the computation of the ctc_loss
            # https://github.com/jpuigcerver/PyLaia/issues/16

            torch.backends.cudnn.enabled = False
            cost_ctc = criterion[0](preds_ctc, text_ctc, preds_ctc_size,
                                    length_ctc)
            torch.backends.cudnn.enabled = True
            """ attention prediction and loss """
            preds_attn = preds[1][0]  # align with Attention.forward
            preds_alpha = preds[1][1]

            target = text_attn[:, 1:]  # without [GO] Symbol

            cost_attn = criterion[1](preds_attn.view(-1, preds_attn.shape[-1]),
                                     target.contiguous().view(-1))

            cost = opt.ctc_attn_loss_ratio * cost_ctc + (
                1 - opt.ctc_attn_loss_ratio) * cost_attn

            if opt.posreg_w > 0.001:
                cost_pos = alpha_loss(preds_alpha, pos, opt, criterion[2])
                cost += opt.posreg_w * cost_pos
                cost_ctc = reduce_tensor(cost_ctc)
                cost_attn = reduce_tensor(cost_attn)
                cost_pos = reduce_tensor(cost_pos)
                if opt.local_rank == 0:
                    print('ctc_cost = ', cost_ctc, 'attn_cost = ', cost_attn,
                          'pos_cost = ', cost_pos * opt.posreg_w)
            else:
                cost_ctc = reduce_tensor(cost_ctc)
                cost_attn = reduce_tensor(cost_attn)
                if opt.local_rank == 0:
                    print('ctc_cost = ', cost_ctc, 'attn_cost = ', cost_attn)

        cost /= opt.batch_mul
        if opt.amp > 0:
            with amp.scale_loss(cost, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            cost.backward()
        """ https://github.com/davidlmorton/learning-rate-schedules/blob/master/increasing_batch_size_without_increasing_memory.ipynb """
        ct -= 1
        if ct == 0:
            if opt.amp > 0:
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                               opt.grad_clip)
            else:
                torch.nn.utils.clip_grad_norm_(
                    model.parameters(),
                    opt.grad_clip)  # gradient clipping with 5 (Default)
            optimizer.step()
            model.zero_grad()
            ct = opt.batch_mul
        else:
            continue

        train_t = time.time() - start
        cost = reduce_tensor(cost)
        loss_avg.add(cost)
        if opt.local_rank == 0:
            print('iter', i, 'loss =', cost, ', data_t=', data_t, ',train_t=',
                  train_t, ', batchsz=', opt.batch_mul * opt.batch_size)
        sys.stdout.flush()
        # validation part
        if (i > 0 and i % opt.valInterval == 0) or (i == 0 and
                                                    opt.continue_model != ''):
            elapsed_time = time.time() - start_time
            print(
                f'[{i}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}'
            )
            # for log
            with open(f'./saved_models/{opt.experiment_name}/log_train.txt',
                      'a') as log:
                log.write(
                    f'[{i}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}\n'
                )
                loss_avg.reset()

                model.eval()
                with torch.no_grad():
                    if 'CTC_Attn' in opt.Prediction:
                        # we only count for attention accuracy, because ctc is used to help attention
                        valid_loss, current_accuracy_ctc, current_accuracy, current_norm_ED_ctc, current_norm_ED, preds, labels, infer_time, length_of_data = validation(
                            model, criterion[1], valid_loader, converter[1],
                            opt, converter[0])
                    elif 'Attn' in opt.Prediction:
                        valid_loss, current_accuracy, current_norm_ED, preds, labels, infer_time, length_of_data = validation(
                            model, criterion[0], valid_loader, converter, opt)
                    else:
                        valid_loss, current_accuracy, current_norm_ED, preds, labels, infer_time, length_of_data = validation(
                            model, criterion, valid_loader, converter, opt)
                model.train()

                for pred, gt in zip(preds[:10], labels[:10]):
                    if 'Attn' in opt.Prediction:
                        pred = pred[:pred.find('[s]')]
                        gt = gt[:gt.find('[s]')]
                    print(f'{pred:20s}, gt: {gt:20s},   {str(pred == gt)}')
                    log.write(
                        f'{pred:20s}, gt: {gt:20s},   {str(pred == gt)}\n')

                valid_log = f'[{i}/{opt.num_iter}] valid loss: {valid_loss:0.5f}'
                valid_log += f' accuracy: {current_accuracy:0.3f}, norm_ED: {current_norm_ED:0.2f}'

                if 'CTC_Attn' in opt.Prediction:
                    valid_log += f' ctc_accuracy: {current_accuracy_ctc:0.3f}, ctc_norm_ED: {current_norm_ED_ctc:0.2f}'
                    current_accuracy = max(current_accuracy,
                                           current_accuracy_ctc)
                    current_norm_ED = min(current_norm_ED, current_norm_ED_ctc)

                if opt.local_rank == 0:
                    print(valid_log)
                    log.write(valid_log + '\n')

                    # keep best accuracy model
                    if current_accuracy > best_accuracy:
                        best_accuracy = current_accuracy
                        torch.save(
                            model.state_dict(),
                            f'./saved_models/{opt.experiment_name}/best_accuracy.pth'
                        )
                        torch.save(
                            model,
                            f'./saved_models/{opt.experiment_name}/best_accuracy.model'
                        )
                    if current_norm_ED < best_norm_ED:
                        best_norm_ED = current_norm_ED
                        torch.save(
                            model.state_dict(),
                            f'./saved_models/{opt.experiment_name}/best_norm_ED.pth'
                        )
                        torch.save(
                            model,
                            f'./saved_models/{opt.experiment_name}/best_norm_ED.model'
                        )
                    best_model_log = f'best_accuracy: {best_accuracy:0.3f}, best_norm_ED: {best_norm_ED:0.2f}'
                    print(best_model_log)
                    log.write(best_model_log + '\n')

        # save model per iter.
        if (i + 1) % opt.save_interval == 0 and opt.local_rank == 0:
            torch.save(model.state_dict(),
                       f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')

        if i == opt.num_iter:
            print('end the training')
            sys.exit()
        if opt.prof_iter > 0 and i > opt.prof_iter:
            sys.exit()

        i += 1
Beispiel #11
0
def train(opt):
    plotDir = os.path.join(opt.exp_dir, opt.exp_name, 'plots')
    if not os.path.exists(plotDir):
        os.makedirs(plotDir)

    lib.print_model_settings(locals().copy())
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')

    log = open(os.path.join(opt.exp_dir, opt.exp_name, 'log_dataset.txt'), 'a')
    AlignCollate_valid = AlignPairCollate(imgH=opt.imgH,
                                          imgW=opt.imgW,
                                          keep_ratio_with_pad=opt.PAD)

    train_dataset, train_dataset_log = hierarchical_dataset(
        root=opt.train_data, opt=opt)
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(train_dataset_log)
    print('-' * 80)

    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        False,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()

    converter = CTCLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3

    styleModel = StyleTensorEncoder(input_dim=opt.input_channel)
    genModel = AdaIN_Tensor_WordGenerator(opt)
    disModel = MsImageDisV2(opt)

    vggRecCriterion = torch.nn.L1Loss()
    vggModel = VGGPerceptualLossModel(models.vgg19(pretrained=True),
                                      vggRecCriterion)

    print('model input parameters', opt.imgH, opt.imgW, opt.input_channel,
          opt.output_channel, opt.hidden_size, opt.num_class,
          opt.batch_max_length)

    #  weight initialization
    for currModel in [styleModel, genModel, disModel]:
        for name, param in currModel.named_parameters():
            if 'localization_fc2' in name:
                print(f'Skip {name} as it is already initialized')
                continue
            try:
                if 'bias' in name:
                    init.constant_(param, 0.0)
                elif 'weight' in name:
                    init.kaiming_normal_(param)
            except Exception as e:  # for batchnorm.
                if 'weight' in name:
                    param.data.fill_(1)
                continue

    styleModel = torch.nn.DataParallel(styleModel).to(device)
    styleModel.train()

    genModel = torch.nn.DataParallel(genModel).to(device)
    genModel.train()

    disModel = torch.nn.DataParallel(disModel).to(device)
    disModel.train()

    vggModel = torch.nn.DataParallel(vggModel).to(device)
    vggModel.eval()

    if opt.modelFolderFlag:
        if len(
                glob.glob(
                    os.path.join(opt.exp_dir, opt.exp_name,
                                 "iter_*_synth.pth"))) > 0:
            opt.saved_synth_model = glob.glob(
                os.path.join(opt.exp_dir, opt.exp_name,
                             "iter_*_synth.pth"))[-1]

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        print(f'loading pretrained synth model from {opt.saved_synth_model}')
        checkpoint = torch.load(opt.saved_synth_model)

        styleModel.load_state_dict(checkpoint['styleModel'])
        genModel.load_state_dict(checkpoint['genModel'])
        disModel.load_state_dict(checkpoint['disModel'])

    if opt.imgReconLoss == 'l1':
        recCriterion = torch.nn.L1Loss()
    elif opt.imgReconLoss == 'ssim':
        recCriterion = ssim
    elif opt.imgReconLoss == 'ms-ssim':
        recCriterion = msssim

    if opt.styleLoss == 'l1':
        styleRecCriterion = torch.nn.L1Loss()
    elif opt.styleLoss == 'triplet':
        styleRecCriterion = torch.nn.TripletMarginLoss(
            margin=opt.tripletMargin, p=1)
    #for validation; check only positive pairs
    styleTestRecCriterion = torch.nn.L1Loss()

    # loss averager
    loss_avg = Averager()
    loss_avg_dis = Averager()
    loss_avg_gen = Averager()
    loss_avg_imgRecon = Averager()
    loss_avg_vgg_per = Averager()
    loss_avg_vgg_sty = Averager()

    ##---------------------------------------##
    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, styleModel.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    for p in filter(lambda p: p.requires_grad, genModel.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable style and generator params num : ', sum(params_num))

    # setup optimizer
    if opt.optim == 'adam':
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, opt.beta2),
                               weight_decay=opt.weight_decay)
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps,
                                   weight_decay=opt.weight_decay)
    print("SynthOptimizer:")
    print(optimizer)

    #filter parameters for Dis training
    dis_filtered_parameters = []
    dis_params_num = []
    for p in filter(lambda p: p.requires_grad, disModel.parameters()):
        dis_filtered_parameters.append(p)
        dis_params_num.append(np.prod(p.size()))
    print('Dis Trainable params num : ', sum(dis_params_num))

    # setup optimizer
    if opt.optim == 'adam':
        dis_optimizer = optim.Adam(dis_filtered_parameters,
                                   lr=opt.lr,
                                   betas=(opt.beta1, opt.beta2),
                                   weight_decay=opt.weight_decay)
    else:
        dis_optimizer = optim.Adadelta(dis_filtered_parameters,
                                       lr=opt.lr,
                                       rho=opt.rho,
                                       eps=opt.eps,
                                       weight_decay=opt.weight_decay)
    print("DisOptimizer:")
    print(dis_optimizer)
    ##---------------------------------------##
    """ final options """
    with open(os.path.join(opt.exp_dir, opt.exp_name, 'opt.txt'),
              'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        try:
            start_iter = int(
                opt.saved_synth_model.split('_')[-2].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    #get schedulers
    scheduler = get_scheduler(optimizer, opt)
    dis_scheduler = get_scheduler(dis_optimizer, opt)

    start_time = time.time()
    iteration = start_iter
    cntr = 0

    while (True):
        # train part
        if opt.lr_policy != "None":
            scheduler.step()
            dis_scheduler.step()

        image_input_tensors, image_gt_tensors, labels_1, labels_2 = iter(
            train_loader).next()

        cntr += 1

        image_input_tensors = image_input_tensors.to(device)
        image_gt_tensors = image_gt_tensors.to(device)
        batch_size = image_input_tensors.size(0)
        text_2, length_2 = converter.encode(
            labels_2, batch_max_length=opt.batch_max_length)

        #forward pass from style and word generator
        style = styleModel(image_input_tensors)

        images_recon_2 = genModel(style, text_2)

        #Domain discriminator: Dis update
        disModel.zero_grad()
        disCost = opt.disWeight * (disModel.module.calc_dis_loss(
            torch.cat((images_recon_2.detach(), image_input_tensors), dim=1),
            torch.cat((image_gt_tensors, image_input_tensors), dim=1)))

        disCost.backward()
        dis_optimizer.step()
        loss_avg_dis.add(disCost)

        # #[Style Encoder] + [Word Generator] update
        #Adversarial loss
        disGenCost = disModel.module.calc_gen_loss(
            torch.cat((images_recon_2, image_input_tensors), dim=1))

        #Input reconstruction loss
        recCost = recCriterion(images_recon_2, image_gt_tensors)

        #vgg loss
        vggPerCost, vggStyleCost = vggModel(image_gt_tensors, images_recon_2)

        cost = opt.reconWeight * recCost + opt.disWeight * disGenCost + opt.vggPerWeight * vggPerCost + opt.vggStyWeight * vggStyleCost

        styleModel.zero_grad()
        genModel.zero_grad()
        disModel.zero_grad()
        vggModel.zero_grad()

        cost.backward()
        optimizer.step()
        loss_avg.add(cost)

        #Individual losses
        loss_avg_gen.add(opt.disWeight * disGenCost)
        loss_avg_imgRecon.add(opt.reconWeight * recCost)
        loss_avg_vgg_per.add(opt.vggPerWeight * vggPerCost)
        loss_avg_vgg_sty.add(opt.vggStyWeight * vggStyleCost)

        # validation part
        if (
                iteration + 1
        ) % opt.valInterval == 0 or iteration == 0:  # To see training progress, we also conduct validation when 'iteration == 0'

            #Save training images
            os.makedirs(os.path.join(opt.exp_dir, opt.exp_name, 'trainImages',
                                     str(iteration)),
                        exist_ok=True)
            for trImgCntr in range(batch_size):
                try:
                    save_image(
                        tensor2im(image_input_tensors[trImgCntr].detach()),
                        os.path.join(
                            opt.exp_dir, opt.exp_name, 'trainImages',
                            str(iteration),
                            str(trImgCntr) + '_sInput_' + labels_1[trImgCntr] +
                            '.png'))
                    save_image(
                        tensor2im(image_gt_tensors[trImgCntr].detach()),
                        os.path.join(
                            opt.exp_dir, opt.exp_name, 'trainImages',
                            str(iteration),
                            str(trImgCntr) + '_csGT_' + labels_2[trImgCntr] +
                            '.png'))
                    save_image(
                        tensor2im(images_recon_2[trImgCntr].detach()),
                        os.path.join(
                            opt.exp_dir, opt.exp_name, 'trainImages',
                            str(iteration),
                            str(trImgCntr) + '_csRecon_' +
                            labels_2[trImgCntr] + '.png'))
                except:
                    print('Warning while saving training image')

            elapsed_time = time.time() - start_time
            # for log

            with open(os.path.join(opt.exp_dir, opt.exp_name, 'log_train.txt'),
                      'a') as log:
                styleModel.eval()
                genModel.eval()
                disModel.eval()

                with torch.no_grad():
                    valid_loss, infer_time, length_of_data = validation_synth_v3(
                        iteration, styleModel, genModel, vggModel, disModel,
                        recCriterion, valid_loader, converter, opt)

                styleModel.train()
                genModel.train()
                disModel.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train Synth loss: {loss_avg.val():0.5f}, \
                    Train Dis loss: {loss_avg_dis.val():0.5f}, Train Gen loss: {loss_avg_gen.val():0.5f},\
                    Train ImgRecon loss: {loss_avg_imgRecon.val():0.5f}, Train VGG-Per loss: {loss_avg_vgg_per.val():0.5f},\
                    Train VGG-Sty loss: {loss_avg_vgg_sty.val():0.5f}, Valid Synth loss: {valid_loss[1]:0.5f}, \
                    Valid Dis loss: {valid_loss[2]:0.5f}, Elapsed_time: {elapsed_time:0.5f}'

                #plotting
                lib.plot.plot(os.path.join(plotDir, 'Train-Synth-Loss'),
                              loss_avg.val().item())
                lib.plot.plot(os.path.join(plotDir, 'Train-Dis-Loss'),
                              loss_avg_dis.val().item())

                lib.plot.plot(os.path.join(plotDir, 'Train-Gen-Loss'),
                              loss_avg_gen.val().item())
                lib.plot.plot(os.path.join(plotDir, 'Train-ImgRecon1-Loss'),
                              loss_avg_imgRecon.val().item())
                lib.plot.plot(os.path.join(plotDir, 'Train-VGG-Per-Loss'),
                              loss_avg_vgg_per.val().item())
                lib.plot.plot(os.path.join(plotDir, 'Train-VGG-Sty-Loss'),
                              loss_avg_vgg_sty.val().item())

                lib.plot.plot(os.path.join(plotDir, 'Valid-Synth-Loss'),
                              valid_loss[0].item())
                lib.plot.plot(os.path.join(plotDir, 'Valid-Dis-Loss'),
                              valid_loss[1].item())

                lib.plot.plot(os.path.join(plotDir, 'Valid-Gen-Loss'),
                              valid_loss[2].item())
                lib.plot.plot(os.path.join(plotDir, 'Valid-ImgRecon1-Loss'),
                              valid_loss[3].item())
                lib.plot.plot(os.path.join(plotDir, 'Valid-VGG-Per-Loss'),
                              valid_loss[4].item())
                lib.plot.plot(os.path.join(plotDir, 'Valid-VGG-Sty-Loss'),
                              valid_loss[5].item())

                print(loss_log)

                loss_avg.reset()
                loss_avg_dis.reset()

                loss_avg_gen.reset()
                loss_avg_imgRecon.reset()
                loss_avg_vgg_per.reset()
                loss_avg_vgg_sty.reset()

            lib.plot.flush()

        lib.plot.tick()

        # save model per 1e+5 iter.
        if (iteration) % 1e+4 == 0:
            torch.save(
                {
                    'styleModel': styleModel.state_dict(),
                    'genModel': genModel.state_dict(),
                    'disModel': disModel.state_dict()
                },
                os.path.join(opt.exp_dir, opt.exp_name,
                             'iter_' + str(iteration + 1) + '_synth.pth'))

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
Beispiel #12
0
def train(opt, show_number=2, amp=False):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.experiment_name}/log_dataset.txt',
               'a',
               encoding="utf8")
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD,
                                      contrast_adjust=opt.contrast_adjust)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=min(32, opt.batch_size),
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        prefetch_factor=512,
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    if opt.saved_model != '':
        pretrained_dict = torch.load(opt.saved_model)
        if opt.new_prediction:
            model.Prediction = nn.Linear(
                model.SequenceModeling_output,
                len(pretrained_dict['module.Prediction.weight']))

        model = torch.nn.DataParallel(model).to(device)
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(pretrained_dict, strict=False)
        else:
            model.load_state_dict(pretrained_dict)
        if opt.new_prediction:
            model.module.Prediction = nn.Linear(
                model.module.SequenceModeling_output, opt.num_class)
            for name, param in model.module.Prediction.named_parameters():
                if 'bias' in name:
                    init.constant_(param, 0.0)
                elif 'weight' in name:
                    init.kaiming_normal_(param)
            model = model.to(device)
    else:
        # weight initialization
        for name, param in model.named_parameters():
            if 'localization_fc2' in name:
                print(f'Skip {name} as it is already initialized')
                continue
            try:
                if 'bias' in name:
                    init.constant_(param, 0.0)
                elif 'weight' in name:
                    init.kaiming_normal_(param)
            except Exception as e:  # for batchnorm.
                if 'weight' in name:
                    param.data.fill_(1)
                continue
        model = torch.nn.DataParallel(model).to(device)

    model.train()
    print("Model:")
    print(model)
    count_parameters(model)
    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # freeze some layers
    try:
        if opt.freeze_FeatureFxtraction:
            for param in model.module.FeatureExtraction.parameters():
                param.requires_grad = False
        if opt.freeze_SequenceModeling:
            for param in model.module.SequenceModeling.parameters():
                param.requires_grad = False
    except:
        pass

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.optim == 'adam':
        #optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
        optimizer = optim.Adam(filtered_parameters)
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.experiment_name}/opt.txt',
              'a',
              encoding="utf8") as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    i = start_iter

    scaler = GradScaler()
    t1 = time.time()

    while (True):
        # train part
        optimizer.zero_grad(set_to_none=True)

        if amp:
            with autocast():
                image_tensors, labels = train_dataset.get_batch()
                image = image_tensors.to(device)
                text, length = converter.encode(
                    labels, batch_max_length=opt.batch_max_length)
                batch_size = image.size(0)

                if 'CTC' in opt.Prediction:
                    preds = model(image, text).log_softmax(2)
                    preds_size = torch.IntTensor([preds.size(1)] * batch_size)
                    preds = preds.permute(1, 0, 2)
                    torch.backends.cudnn.enabled = False
                    cost = criterion(preds, text.to(device),
                                     preds_size.to(device), length.to(device))
                    torch.backends.cudnn.enabled = True
                else:
                    preds = model(image,
                                  text[:, :-1])  # align with Attention.forward
                    target = text[:, 1:]  # without [GO] Symbol
                    cost = criterion(preds.view(-1, preds.shape[-1]),
                                     target.contiguous().view(-1))
            scaler.scale(cost).backward()
            scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
            scaler.step(optimizer)
            scaler.update()
        else:
            image_tensors, labels = train_dataset.get_batch()
            image = image_tensors.to(device)
            text, length = converter.encode(
                labels, batch_max_length=opt.batch_max_length)
            batch_size = image.size(0)
            if 'CTC' in opt.Prediction:
                preds = model(image, text).log_softmax(2)
                preds_size = torch.IntTensor([preds.size(1)] * batch_size)
                preds = preds.permute(1, 0, 2)
                torch.backends.cudnn.enabled = False
                cost = criterion(preds, text.to(device), preds_size.to(device),
                                 length.to(device))
                torch.backends.cudnn.enabled = True
            else:
                preds = model(image,
                              text[:, :-1])  # align with Attention.forward
                target = text[:, 1:]  # without [GO] Symbol
                cost = criterion(preds.view(-1, preds.shape[-1]),
                                 target.contiguous().view(-1))
            cost.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
            optimizer.step()
        loss_avg.add(cost)

        # validation part
        if (i % opt.valInterval == 0) and (i != 0):
            print('training time: ', time.time() - t1)
            t1 = time.time()
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.experiment_name}/log_train.txt',
                      'a',
                      encoding="utf8") as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels,\
                    infer_time, length_of_data = validation(model, criterion, valid_loader, converter, opt, device)
                model.train()

                # training loss and validation loss
                loss_log = f'[{i}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.4f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.experiment_name}/best_accuracy.pth'
                    )
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.experiment_name}/best_norm_ED.pth'
                    )
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.4f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'

                #show_number = min(show_number, len(labels))

                start = random.randint(0, len(labels) - show_number)
                for gt, pred, confidence in zip(
                        labels[start:start + show_number],
                        preds[start:start + show_number],
                        confidence_score[start:start + show_number]):
                    if 'Attn' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')
                print('validation time: ', time.time() - t1)
                t1 = time.time()
        # save model per 1e+4 iter.
        if (i + 1) % 1e+4 == 0:
            torch.save(model.state_dict(),
                       f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')

        if i == opt.num_iter:
            print('end the training')
            sys.exit()
        i += 1
Beispiel #13
0
def train(opt):
    """ dataset preparation """
    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        # 'True' to check training progress with validation function.
        shuffle=True,
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    print('-' * 80)
    """ model configuration """
    if 'Transformer' in opt.SequenceModeling:
        converter = TransformerLabelConverter(opt.character)
    elif 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue
    """ setup loss """
    if 'Transformer' in opt.SequenceModeling:
        criterion = transformer_loss
    elif 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).cuda()
    else:
        # ignore [GO] token = ignore index 0
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).cuda()
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    elif 'Transformer' in opt.SequenceModeling and opt.use_scheduled_optim:
        optimizer = optim.Adam(filtered_parameters,
                               betas=(0.9, 0.98),
                               eps=1e-09)
        optimizer_schedule = ScheduledOptim(optimizer, opt.d_model,
                                            opt.n_warmup_steps)
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.experiment_name}/opt.txt',
              'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = 1e+6
    pickle.load = partial(pickle.load, encoding="latin1")
    pickle.Unpickler = partial(pickle.Unpickler, encoding="latin1")
    if opt.load_weights != '' and check_isfile(opt.load_weights):
        # load pretrained weights but ignore layers that don't match in size
        checkpoint = torch.load(opt.load_weights, pickle_module=pickle)
        if type(checkpoint) == dict:
            pretrain_dict = checkpoint['state_dict']
        else:
            pretrain_dict = checkpoint
        model_dict = model.state_dict()
        pretrain_dict = {
            k: v
            for k, v in pretrain_dict.items()
            if k in model_dict and model_dict[k].size() == v.size()
        }
        model_dict.update(pretrain_dict)
        model.load_state_dict(model_dict)
        print("Loaded pretrained weights from '{}'".format(opt.load_weights))
        del checkpoint
        torch.cuda.empty_cache()
    if opt.continue_model != '':
        print(f'loading pretrained model from {opt.continue_model}')
        checkpoint = torch.load(opt.continue_model)
        print(checkpoint.keys())
        model.load_state_dict(checkpoint['state_dict'])
        start_iter = checkpoint['step'] + 1
        print('continue to train start_iter: ', start_iter)
        if 'optimizer' in checkpoint.keys():
            optimizer.load_state_dict(checkpoint['optimizer'])
            for state in optimizer.state.values():
                for k, v in state.items():
                    if isinstance(v, torch.Tensor):
                        state[k] = v.cuda()
        if 'best_accuracy' in checkpoint.keys():
            best_accuracy = checkpoint['best_accuracy']
        if 'best_norm_ED' in checkpoint.keys():
            best_norm_ED = checkpoint['best_norm_ED']
        del checkpoint
        torch.cuda.empty_cache()
    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).cuda()
    model.train()
    print("Model size:", count_num_param(model), 'M')
    if 'Transformer' in opt.SequenceModeling and opt.use_scheduled_optim:
        optimizer_schedule.n_current_steps = start_iter

    for i in tqdm(range(start_iter, opt.num_iter)):
        for p in model.parameters():
            p.requires_grad = True

        cpu_images, cpu_texts = train_dataset.get_batch()
        image = cpu_images.cuda()
        if 'Transformer' in opt.SequenceModeling:
            text, length, text_pos = converter.encode(cpu_texts,
                                                      opt.batch_max_length)
        elif 'CTC' in opt.Prediction:
            text, length = converter.encode(cpu_texts)
        else:
            text, length = converter.encode(cpu_texts, opt.batch_max_length)
        batch_size = image.size(0)

        if 'Transformer' in opt.SequenceModeling:
            preds = model(image, text, tgt_pos=text_pos)
            target = text[:, 1:]  # without <s> Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))
        elif 'CTC' in opt.Prediction:
            preds = model(image, text).log_softmax(2)
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            preds = preds.permute(1, 0, 2)  # to use CTCLoss format
            cost = criterion(preds, text, preds_size, length)
        else:
            preds = model(image, text)
            target = text[:, 1:]  # without [GO] Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()

        if 'Transformer' in opt.SequenceModeling and opt.use_scheduled_optim:
            optimizer_schedule.step_and_update_lr()
        elif 'Transformer' in opt.SequenceModeling:
            optimizer.step()
        else:
            # gradient clipping with 5 (Default)
            torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
            optimizer.step()

        loss_avg.add(cost)

        # validation part
        if i > 0 and (i + 1) % opt.valInterval == 0:
            elapsed_time = time.time() - start_time
            print(
                f'[{i+1}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}'
            )
            # for log
            with open(f'./saved_models/{opt.experiment_name}/log_train.txt',
                      'a') as log:
                log.write(
                    f'[{i+1}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}\n'
                )
                loss_avg.reset()

                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, gts, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)
                model.train()

                for pred, gt in zip(preds[:5], gts[:5]):
                    if 'Transformer' in opt.SequenceModeling:
                        pred = pred[:pred.find('</s>')]
                        gt = gt[:gt.find('</s>')]
                    elif 'Attn' in opt.Prediction:
                        pred = pred[:pred.find('[s]')]
                        gt = gt[:gt.find('[s]')]

                    print(f'{pred:20s}, gt: {gt:20s},   {str(pred == gt)}')
                    log.write(
                        f'{pred:20s}, gt: {gt:20s},   {str(pred == gt)}\n')

                valid_log = f'[{i+1}/{opt.num_iter}] valid loss: {valid_loss:0.5f}'
                valid_log += f' accuracy: {current_accuracy:0.3f}, norm_ED: {current_norm_ED:0.2f}'
                print(valid_log)
                log.write(valid_log + '\n')

                # keep best accuracy model
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    state_dict = model.module.state_dict()
                    save_checkpoint(
                        {
                            'best_accuracy': best_accuracy,
                            'state_dict': state_dict,
                        }, False,
                        f'./saved_models/{opt.experiment_name}/best_accuracy.pth'
                    )
                if current_norm_ED < best_norm_ED:
                    best_norm_ED = current_norm_ED
                    state_dict = model.module.state_dict()
                    save_checkpoint(
                        {
                            'best_norm_ED': best_norm_ED,
                            'state_dict': state_dict,
                        }, False,
                        f'./saved_models/{opt.experiment_name}/best_norm_ED.pth'
                    )
                    # torch.save(
                    #     model.state_dict(), f'./saved_models/{opt.experiment_name}/best_norm_ED.pth')
                best_model_log = f'best_accuracy: {best_accuracy:0.3f}, best_norm_ED: {best_norm_ED:0.2f}'
                print(best_model_log)
                log.write(best_model_log + '\n')

        # save model per 1000 iter.
        if (i + 1) % 1000 == 0:
            state_dict = model.module.state_dict()
            optimizer_state_dict = optimizer.state_dict()
            save_checkpoint(
                {
                    'state_dict': state_dict,
                    'optimizer': optimizer_state_dict,
                    'step': i,
                    'best_accuracy': best_accuracy,
                    'best_norm_ED': best_norm_ED,
                }, False,
                f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')
Beispiel #14
0
def train(opt, log):
    if opt.self == "MoCo":
        opt.batch_size = 256

    """ dataset preparation """
    if opt.select_data == "unlabel":
        select_data = ["U1.Book32", "U2.TextVQA", "U3.STVQA"]
        batch_ratio = [round(1 / len(select_data), 3)] * len(select_data)

    else:
        select_data = opt.select_data.split("-")
        batch_ratio = opt.batch_ratio.split("-")

    train_loader = Batch_Balanced_Dataset(
        opt, opt.train_data, select_data, batch_ratio, log, learn_type="self"
    )

    AlignCollate_valid = AlignCollate_SelfSL(opt)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt, data_type="unlabel"
    )
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=False,
    )
    log.write(valid_dataset_log)
    print("-" * 80)
    log.write("-" * 80 + "\n")

    """ model configuration """
    if opt.self == "RotNet":
        model = Model(opt, SelfSL_layer=opt.SelfSL_layer)

        # weight initialization
        for name, param in model.named_parameters():
            if "localization_fc2" in name:
                print(f"Skip {name} as it is already initialized")
                continue
            try:
                if "bias" in name:
                    init.constant_(param, 0.0)
                elif "weight" in name:
                    init.kaiming_normal_(param)
            except Exception as e:  # for batchnorm.
                if "weight" in name:
                    param.data.fill_(1)
                continue

    elif opt.self == "MoCo":
        model = MoCoLoss(
            opt, dim=opt.moco_dim, K=opt.moco_k, m=opt.moco_m, T=opt.moco_t
        )

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if opt.saved_model != "":
        print(f"loading pretrained model from {opt.saved_model}")
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    print("Model:")
    print(model)
    log.write(repr(model) + "\n")

    """ setup loss """
    criterion = torch.nn.CrossEntropyLoss(ignore_index=-1).to(device)

    # loss averager
    train_loss_avg = Averager()
    valid_loss_avg = Averager()

    # filter that only require gradient descent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print(f"Trainable params num: {sum(params_num)}")
    log.write(f"Trainable params num: {sum(params_num)}\n")
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.optimizer == "adam":
        optimizer = torch.optim.Adam(filtered_parameters, lr=opt.lr)
    elif opt.self == "MoCo":
        optimizer = torch.optim.SGD(
            filtered_parameters,
            lr=opt.moco_lr,
            momentum=opt.moco_SGD_m,
            weight_decay=opt.moco_wd,
        )
        opt.schedule = opt.moco_schedule
        opt.lr = opt.moco_lr
        opt.lr_drop_rate = opt.moco_lr_drop_rate
    else:
        optimizer = torch.optim.SGD(
            filtered_parameters,
            lr=opt.lr,
            momentum=opt.momentum,
            weight_decay=opt.weight_decay,
        )
    print("Optimizer:")
    print(optimizer)
    log.write(repr(optimizer) + "\n")

    if "super" in opt.schedule:
        if opt.optimizer == "sgd":
            cycle_momentum = True
        else:
            cycle_momentum = False

        scheduler = torch.optim.lr_scheduler.OneCycleLR(
            optimizer,
            max_lr=opt.lr,
            cycle_momentum=cycle_momentum,
            div_factor=20,
            final_div_factor=1000,
            total_steps=opt.num_iter,
        )
        print("Scheduler:")
        print(scheduler)
        log.write(repr(scheduler) + "\n")

    """ final options """
    # print(opt)
    opt_log = "------------ Options -------------\n"
    args = vars(opt)
    for k, v in args.items():
        opt_log += f"{str(k)}: {str(v)}\n"
    opt_log += "---------------------------------------\n"
    print(opt_log)
    log.write(opt_log)
    log.close()

    """ start training """
    start_iter = 0
    if opt.saved_model != "":
        try:
            start_iter = int(opt.saved_model.split("_")[-1].split(".")[0])
            print(f"continue to train, start_iter: {start_iter}")
        except:
            pass

    start_time = time.time()
    iteration = start_iter
    best_score = -1

    # training loop
    for iteration in tqdm(
        range(start_iter + 1, opt.num_iter + 1),
        total=opt.num_iter,
        position=0,
        leave=True,
    ):
        # train part
        if opt.self == "RotNet":
            image, Self_label = train_loader.get_batch()
            image = image.to(device)

            preds = model(image, SelfSL_layer=opt.SelfSL_layer)
            target = torch.LongTensor(Self_label).to(device)

        elif opt.self == "MoCo":
            q, k = train_loader.get_batch_two_images()
            q = q.to(device)
            k = k.to(device)
            preds, target = model(im_q=q, im_k=k)

        loss = criterion(preds, target)
        train_loss_avg.add(loss)

        model.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(), opt.grad_clip
        )  # gradient clipping with 5 (Default)
        optimizer.step()

        if "super" in opt.schedule:
            scheduler.step()
        else:
            adjust_learning_rate(optimizer, iteration, opt)

        # validation part.
        # To see training progress, we also conduct validation when 'iteration == 1'
        if iteration % opt.val_interval == 0 or iteration == 1:
            # for validation log
            with open(f"./saved_models/{opt.exp_name}/log_train.txt", "a") as log:
                model.eval()
                with torch.no_grad():
                    length_of_data = 0
                    infer_time = 0
                    n_correct = 0
                    for i, (image_valid, Self_label_valid) in tqdm(
                        enumerate(valid_loader),
                        total=len(valid_loader),
                        position=1,
                        leave=False,
                    ):
                        if opt.self == "RotNet":
                            batch_size = image_valid.size(0)
                            start_infer_time = time.time()
                            preds = model(
                                image_valid.to(device), SelfSL_layer=opt.SelfSL_layer
                            )
                            forward_time = time.time() - start_infer_time
                            target = torch.LongTensor(Self_label_valid).to(device)

                        elif opt.self == "MoCo":
                            batch_size = image_valid.size(0)
                            q_valid = image_valid.to(device)
                            k_valid = Self_label_valid.to(device)
                            start_infer_time = time.time()
                            preds, target = model(im_q=q_valid, im_k=k_valid)
                            forward_time = time.time() - start_infer_time

                        loss = criterion(preds, target)
                        valid_loss_avg.add(loss)
                        infer_time += forward_time
                        _, preds_index = preds.max(1)
                        n_correct += (preds_index == target).sum().item()
                        length_of_data = length_of_data + batch_size

                    current_score = n_correct / length_of_data * 100

                model.train()

                # keep best score (accuracy) model on valid dataset
                if current_score > best_score:
                    best_score = current_score
                    torch.save(
                        model.state_dict(),
                        f"./saved_models/{opt.exp_name}/best_score.pth",
                    )

                # validation log: loss, lr, score, time.
                lr = optimizer.param_groups[0]["lr"]
                elapsed_time = time.time() - start_time
                valid_log = f"\n[{iteration}/{opt.num_iter}] Train loss: {train_loss_avg.val():0.5f}, Valid loss: {valid_loss_avg.val():0.5f}, lr: {lr:0.7f}\n"
                valid_log += f"Best_score: {best_score:0.2f}, Current_score: {current_score:0.2f}, "
                valid_log += (
                    f"Infer_time: {infer_time:0.1f}, Elapsed_time: {elapsed_time:0.1f}"
                )
                train_loss_avg.reset()
                valid_loss_avg.reset()

                # show some predicted results
                dashed_line = "-" * 80
                if opt.self == "RotNet":
                    head = f"GT:0 vs Pred | GT:90 vs Pred | GT:180 vs Pred | GT:270 vs Pred"
                    preds_index = preds_index[:20]
                    gts = Self_label_valid[:20]
                elif opt.self == "MoCo":
                    head = f"GT:0 vs Pred | GT:0 vs Pred | GT:0 vs Pred | GT:0 vs Pred"
                    preds_index = preds_index[:8]
                    gts = torch.zeros(preds_index.shape[0], dtype=torch.long)

                predicted_result_log = f"{dashed_line}\n{head}\n{dashed_line}\n"
                for i, (gt, pred) in enumerate(zip(gts, preds_index)):
                    if opt.self == "RotNet":
                        gt, pred = gt * 90, pred * 90
                    if i % 4 != 3:
                        predicted_result_log += f"{gt} vs {pred} | "
                    else:
                        predicted_result_log += f"{gt} vs {pred} \n"
                predicted_result_log += f"{dashed_line}"
                valid_log = f"{valid_log}\n{predicted_result_log}"
                print(valid_log)
                log.write(valid_log + "\n")

    print(
        f'finished the experiment: {opt.exp_name}, "CUDA_VISIBLE_DEVICES" was {opt.CUDA_VISIBLE_DEVICES}'
    )
Beispiel #15
0
def train(opt):
    """ 准备训练和验证的数据集 """
    transform = transforms.Compose([
        ToTensor(),
    ])
    train_dataset = LmdbDataset(opt.train_data, opt=opt, transform=transform)
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=opt.batch_size,
        shuffle=True,
        num_workers=int(opt.workers),
    )

    valid_dataset = LmdbDataset(root=opt.valid_data,
                                opt=opt,
                                transform=transform)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=True,
        num_workers=int(opt.workers),
    )
    print('-' * 80)
    """ 模型的配置 """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    # 权重初始化
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    model = model.to(device)
    model.train()
    if opt.continue_model != '':
        print(f'loading pretrained model from {opt.continue_model}')
        model.load_state_dict(torch.load(opt.continue_model))
    print("Model:")
    print(model)
    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.experiment_name}/opt.txt',
              'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    if opt.continue_model != '':
        start_iter = int(opt.continue_model.split('_')[-1].split('.')[0])
        print(f'continue to train, start_iter: {start_iter}')

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = 1e+6
    i = start_iter

    while (True):
        # train part
        for image_tensors, labels in train_loader:
            image = image_tensors.to(device)
            text, length = converter.encode(
                labels, batch_max_length=opt.batch_max_length
            )  # text: [index, index, ..., index], length: [10, 8]
            batch_size = image.size(0)

            if 'CTC' in opt.Prediction:
                # set xx = model(image, text) torch.Size([100, 63, 7]), xx.log_softmax(2)[0][0] = xx[0][0].log_softmax(-1)
                preds = model(image,
                              text).log_softmax(2)  # torch.Size([100, 63, 12])
                preds_size = torch.IntTensor([preds.size(1)] *
                                             batch_size).to(device)
                preds = preds.permute(
                    1, 0, 2
                )  # to use CTCLoss format  # 100 * 63 * 7 ->  63 * 100 * 7

                # To avoid ctc_loss issue, disabled cudnn for the computation of the ctc_loss
                # https://github.com/jpuigcerver/PyLaia/issues/16
                torch.backends.cudnn.enabled = False
                cost = criterion(
                    preds, text, preds_size, length
                )  # preds.shape: torch.Size([63, 100, 7]), 其中63是序列特征,100是batch_size, 7是输出类别数量; text.shape: torch.Size([1000]), 表示1000个字符
                # preds_size:[63, 63, ..., 63] 100,数组中的63表示序列的长度 length: [10, 10, ..., 10] 100,数组中的每个10表示每个标签的长度,意思就是每一张图片有10个字符
                torch.backends.cudnn.enabled = True

            else:
                preds = model(image,
                              text[:, :-1])  # align with Attention.forward
                target = text[:, 1:]  # without [GO] Symbol
                cost = criterion(preds.view(-1, preds.shape[-1]),
                                 target.contiguous().view(-1))

            model.zero_grad()
            cost.backward()
            torch.nn.utils.clip_grad_norm_(
                model.parameters(),
                opt.grad_clip)  # gradient clipping with 5 (Default)
            optimizer.step()

            loss_avg.add(cost)

            # validation part
            if i % opt.valInterval == 0:
                elapsed_time = time.time() - start_time
                print(
                    f'[{i}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}'
                )
                # for log
                with open(
                        f'./saved_models/{opt.experiment_name}/log_train.txt',
                        'a') as log:
                    log.write(
                        f'[{i}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}\n'
                    )
                    loss_avg.reset()

                    model.eval()
                    with torch.no_grad():
                        valid_loss, current_accuracy, current_norm_ED, preds, labels, infer_time, length_of_data = validation(
                            model, criterion, valid_loader, converter, opt)
                    model.train()

                    for pred, gt in zip(preds[:5], labels[:5]):
                        if 'Attn' in opt.Prediction:
                            pred = pred[:pred.find('[s]')]
                            gt = gt[:gt.find('[s]')]
                        print(f'{pred:20s}, gt: {gt:20s},   {str(pred == gt)}')
                        log.write(
                            f'{pred:20s}, gt: {gt:20s},   {str(pred == gt)}\n')

                    valid_log = f'[{i}/{opt.num_iter}] valid loss: {valid_loss:0.5f}'
                    valid_log += f' accuracy: {current_accuracy:0.3f}, norm_ED: {current_norm_ED:0.2f}'
                    print(valid_log)
                    log.write(valid_log + '\n')

                    # keep best accuracy model
                    if current_accuracy > best_accuracy:
                        best_accuracy = current_accuracy
                        torch.save(
                            model.state_dict(),
                            f'./saved_models/{opt.experiment_name}/best_accuracy.pth'
                        )
                    if current_norm_ED < best_norm_ED:
                        best_norm_ED = current_norm_ED
                        torch.save(
                            model.state_dict(),
                            f'./saved_models/{opt.experiment_name}/best_norm_ED.pth'
                        )
                    best_model_log = f'best_accuracy: {best_accuracy:0.3f}, best_norm_ED: {best_norm_ED:0.2f}'
                    print(best_model_log)
                    log.write(best_model_log + '\n')

            # save model per 1e+5 iter.
            if (i + 1) % 1e+5 == 0:
                torch.save(
                    model.state_dict(),
                    f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')

            if i == opt.num_iter:
                print('end the training')
                sys.exit()
            i += 1
Beispiel #16
0
def run(train_path):
    df = pd.read_csv(train_path)
    print(df.shape)    
    df['x'] = df['bbox'].apply(lambda x: float(np.array(re.findall("([0-9]+[.]?[0-9]*)", x))[0]))
    df['y'] = df['bbox'].apply(lambda x: float(np.array(re.findall("([0-9]+[.]?[0-9]*)", x))[1]))
    df['w'] = df['bbox'].apply(lambda x: float(np.array(re.findall("([0-9]+[.]?[0-9]*)", x))[2]))
    df['h'] = df['bbox'].apply(lambda x: float(np.array(re.findall("([0-9]+[.]?[0-9]*)", x))[3]))
    df.drop(['bbox'], inplace=True, axis=1)
    
    # split the data 
    image_ids = df['image_id'].unique()
    valid_ids = image_ids[-665:]
    train_ids = image_ids[:-665]
    train_df = df[df['image_id'].isin(train_ids)]
    valid_df = df[df['image_id'].isin(valid_ids)]
    
    train_dataset = WheatDatasetTrain(train_df, config.DIR_TRAIN, get_train_transform())
    valid_dataset = WheatDatasetTrain(valid_df, config.DIR_TRAIN, get_valid_transform())

    train_data_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=config.TRAIN_BS,
        shuffle=False,
        num_workers=config.NUM_WORKERS,
        collate_fn=collate_fn
    )
    valid_data_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=config.VALID_BS,
        shuffle=False,
        num_workers=config.NUM_WORKERS,
        collate_fn=collate_fn
    )
    # Device used is cuda
    device = torch.device('cuda')
    model = obtain_model()
    model.to(device)
    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
    # lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
    lr_scheduler = None

    loss_hist = Averager()
    itr = 1

    for epoch in range(config.EPOCHS):
        loss_hist.reset()    
        for images, targets, image_ids in train_data_loader:
            images = list(image.to(device) for image in images)
            targets = [{k: v.to(device) for k, v in t.items()} for t in targets]

            loss_dict = model(images, targets)

            losses = sum(loss for loss in loss_dict.values())
            loss_value = losses.item()

            loss_hist.send(loss_value)

            optimizer.zero_grad()
            losses.backward()
            optimizer.step()

            if itr % 50 == 0:
                print(f"Iteration #{itr} loss: {loss_value}")
            
            itr += 1
    
        # update the learning rate
        if lr_scheduler is not None:
            lr_scheduler.step()
        
        print(f"Epoch #{epoch} loss: {loss_hist.value}")   
Beispiel #17
0
def train(opt):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')

    #considering the real images for discriminator
    opt.batch_size = opt.batch_size*2

    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(os.path.join(opt.exp_dir,opt.exp_name,'log_dataset.txt'), 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size,
        shuffle=True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    
    model = AdaINGen(opt)
    ocrModel = Model(opt)
    disModel = MsImageDis()
    
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)

    # Synthesizer weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue
    
    # Recognizer weight initialization
    for name, param in ocrModel.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue
    
    # Discriminator weight initialization
    for name, param in disModel.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue


    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()

    ocrModel = torch.nn.DataParallel(ocrModel).to(device)
    ocrModel.train()
    
    disModel = torch.nn.DataParallel(disModel).to(device)
    disModel.train()

    
    if opt.saved_synth_model != '':
        print(f'loading pretrained synth model from {opt.saved_synth_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_synth_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_synth_model))
    print("Model:")
    print(model)

    if opt.saved_ocr_model != '':
        print(f'loading pretrained ocr model from {opt.saved_ocr_model}')
        if opt.FT:
            ocrModel.load_state_dict(torch.load(opt.saved_ocr_model), strict=False)
        else:
            ocrModel.load_state_dict(torch.load(opt.saved_ocr_model))
    # ocrModel.eval()   #as we can't call RNN.backward in eval mode
    print("OCRModel:")
    print(ocrModel)

    if opt.saved_dis_model != '':
        print(f'loading pretrained discriminator model from {opt.saved_dis_model}')
        if opt.FT:
            disModel.load_state_dict(torch.load(opt.saved_dis_model), strict=False)
        else:
            disModel.load_state_dict(torch.load(opt.saved_dis_model))
    # ocrModel.eval()   #as we can't call RNN.backward in eval mode
    print("DisModel:")
    print(disModel)

    """ setup loss """
    if 'CTC' in opt.Prediction:
        ocrCriterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        ocrCriterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0
    
    recCriterion = torch.nn.L1Loss()

    # loss averager
    loss_avg = Averager()
    loss_avg_ocr = Averager() ##----------
    loss_avg_dis = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
    print("SynthOptimizer:")
    print(optimizer)

    #filter parameters for OCR training
    # filter that only require gradient decent
    ocr_filtered_parameters = []
    ocr_params_num = []
    for p in filter(lambda p: p.requires_grad, ocrModel.parameters()):
        ocr_filtered_parameters.append(p)
        ocr_params_num.append(np.prod(p.size()))
    print('OCR Trainable params num : ', sum(ocr_params_num))


    # setup optimizer
    if opt.adam:
        ocr_optimizer = optim.Adam(ocr_filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
    else:
        ocr_optimizer = optim.Adadelta(ocr_filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
    print("OCROptimizer:")
    print(ocr_optimizer)

    #filter parameters for OCR training
    # filter that only require gradient decent
    dis_filtered_parameters = []
    dis_params_num = []
    for p in filter(lambda p: p.requires_grad, disModel.parameters()):
        dis_filtered_parameters.append(p)
        dis_params_num.append(np.prod(p.size()))
    print('Dis Trainable params num : ', sum(dis_params_num))

    # setup optimizer
    if opt.adam:
        dis_optimizer = optim.Adam(dis_filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
    else:
        dis_optimizer = optim.Adadelta(dis_filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
    print("DisOptimizer:")
    print(dis_optimizer)



    """ final options """
    # print(opt)
    with open(os.path.join(opt.exp_dir,opt.exp_name,'opt.txt'), 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    if opt.saved_synth_model != '':
        try:
            start_iter = int(opt.saved_synth_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    best_accuracy_ocr = -1
    best_norm_ED_ocr = -1
    iteration = start_iter

    while(True):
        # train part
        
        image_tensors_all, labels_1_all, labels_2_all = train_dataset.get_batch()

        # ## comment
        # pdb.set_trace()
        # for imgCntr in range(image_tensors.shape[0]):
        #     save_image(tensor2im(image_tensors[imgCntr]),'temp/'+str(imgCntr)+'.png')
        # pdb.set_trace()
        # ###
        
        disCnt = int(image_tensors_all.size(0)/2)
        image_tensors, image_tensors_real, labels_1, labels_2 = image_tensors_all[:disCnt], image_tensors_all[disCnt:disCnt+disCnt], labels_1_all[:disCnt], labels_2_all[:disCnt]

        image = image_tensors.to(device)
        image_real = image_tensors_real.to(device)
        text_1, length_1 = converter.encode(labels_1, batch_max_length=opt.batch_max_length)
        text_2, length_2 = converter.encode(labels_2, batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        images_recon_1, images_recon_2, _ = model(image, text_1, text_2)
        

        if 'CTC' in opt.Prediction:
            
            #ocr training
            preds_ocr = ocrModel(image, text_1)
            preds_size_ocr = torch.IntTensor([preds_ocr.size(1)] * batch_size)
            preds_ocr = preds_ocr.log_softmax(2).permute(1, 0, 2)

            ocrCost_train = ocrCriterion(preds_ocr, text_1, preds_size_ocr, length_1)

            #dis training
            #Check: Using alternate real images
            disCost = opt.disWeight*0.5*(disModel.module.calc_dis_loss(images_recon_1.detach(), image_real) + disModel.module.calc_dis_loss(images_recon_2.detach(), image))

            #synth training
            preds_1 = ocrModel(images_recon_1, text_1)
            preds_size_1 = torch.IntTensor([preds_1.size(1)] * batch_size)
            preds_1 = preds_1.log_softmax(2).permute(1, 0, 2)

            preds_2 = ocrModel(images_recon_2, text_2)
            preds_size_2 = torch.IntTensor([preds_2.size(1)] * batch_size)
            preds_2 = preds_2.log_softmax(2).permute(1, 0, 2)

            ocrCost = 0.5*(ocrCriterion(preds_1, text_1, preds_size_1, length_1) + ocrCriterion(preds_2, text_2, preds_size_2, length_2))
            
            #gen training
            disGenCost = 0.5*(disModel.module.calc_gen_loss(images_recon_1)+disModel.module.calc_gen_loss(images_recon_2))

        else:
            preds = model(image, text[:, :-1])  # align with Attention.forward
            target = text[:, 1:]  # without [GO] Symbol
            ocrCost = ocrCriterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1))

        
        recCost = recCriterion(images_recon_1,image)

        cost = opt.ocrWeight*ocrCost + opt.reconWeight*recCost + opt.disWeight*disGenCost

        disModel.zero_grad()
        disCost.backward()
        torch.nn.utils.clip_grad_norm_(disModel.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        dis_optimizer.step()

        loss_avg_dis.add(disCost)
        
        model.zero_grad()
        ocrModel.zero_grad()
        disModel.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        #training OCR
        ocrModel.zero_grad()
        ocrCost_train.backward()
        torch.nn.utils.clip_grad_norm_(ocrModel.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        ocr_optimizer.step()

        loss_avg_ocr.add(ocrCost_train)

        #START HERE
        # validation part
        
        if (iteration + 1) % opt.valInterval == 0 or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0' 
            
            #Save training images
            os.makedirs(os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration)), exist_ok=True)
            for trImgCntr in range(batch_size):
                try:
                    save_image(tensor2im(image[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_input_'+labels_1[trImgCntr]+'.png'))
                    save_image(tensor2im(images_recon_1[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_recon_'+labels_1[trImgCntr]+'.png'))
                    save_image(tensor2im(images_recon_2[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_pair_'+labels_2[trImgCntr]+'.png'))
                except:
                    print('Warning while saving training image')
            
            elapsed_time = time.time() - start_time
            # for log
            
            with open(os.path.join(opt.exp_dir,opt.exp_name,'log_train.txt'), 'a') as log:
                model.eval()
                ocrModel.eval()
                disModel.eval()
                with torch.no_grad():
                    # valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                    #     model, criterion, valid_loader, converter, opt)
                    
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation_synth_adv(
                        iteration, model, ocrModel, disModel, recCriterion, ocrCriterion, valid_loader, converter, opt)
                model.train()
                ocrModel.train()
                disModel.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train OCR loss: {loss_avg_ocr.val():0.5f}, Train Synth loss: {loss_avg.val():0.5f}, Train Dis loss: {loss_avg_dis.val():0.5f}, Valid OCR loss: {valid_loss[0]:0.5f}, Valid Synth loss: {valid_loss[1]:0.5f}, Valid Dis loss: {valid_loss[2]:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg_ocr.reset()
                loss_avg.reset()
                loss_avg_dis.reset()

                current_model_log_ocr = f'{"Current_accuracy_OCR":17s}: {current_accuracy[0]:0.3f}, {"Current_norm_ED_OCR":17s}: {current_norm_ED[0]:0.2f}'
                current_model_log_1 = f'{"Current_accuracy_recon":17s}: {current_accuracy[1]:0.3f}, {"Current_norm_ED_recon":17s}: {current_norm_ED[1]:0.2f}'
                current_model_log_2 = f'{"Current_accuracy_pair":17s}: {current_accuracy[2]:0.3f}, {"Current_norm_ED_pair":17s}: {current_norm_ED[2]:0.2f}'
                
                # keep best accuracy model (on valid dataset)
                if current_accuracy[1] > best_accuracy:
                    best_accuracy = current_accuracy[1]
                    torch.save(model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy.pth'))
                    torch.save(disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy_dis.pth'))
                if current_norm_ED[1] > best_norm_ED:
                    best_norm_ED = current_norm_ED[1]
                    torch.save(model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED.pth'))
                    torch.save(disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED_dis.pth'))
                best_model_log = f'{"Best_accuracy_Recon":17s}: {best_accuracy:0.3f}, {"Best_norm_ED_Recon":17s}: {best_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy[0] > best_accuracy_ocr:
                    best_accuracy_ocr = current_accuracy[0]
                    torch.save(ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy_ocr.pth'))
                if current_norm_ED[0] > best_norm_ED_ocr:
                    best_norm_ED_ocr = current_norm_ED[0]
                    torch.save(ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED_ocr.pth'))
                best_model_log_ocr = f'{"Best_accuracy_ocr":17s}: {best_accuracy_ocr:0.3f}, {"Best_norm_ED_ocr":17s}: {best_norm_ED_ocr:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log_ocr}\n{current_model_log_1}\n{current_model_log_2}\n{best_model_log_ocr}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":32s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt_ocr, pred_ocr, confidence_ocr, gt_1, pred_1, confidence_1, gt_2, pred_2, confidence_2 in zip(labels[0][:5], preds[0][:5], confidence_score[0][:5], labels[1][:5], preds[1][:5], confidence_score[1][:5], labels[2][:5], preds[2][:5], confidence_score[2][:5]):
                    if 'Attn' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{"ocr"}: {gt_ocr:27s} | {pred_ocr:25s} | {confidence_ocr:0.4f}\t{str(pred_ocr == gt_ocr)}\n'
                    predicted_result_log += f'{"recon"}: {gt_1:25s} | {pred_1:25s} | {confidence_1:0.4f}\t{str(pred_1 == gt_1)}\n'
                    predicted_result_log += f'{"pair"}: {gt_2:26s} | {pred_2:25s} | {confidence_2:0.4f}\t{str(pred_2 == gt_2)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (iteration + 1) % 1e+5 == 0:
            torch.save(
                model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_{iteration+1}.pth'))
            torch.save(
                ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_{iteration+1}_ocr.pth'))
            torch.save(
                disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_{iteration+1}_dis.pth'))

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
Beispiel #18
0
def train():
    """ dataset preparation """
    train_dataset_lmdb = LmdbDataset(cfg.lmdb_trainset_dir_name)
    val_dataset_lmdb = LmdbDataset(cfg.lmdb_valset_dir_name)

    train_loader = torch.utils.data.DataLoader(
        train_dataset_lmdb, batch_size=cfg.batch_size,
        collate_fn=data_collate,
        shuffle=True,
        num_workers=int(cfg.workers),
        pin_memory=True)
    valid_loader = torch.utils.data.DataLoader(
        val_dataset_lmdb, batch_size=cfg.batch_size,
        collate_fn=data_collate,
        shuffle=True,  # 'True' to check training progress with validation function.
        num_workers=int(cfg.workers),
        pin_memory=True)

    # --------------------训练过程---------------------------------
    model = advancedEAST()
    if int(cfg.train_task_id[-3:]) != 256:
        id_num = cfg.train_task_id[-3:]
        idx_dic = {'384': 256, '512': 384, '640': 512, '736': 640}
        model.load_state_dict(torch.load('./saved_model/3T{}_best_loss.pth'.format(idx_dic[id_num])))
    elif os.path.exists('./saved_model/3T{}_best_loss.pth'.format(cfg.train_task_id)):
        model.load_state_dict(torch.load('./saved_model/3T{}_best_loss.pth'.format(cfg.train_task_id)))

    model = model.to(device)

    optimizer = optim.Adam(model.parameters(), lr=cfg.lr, weight_decay=cfg.decay)
    loss_func = quad_loss

    train_Loss_list = []
    val_Loss_list = []

    '''start training'''
    start_iter = 0
    if cfg.saved_model != '':
        try:
            start_iter = int(cfg.saved_model.split('_')[-1].split('.')[0])
            print('continue to train, start_iter: {}'.format(start_iter))
        except Exception as e:
            print(e)
            pass

    start_time = time.time()
    best_mF1_score = 0
    i = start_iter
    step_num = 0
    start_time = time.time()
    loss_avg = Averager()
    val_loss_avg = Averager()
    eval_p_r_f = eval_pre_rec_f1()

    while(True):
        model.train()
        # train part
        # training-----------------------------
        for image_tensors, labels, gt_xy_list in train_loader:
            step_num += 1
            batch_x = image_tensors.to(device).float()
            batch_y = labels.to(device).float()  # float64转float32

            out = model(batch_x)
            loss = loss_func(batch_y, out)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            loss_avg.add(loss)
            train_Loss_list.append(loss_avg.val())
            if i == 5 or (i + 1) % 10 == 0:
                eval_p_r_f.add(out, gt_xy_list)  # 非常耗时!!!

        # save model per 100 epochs.
        if (i + 1) % 1e+2 == 0:
            torch.save(model.state_dict(), './saved_models/{}/{}_iter_{}.pth'.format(cfg.train_task_id, cfg.train_task_id, step_num+1))

        print('Epoch:[{}/{}] Training Loss: {:.3f}'.format(i + 1, cfg.epoch_num, train_Loss_list[-1].item()))
        loss_avg.reset()

        if i == 5 or (i + 1) % 10 == 0:
            mPre, mRec, mF1_score = eval_p_r_f.val()
            print('Training meanPrecision:{:.2f}% meanRecall:{:.2f}% meanF1-score:{:.2f}%'.format(mPre, mRec, mF1_score))
            eval_p_r_f.reset()

        # evaluation--------------------------------
        if (i + 1) % cfg.valInterval == 0:
            elapsed_time = time.time() - start_time
            print('Elapsed time:{}s'.format(round(elapsed_time)))
            model.eval()
            for image_tensors, labels, gt_xy_list in valid_loader:
                batch_x = image_tensors.to(device)
                batch_y = labels.to(device).float()  # float64转float32

                out = model(batch_x)
                loss = loss_func(batch_y, out)

                val_loss_avg.add(loss)
                val_Loss_list.append(val_loss_avg.val())
                eval_p_r_f.add(out, gt_xy_list)

            mPre, mRec, mF1_score = eval_p_r_f.val()
            print('validation meanPrecision:{:.2f}% meanRecall:{:.2f}% meanF1-score:{:.2f}%'.format(mPre, mRec, mF1_score))
            eval_p_r_f.reset()

            if mF1_score > best_mF1_score:  # 记录最佳模型
                best_mF1_score = mF1_score
                torch.save(model.state_dict(), './saved_models/{}/{}_best_mF1_score_{:.3f}.pth'.format(cfg.train_task_id, cfg.train_task_id, mF1_score))
                torch.save(model.state_dict(), './saved_model/{}_best_mF1_score.pth'.format(cfg.train_task_id))

            print('Validation loss:{:.3f}'.format(val_loss_avg.val().item()))
            val_loss_avg.reset()

        if i == cfg.epoch_num:
            torch.save(model.state_dict(), './saved_models/{}/{}_iter_{}.pth'.format(cfg.train_task_id, cfg.train_task_id, i+1))
            print('End the training')
            break
        i += 1

    sys.exit()
Beispiel #19
0
def train(opt, log):
    """dataset preparation"""
    # train dataset. for convenience
    if opt.select_data == "label":
        select_data = [
            "1.SVT",
            "2.IIIT",
            "3.IC13",
            "4.IC15",
            "5.COCO",
            "6.RCTW17",
            "7.Uber",
            "8.ArT",
            "9.LSVT",
            "10.MLT19",
            "11.ReCTS",
        ]

    elif opt.select_data == "synth":
        select_data = ["MJ", "ST"]

    elif opt.select_data == "synth_SA":
        select_data = ["MJ", "ST", "SA"]
        opt.batch_ratio = "0.4-0.4-0.2"  # same ratio with SCATTER paper.

    elif opt.select_data == "mix":
        select_data = [
            "1.SVT",
            "2.IIIT",
            "3.IC13",
            "4.IC15",
            "5.COCO",
            "6.RCTW17",
            "7.Uber",
            "8.ArT",
            "9.LSVT",
            "10.MLT19",
            "11.ReCTS",
            "MJ",
            "ST",
        ]

    elif opt.select_data == "mix_SA":
        select_data = [
            "1.SVT",
            "2.IIIT",
            "3.IC13",
            "4.IC15",
            "5.COCO",
            "6.RCTW17",
            "7.Uber",
            "8.ArT",
            "9.LSVT",
            "10.MLT19",
            "11.ReCTS",
            "MJ",
            "ST",
            "SA",
        ]

    else:
        select_data = opt.select_data.split("-")

    # set batch_ratio for each data.
    if opt.batch_ratio:
        batch_ratio = opt.batch_ratio.split("-")
    else:
        batch_ratio = [round(1 / len(select_data), 3)] * len(select_data)

    train_loader = Batch_Balanced_Dataset(opt, opt.train_data, select_data,
                                          batch_ratio, log)

    if opt.semi != "None":
        select_data_unlabel = ["U1.Book32", "U2.TextVQA", "U3.STVQA"]
        batch_ratio_unlabel = [round(1 / len(select_data_unlabel), 3)
                               ] * len(select_data_unlabel)
        dataset_root_unlabel = "data_CVPR2021/training/unlabel/"
        train_loader_unlabel_semi = Batch_Balanced_Dataset(
            opt,
            dataset_root_unlabel,
            select_data_unlabel,
            batch_ratio_unlabel,
            log,
            learn_type="semi",
        )

    AlignCollate_valid = AlignCollate(opt, mode="test")
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt, mode="test")
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=False,
    )
    log.write(valid_dataset_log)
    print("-" * 80)
    log.write("-" * 80 + "\n")
    """ model configuration """
    if "CTC" in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
        opt.sos_token_index = converter.dict["[SOS]"]
        opt.eos_token_index = converter.dict["[EOS]"]
    opt.num_class = len(converter.character)

    model = Model(opt)

    # weight initialization
    for name, param in model.named_parameters():
        if "localization_fc2" in name:
            print(f"Skip {name} as it is already initialized")
            continue
        try:
            if "bias" in name:
                init.constant_(param, 0.0)
            elif "weight" in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if "weight" in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if opt.saved_model != "":
        fine_tuning_log = f"### loading pretrained model from {opt.saved_model}\n"

        if "MoCo" in opt.saved_model or "MoCo" in opt.self_pre:
            pretrained_state_dict_qk = torch.load(opt.saved_model)
            pretrained_state_dict = {}
            for name in pretrained_state_dict_qk:
                if "encoder_q" in name:
                    rename = name.replace("encoder_q.", "")
                    pretrained_state_dict[rename] = pretrained_state_dict_qk[
                        name]
        else:
            pretrained_state_dict = torch.load(opt.saved_model)

        for name, param in model.named_parameters():
            try:
                param.data.copy_(pretrained_state_dict[name].data
                                 )  # load from pretrained model
                if opt.FT == "freeze":
                    param.requires_grad = False  # Freeze
                    fine_tuning_log += f"pretrained layer (freezed): {name}\n"
                else:
                    fine_tuning_log += f"pretrained layer: {name}\n"
            except:
                fine_tuning_log += f"non-pretrained layer: {name}\n"

        print(fine_tuning_log)
        log.write(fine_tuning_log + "\n")

    # print("Model:")
    # print(model)
    log.write(repr(model) + "\n")
    """ setup loss """
    if "CTC" in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        # ignore [PAD] token
        criterion = torch.nn.CrossEntropyLoss(
            ignore_index=converter.dict["[PAD]"]).to(device)

    if "Pseudo" in opt.semi:
        criterion_SemiSL = PseudoLabelLoss(opt, converter, criterion)
    elif "MeanT" in opt.semi:
        criterion_SemiSL = MeanTeacherLoss(opt, student_for_init_teacher=model)

    # loss averager
    train_loss_avg = Averager()
    semi_loss_avg = Averager()  # semi supervised loss avg

    # filter that only require gradient descent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print(f"Trainable params num: {sum(params_num)}")
    log.write(f"Trainable params num: {sum(params_num)}\n")
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.optimizer == "sgd":
        optimizer = torch.optim.SGD(
            filtered_parameters,
            lr=opt.lr,
            momentum=opt.sgd_momentum,
            weight_decay=opt.sgd_weight_decay,
        )
    elif opt.optimizer == "adadelta":
        optimizer = torch.optim.Adadelta(filtered_parameters,
                                         lr=opt.lr,
                                         rho=opt.rho,
                                         eps=opt.eps)
    elif opt.optimizer == "adam":
        optimizer = torch.optim.Adam(filtered_parameters, lr=opt.lr)
    print("Optimizer:")
    print(optimizer)
    log.write(repr(optimizer) + "\n")

    if "super" in opt.schedule:
        if opt.optimizer == "sgd":
            cycle_momentum = True
        else:
            cycle_momentum = False

        scheduler = torch.optim.lr_scheduler.OneCycleLR(
            optimizer,
            max_lr=opt.lr,
            cycle_momentum=cycle_momentum,
            div_factor=20,
            final_div_factor=1000,
            total_steps=opt.num_iter,
        )
        print("Scheduler:")
        print(scheduler)
        log.write(repr(scheduler) + "\n")
    """ final options """
    # print(opt)
    opt_log = "------------ Options -------------\n"
    args = vars(opt)
    for k, v in args.items():
        if str(k) == "character" and len(str(v)) > 500:
            opt_log += f"{str(k)}: So many characters to show all: number of characters: {len(str(v))}\n"
        else:
            opt_log += f"{str(k)}: {str(v)}\n"
    opt_log += "---------------------------------------\n"
    print(opt_log)
    log.write(opt_log)
    log.close()
    """ start training """
    start_iter = 0
    if opt.saved_model != "":
        try:
            start_iter = int(opt.saved_model.split("_")[-1].split(".")[0])
            print(f"continue to train, start_iter: {start_iter}")
        except:
            pass

    start_time = time.time()
    best_score = -1

    # training loop
    for iteration in tqdm(
            range(start_iter + 1, opt.num_iter + 1),
            total=opt.num_iter,
            position=0,
            leave=True,
    ):
        if "MeanT" in opt.semi:
            image_tensors, image_tensors_ema, labels = train_loader.get_batch_ema(
            )
        else:
            image_tensors, labels = train_loader.get_batch()

        image = image_tensors.to(device)
        labels_index, labels_length = converter.encode(
            labels, batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        # default recognition loss part
        if "CTC" in opt.Prediction:
            preds = model(image)
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            preds_log_softmax = preds.log_softmax(2).permute(1, 0, 2)
            loss = criterion(preds_log_softmax, labels_index, preds_size,
                             labels_length)
        else:
            preds = model(image,
                          labels_index[:, :-1])  # align with Attention.forward
            target = labels_index[:, 1:]  # without [SOS] Symbol
            loss = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))

        # semi supervised part (SemiSL)
        if "Pseudo" in opt.semi:
            image_unlabel, _ = train_loader_unlabel_semi.get_batch_two_images()
            image_unlabel = image_unlabel.to(device)
            loss_SemiSL = criterion_SemiSL(image_unlabel, model)

            loss = loss + loss_SemiSL
            semi_loss_avg.add(loss_SemiSL)

        elif "MeanT" in opt.semi:
            (
                image_tensors_unlabel,
                image_tensors_unlabel_ema,
            ) = train_loader_unlabel_semi.get_batch_two_images()
            image_unlabel = image_tensors_unlabel.to(device)
            student_input = torch.cat([image, image_unlabel], dim=0)

            image_ema = image_tensors_ema.to(device)
            image_unlabel_ema = image_tensors_unlabel_ema.to(device)
            teacher_input = torch.cat([image_ema, image_unlabel_ema], dim=0)
            loss_SemiSL = criterion_SemiSL(
                student_input=student_input,
                student_logit=preds,
                student=model,
                teacher_input=teacher_input,
                iteration=iteration,
            )

            loss = loss + loss_SemiSL
            semi_loss_avg.add(loss_SemiSL)

        model.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()
        train_loss_avg.add(loss)

        if "super" in opt.schedule:
            scheduler.step()
        else:
            adjust_learning_rate(optimizer, iteration, opt)

        # validation part.
        # To see training progress, we also conduct validation when 'iteration == 1'
        if iteration % opt.val_interval == 0 or iteration == 1:
            # for validation log
            with open(f"./saved_models/{opt.exp_name}/log_train.txt",
                      "a") as log:
                model.eval()
                with torch.no_grad():
                    (
                        valid_loss,
                        current_score,
                        preds,
                        confidence_score,
                        labels,
                        infer_time,
                        length_of_data,
                    ) = validation(model, criterion, valid_loader, converter,
                                   opt)
                model.train()

                # keep best score (accuracy or norm ED) model on valid dataset
                # Do not use this on test datasets. It would be an unfair comparison
                # (training should be done without referring test set).
                if current_score > best_score:
                    best_score = current_score
                    torch.save(
                        model.state_dict(),
                        f"./saved_models/{opt.exp_name}/best_score.pth",
                    )

                # validation log: loss, lr, score (accuracy or norm ED), time.
                lr = optimizer.param_groups[0]["lr"]
                elapsed_time = time.time() - start_time
                valid_log = f"\n[{iteration}/{opt.num_iter}] Train_loss: {train_loss_avg.val():0.5f}, Valid_loss: {valid_loss:0.5f}"
                valid_log += f", Semi_loss: {semi_loss_avg.val():0.5f}\n"
                valid_log += f'{"Current_score":17s}: {current_score:0.2f}, Current_lr: {lr:0.7f}\n'
                valid_log += f'{"Best_score":17s}: {best_score:0.2f}, Infer_time: {infer_time:0.1f}, Elapsed_time: {elapsed_time:0.1f}'

                # show some predicted results
                dashed_line = "-" * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f"{dashed_line}\n{head}\n{dashed_line}\n"
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    if "Attn" in opt.Prediction:
                        gt = gt[:gt.find("[EOS]")]
                        pred = pred[:pred.find("[EOS]")]

                    predicted_result_log += f"{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n"
                predicted_result_log += f"{dashed_line}"
                valid_log = f"{valid_log}\n{predicted_result_log}"
                print(valid_log)
                log.write(valid_log + "\n")

                opt.writer.add_scalar("train/train_loss",
                                      float(f"{train_loss_avg.val():0.5f}"),
                                      iteration)
                opt.writer.add_scalar("train/semi_loss",
                                      float(f"{semi_loss_avg.val():0.5f}"),
                                      iteration)
                opt.writer.add_scalar("train/lr", float(f"{lr:0.7f}"),
                                      iteration)
                opt.writer.add_scalar("train/elapsed_time",
                                      float(f"{elapsed_time:0.1f}"), iteration)
                opt.writer.add_scalar("valid/valid_loss",
                                      float(f"{valid_loss:0.5f}"), iteration)
                opt.writer.add_scalar("valid/current_score",
                                      float(f"{current_score:0.2f}"),
                                      iteration)
                opt.writer.add_scalar("valid/best_score",
                                      float(f"{best_score:0.2f}"), iteration)

                train_loss_avg.reset()
                semi_loss_avg.reset()
    """ Evaluation at the end of training """
    print("Start evaluation on benchmark testset")
    """ keep evaluation model and result logs """
    os.makedirs(f"./result/{opt.exp_name}", exist_ok=True)
    os.makedirs(f"./evaluation_log", exist_ok=True)
    saved_best_model = f"./saved_models/{opt.exp_name}/best_score.pth"
    # os.system(f'cp {saved_best_model} ./result/{opt.exp_name}/')
    model.load_state_dict(torch.load(f"{saved_best_model}"))

    opt.eval_type = "benchmark"
    model.eval()
    with torch.no_grad():
        total_accuracy, eval_data_list, accuracy_list = benchmark_all_eval(
            model, criterion, converter, opt)

    opt.writer.add_scalar("test/total_accuracy",
                          float(f"{total_accuracy:0.2f}"), iteration)
    for eval_data, accuracy in zip(eval_data_list, accuracy_list):
        accuracy = float(accuracy)
        opt.writer.add_scalar(f"test/{eval_data}", float(f"{accuracy:0.2f}"),
                              iteration)

    print(
        f'finished the experiment: {opt.exp_name}, "CUDA_VISIBLE_DEVICES" was {opt.CUDA_VISIBLE_DEVICES}'
    )
Beispiel #20
0
def train(opt):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    """ model configuration """
    # CTCLoss
    converter_ctc = CTCLabelConverter(opt.character)
    # Attention
    converter_atten = AttnLabelConverter(opt.character)
    opt.num_class_ctc = len(converter_ctc.character)
    opt.num_class_atten = len(converter_atten.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class_ctc, opt.num_class_atten, opt.batch_max_length,
          opt.Transformation, opt.FeatureExtraction, opt.SequenceModeling,
          opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p_: p_.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)

    # use fp16 to train
    model = model.to(device)
    if opt.fp16:
        with open(f'./saved_models/{opt.exp_name}/log_train.txt', 'a') as log:
            log.write('==> Enable fp16 training' + '\n')
        print('==> Enable fp16 training')
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')

    # data parallel for multi-GPU
    if torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model).to(device)
    model.train()
    # for i in model.module.Prediction_atten:
    #     i.to(device)
    # for i in model.module.Feat_Extraction.scr:
    #     i.to(device)
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    print("Model:")
    print(model)
    """ setup loss """
    criterion_ctc = torch.nn.CTCLoss(zero_infinity=True).to(device)
    criterion_atten = torch.nn.CrossEntropyLoss(ignore_index=0).to(
        device)  # ignore [GO] token = ignore index 0

    # loss averager
    loss_avg = Averager()
    """ final options """
    writer = SummaryWriter(f'./saved_models/{opt.exp_name}')
    # print(opt)
    with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter

    # image_tensors, labels = train_dataset.get_batch()
    while True:
        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        batch_size = image.size(0)
        text_ctc, length_ctc = converter_ctc.encode(
            labels, batch_max_length=opt.batch_max_length)
        text_atten, length_atten = converter_atten.encode(
            labels, batch_max_length=opt.batch_max_length)

        # type tuple; (tensor, list);         text_atten[:, :-1]:align with Attention.forward
        preds_ctc, preds_atten = model(image, text_atten[:, :-1])
        # CTC Loss
        preds_size = torch.IntTensor([preds_ctc.size(1)] * batch_size)
        # _, preds_index = preds_ctc.max(2)
        # preds_str_ctc = converter_ctc.decode(preds_index.data, preds_size.data)
        preds_ctc = preds_ctc.log_softmax(2).permute(1, 0, 2)
        cost_ctc = 0.1 * criterion_ctc(preds_ctc, text_ctc, preds_size,
                                       length_ctc)

        # Attention Loss
        # preds_atten = [i[:, :text_atten.shape[1] - 1, :] for i in preds_atten]
        # # select max probabilty (greedy decoding) then decode index to character
        # preds_index_atten = [i.max(2)[1] for i in preds_atten]
        # length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
        # preds_str_atten = [converter_atten.decode(i, length_for_pred) for i in preds_index_atten]
        # preds_str_atten2 = preds_str_atten
        # preds_str_atten = []
        # for i in preds_str_atten2:  # prune after "end of sentence" token ([s])
        #     temp = []
        #     for j in i:
        #         j = j[:j.find('[s]')]
        #         temp.append(j)
        #     preds_str_atten.append(temp)
        # preds_str_atten = [j[:j.find('[s]')] for i in preds_str_atten for j in i]
        target = text_atten[:, 1:]  # without [GO] Symbol
        # cost_atten = 1.0 * criterion_atten(preds_atten.view(-1, preds_atten.shape[-1]), target.contiguous().view(-1))
        for index, pred in enumerate(preds_atten):
            if index == 0:
                cost_atten = 1.0 * criterion_atten(
                    pred.view(-1, pred.shape[-1]),
                    target.contiguous().view(-1))
            else:
                cost_atten += 1.0 * criterion_atten(
                    pred.view(-1, pred.shape[-1]),
                    target.contiguous().view(-1))
        # cost_atten = [1.0 * criterion_atten(pred.view(-1, pred.shape[-1]), target.contiguous().view(-1)) for pred in
        #               preds_atten]
        # cost_atten = criterion_atten(preds_atten.view(-1, preds_atten.shape[-1]), target.contiguous().view(-1))
        cost = cost_ctc + cost_atten
        writer.add_scalar('loss', cost.item(), global_step=iteration + 1)

        # cost = cost_ctc
        # cost = cost_atten
        if (iteration + 1) % 100 == 0:
            print('\riter: {:4d}\tloss: {:6.3f}\tavg: {:6.3f}'.format(
                iteration + 1, cost.item(), loss_avg.val()),
                  end='\n')
        else:
            print('\riter: {:4d}\tloss: {:6.3f}\tavg: {:6.3f}'.format(
                iteration + 1, cost.item(), loss_avg.val()),
                  end='')
        sys.stdout.flush()
        if cost < 0.001:
            print(f'iter: {iteration + 1}\tloss: {cost}')
            # aaaaaa = 0

        # model.zero_grad()
        optimizer.zero_grad()
        if torch.isnan(cost):
            print(f'iter: {iteration + 1}\tloss: {cost}\t==> Loss is NAN')
            sys.exit()
        elif torch.isinf(cost):
            print(f'iter: {iteration + 1}\tloss: {cost}\t==> Loss is INF')
            sys.exit()
        else:
            if opt.fp16:
                with amp.scale_loss(cost, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                cost.backward()
            torch.nn.utils.clip_grad_norm_(
                model.parameters(),
                opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)
        writer.add_scalar('loss_avg',
                          loss_avg.val(),
                          global_step=iteration + 1)
        # if loss_avg.val() <= 0.6:
        #     opt.grad_clip = 2
        # if loss_avg.val() <= 0.3:
        #     opt.grad_clip = 1

        # validation part
        if iteration == 0 or (
                iteration + 1
        ) % opt.valInterval == 0:  # To see training progress, we also conduct validation when 'iteration == 0'
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.exp_name}/log_train.txt',
                      'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion_atten, valid_loader, converter_atten,
                        opt)
                model.train()
                writer.add_scalar('accuracy',
                                  current_accuracy,
                                  global_step=iteration + 1)

                # training loss and validation loss
                loss_log = f'[{iteration + 1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    gt = gt[:gt.find('[s]')]
                    pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (iteration + 1) % 1e+5 == 0:
            torch.save(
                model.state_dict(),
                f'./saved_models/{opt.exp_name}/iter_{iteration + 1}.pth')

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()

        # if (iteration + 1) % opt.valInterval == 0:
        #     print(f'iter: {iteration + 1}\tloss: {cost}')
        iteration += 1
Beispiel #21
0
def train(opt):
    lib.print_model_settings(locals().copy())

    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    log = open(os.path.join(opt.exp_dir,opt.exp_name,'log_dataset.txt'), 'a')
    AlignCollate_valid = AlignPairCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)

    train_dataset, train_dataset_log = hierarchical_dataset(root=opt.train_data, opt=opt)
    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=opt.batch_size,
        sampler=data_sampler(train_dataset, shuffle=True, distributed=opt.distributed),
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True, drop_last=True)
    log.write(train_dataset_log)
    print('-' * 80)

    valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size,
        sampler=data_sampler(train_dataset, shuffle=False, distributed=opt.distributed),
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True, drop_last=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()

    if 'Attn' in opt.Prediction:
        converter = AttnLabelConverter(opt.character)
    else:
        converter = CTCLabelConverter(opt.character)
    
    opt.num_class = len(converter.character)

    
    # styleModel = StyleTensorEncoder(input_dim=opt.input_channel)
    # genModel = AdaIN_Tensor_WordGenerator(opt)
    # disModel = MsImageDisV2(opt)

    # styleModel = StyleLatentEncoder(input_dim=opt.input_channel, norm='none')
    # mixModel = Mixer(opt,nblk=3, dim=opt.latent)
    genModel = styleGANGen(opt.size, opt.latent, opt.n_mlp, opt.num_class, channel_multiplier=opt.channel_multiplier).to(device)
    disModel = styleGANDis(opt.size, channel_multiplier=opt.channel_multiplier, input_dim=opt.input_channel).to(device)
    g_ema = styleGANGen(opt.size, opt.latent, opt.n_mlp, opt.num_class, channel_multiplier=opt.channel_multiplier).to(device)
    ocrModel = ModelV1(opt).to(device)
    accumulate(g_ema, genModel, 0)

    # #  weight initialization
    # for currModel in [styleModel, mixModel]:
    #     for name, param in currModel.named_parameters():
    #         if 'localization_fc2' in name:
    #             print(f'Skip {name} as it is already initialized')
    #             continue
    #         try:
    #             if 'bias' in name:
    #                 init.constant_(param, 0.0)
    #             elif 'weight' in name:
    #                 init.kaiming_normal_(param)
    #         except Exception as e:  # for batchnorm.
    #             if 'weight' in name:
    #                 param.data.fill_(1)
    #             continue

    if opt.contentLoss == 'vis' or opt.contentLoss == 'seq':
        ocrCriterion = torch.nn.L1Loss()
    else:
        if 'CTC' in opt.Prediction:
            ocrCriterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
        else:
            ocrCriterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0

    # vggRecCriterion = torch.nn.L1Loss()
    # vggModel = VGGPerceptualLossModel(models.vgg19(pretrained=True), vggRecCriterion)
    
    print('model input parameters', opt.imgH, opt.imgW, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length)

    if opt.distributed:
        genModel = torch.nn.parallel.DistributedDataParallel(
            genModel,
            device_ids=[opt.local_rank],
            output_device=opt.local_rank,
            broadcast_buffers=False,
        )
        
        disModel = torch.nn.parallel.DistributedDataParallel(
            disModel,
            device_ids=[opt.local_rank],
            output_device=opt.local_rank,
            broadcast_buffers=False,
        )
        ocrModel = torch.nn.parallel.DistributedDataParallel(
            ocrModel,
            device_ids=[opt.local_rank],
            output_device=opt.local_rank,
            broadcast_buffers=False
        )
    
    # styleModel = torch.nn.DataParallel(styleModel).to(device)
    # styleModel.train()
    
    # mixModel = torch.nn.DataParallel(mixModel).to(device)
    # mixModel.train()
    
    # genModel = torch.nn.DataParallel(genModel).to(device)
    # g_ema = torch.nn.DataParallel(g_ema).to(device)
    genModel.train()
    g_ema.eval()

    # disModel = torch.nn.DataParallel(disModel).to(device)
    disModel.train()

    # vggModel = torch.nn.DataParallel(vggModel).to(device)
    # vggModel.eval()

    # ocrModel = torch.nn.DataParallel(ocrModel).to(device)
    # if opt.distributed:
    #     ocrModel.module.Transformation.eval()
    #     ocrModel.module.FeatureExtraction.eval()
    #     ocrModel.module.AdaptiveAvgPool.eval()
    #     # ocrModel.module.SequenceModeling.eval()
    #     ocrModel.module.Prediction.eval()
    # else:
    #     ocrModel.Transformation.eval()
    #     ocrModel.FeatureExtraction.eval()
    #     ocrModel.AdaptiveAvgPool.eval()
    #     # ocrModel.SequenceModeling.eval()
    #     ocrModel.Prediction.eval()
    ocrModel.eval()

    if opt.distributed:
        g_module = genModel.module
        d_module = disModel.module
    else:
        g_module = genModel
        d_module = disModel

    g_reg_ratio = opt.g_reg_every / (opt.g_reg_every + 1)
    d_reg_ratio = opt.d_reg_every / (opt.d_reg_every + 1)

    optimizer = optim.Adam(
        genModel.parameters(),
        lr=opt.lr * g_reg_ratio,
        betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),
    )
    dis_optimizer = optim.Adam(
        disModel.parameters(),
        lr=opt.lr * d_reg_ratio,
        betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
    )

    ## Loading pre-trained files
    if opt.modelFolderFlag:
        if len(glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth")))>0:
            opt.saved_synth_model = glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth"))[-1]

    if opt.saved_ocr_model !='' and opt.saved_ocr_model !='None':
        if not opt.distributed:
            ocrModel = torch.nn.DataParallel(ocrModel)
        print(f'loading pretrained ocr model from {opt.saved_ocr_model}')
        checkpoint = torch.load(opt.saved_ocr_model)
        ocrModel.load_state_dict(checkpoint)
        #temporary fix
        if not opt.distributed:
            ocrModel = ocrModel.module
    
    if opt.saved_gen_model !='' and opt.saved_gen_model !='None':
        print(f'loading pretrained gen model from {opt.saved_gen_model}')
        checkpoint = torch.load(opt.saved_gen_model, map_location=lambda storage, loc: storage)
        genModel.module.load_state_dict(checkpoint['g'])
        g_ema.module.load_state_dict(checkpoint['g_ema'])

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        print(f'loading pretrained synth model from {opt.saved_synth_model}')
        checkpoint = torch.load(opt.saved_synth_model)
        
        # styleModel.load_state_dict(checkpoint['styleModel'])
        # mixModel.load_state_dict(checkpoint['mixModel'])
        genModel.load_state_dict(checkpoint['genModel'])
        g_ema.load_state_dict(checkpoint['g_ema'])
        disModel.load_state_dict(checkpoint['disModel'])
        
        optimizer.load_state_dict(checkpoint["optimizer"])
        dis_optimizer.load_state_dict(checkpoint["dis_optimizer"])

    # if opt.imgReconLoss == 'l1':
    #     recCriterion = torch.nn.L1Loss()
    # elif opt.imgReconLoss == 'ssim':
    #     recCriterion = ssim
    # elif opt.imgReconLoss == 'ms-ssim':
    #     recCriterion = msssim
    

    # loss averager
    loss_avg = Averager()
    loss_avg_dis = Averager()
    loss_avg_gen = Averager()
    loss_avg_imgRecon = Averager()
    loss_avg_vgg_per = Averager()
    loss_avg_vgg_sty = Averager()
    loss_avg_ocr = Averager()

    log_r1_val = Averager()
    log_avg_path_loss_val = Averager()
    log_avg_mean_path_length_avg = Averager()
    log_ada_aug_p = Averager()

    """ final options """
    with open(os.path.join(opt.exp_dir,opt.exp_name,'opt.txt'), 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    
    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        try:
            start_iter = int(opt.saved_synth_model.split('_')[-2].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    
    #get schedulers
    scheduler = get_scheduler(optimizer,opt)
    dis_scheduler = get_scheduler(dis_optimizer,opt)

    start_time = time.time()
    iteration = start_iter
    cntr=0
    
    mean_path_length = 0
    d_loss_val = 0
    r1_loss = torch.tensor(0.0, device=device)
    g_loss_val = 0
    path_loss = torch.tensor(0.0, device=device)
    path_lengths = torch.tensor(0.0, device=device)
    mean_path_length_avg = 0
    loss_dict = {}

    accum = 0.5 ** (32 / (10 * 1000))
    ada_augment = torch.tensor([0.0, 0.0], device=device)
    ada_aug_p = opt.augment_p if opt.augment_p > 0 else 0.0
    ada_aug_step = opt.ada_target / opt.ada_length
    r_t_stat = 0

    sample_z = torch.randn(opt.n_sample, opt.latent, device=device)

    while(True):
        # print(cntr)
        # train part
       
        if opt.lr_policy !="None":
            scheduler.step()
            dis_scheduler.step()
        
        image_input_tensors, image_gt_tensors, labels_1, labels_2 = iter(train_loader).next()

        image_input_tensors = image_input_tensors.to(device)
        image_gt_tensors = image_gt_tensors.to(device)
        batch_size = image_input_tensors.size(0)

        requires_grad(genModel, False)
        # requires_grad(styleModel, False)
        # requires_grad(mixModel, False)
        requires_grad(disModel, True)

        text_1, length_1 = converter.encode(labels_1, batch_max_length=opt.batch_max_length)
        text_2, length_2 = converter.encode(labels_2, batch_max_length=opt.batch_max_length)
        
        
        #forward pass from style and word generator
        # style = styleModel(image_input_tensors).squeeze(2).squeeze(2)
        style = mixing_noise(opt.batch_size, opt.latent, opt.mixing, device)
        # scInput = mixModel(style,text_2)
        if 'CTC' in opt.Prediction:
            images_recon_2,_ = genModel(style, text_2, input_is_latent=opt.input_latent)
        else:
            images_recon_2,_ = genModel(style, text_2[:,1:-1], input_is_latent=opt.input_latent)
        
        #Domain discriminator: Dis update
        if opt.augment:
            image_gt_tensors_aug, _ = augment(image_gt_tensors, ada_aug_p)
            images_recon_2, _ = augment(images_recon_2, ada_aug_p)

        else:
            image_gt_tensors_aug = image_gt_tensors

        fake_pred = disModel(images_recon_2)
        real_pred = disModel(image_gt_tensors_aug)
        disCost = d_logistic_loss(real_pred, fake_pred)

        loss_dict["d"] = disCost*opt.disWeight
        loss_dict["real_score"] = real_pred.mean()
        loss_dict["fake_score"] = fake_pred.mean()

        loss_avg_dis.add(disCost)

        disModel.zero_grad()
        disCost.backward()
        dis_optimizer.step()

        if opt.augment and opt.augment_p == 0:
            ada_augment += torch.tensor(
                (torch.sign(real_pred).sum().item(), real_pred.shape[0]), device=device
            )
            ada_augment = reduce_sum(ada_augment)

            if ada_augment[1] > 255:
                pred_signs, n_pred = ada_augment.tolist()

                r_t_stat = pred_signs / n_pred

                if r_t_stat > opt.ada_target:
                    sign = 1

                else:
                    sign = -1

                ada_aug_p += sign * ada_aug_step * n_pred
                ada_aug_p = min(1, max(0, ada_aug_p))
                ada_augment.mul_(0)

        d_regularize = cntr % opt.d_reg_every == 0

        if d_regularize:
            image_gt_tensors.requires_grad = True
            image_input_tensors.requires_grad = True
            cat_tensor = image_gt_tensors
            real_pred = disModel(cat_tensor)
            
            r1_loss = d_r1_loss(real_pred, cat_tensor)

            disModel.zero_grad()
            (opt.r1 / 2 * r1_loss * opt.d_reg_every + 0 * real_pred[0]).backward()

            dis_optimizer.step()

        loss_dict["r1"] = r1_loss

        
        # #[Style Encoder] + [Word Generator] update
        image_input_tensors, image_gt_tensors, labels_1, labels_2 = iter(train_loader).next()
        
        image_input_tensors = image_input_tensors.to(device)
        image_gt_tensors = image_gt_tensors.to(device)
        batch_size = image_input_tensors.size(0)

        requires_grad(genModel, True)
        # requires_grad(styleModel, True)
        # requires_grad(mixModel, True)
        requires_grad(disModel, False)

        text_1, length_1 = converter.encode(labels_1, batch_max_length=opt.batch_max_length)
        text_2, length_2 = converter.encode(labels_2, batch_max_length=opt.batch_max_length)

        # style = styleModel(image_input_tensors).squeeze(2).squeeze(2)
        # scInput = mixModel(style,text_2)

        # images_recon_2,_ = genModel([scInput], input_is_latent=opt.input_latent)
        style = mixing_noise(batch_size, opt.latent, opt.mixing, device)
        
        if 'CTC' in opt.Prediction:
            images_recon_2, _ = genModel(style, text_2)
        else:
            images_recon_2, _ = genModel(style, text_2[:,1:-1])

        if opt.augment:
            images_recon_2, _ = augment(images_recon_2, ada_aug_p)

        fake_pred = disModel(images_recon_2)
        disGenCost = g_nonsaturating_loss(fake_pred)

        loss_dict["g"] = disGenCost

        # # #Adversarial loss
        # # disGenCost = disModel.module.calc_gen_loss(torch.cat((images_recon_2,image_input_tensors),dim=1))

        # #Input reconstruction loss
        # recCost = recCriterion(images_recon_2,image_gt_tensors)

        # #vgg loss
        # vggPerCost, vggStyleCost = vggModel(image_gt_tensors, images_recon_2)
        #ocr loss
        text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
        length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
        if opt.contentLoss == 'vis' or opt.contentLoss == 'seq':
            preds_recon = ocrModel(images_recon_2, text_for_pred, is_train=False, returnFeat=opt.contentLoss)
            preds_gt = ocrModel(image_gt_tensors, text_for_pred, is_train=False, returnFeat=opt.contentLoss)
            ocrCost = ocrCriterion(preds_recon, preds_gt)
        else:
            if 'CTC' in opt.Prediction:
                
                preds_recon = ocrModel(images_recon_2, text_for_pred, is_train=False)
                # preds_o = preds_recon[:, :text_1.shape[1], :]
                preds_size = torch.IntTensor([preds_recon.size(1)] * batch_size)
                preds_recon_softmax = preds_recon.log_softmax(2).permute(1, 0, 2)
                ocrCost = ocrCriterion(preds_recon_softmax, text_2, preds_size, length_2)
                
                #predict ocr recognition on generated images
                # preds_recon_size = torch.IntTensor([preds_recon.size(1)] * batch_size)
                _, preds_recon_index = preds_recon.max(2)
                labels_o_ocr = converter.decode(preds_recon_index.data, preds_size.data)

                #predict ocr recognition on gt style images
                preds_s = ocrModel(image_input_tensors, text_for_pred, is_train=False)
                # preds_s = preds_s[:, :text_1.shape[1] - 1, :]
                preds_s_size = torch.IntTensor([preds_s.size(1)] * batch_size)
                _, preds_s_index = preds_s.max(2)
                labels_s_ocr = converter.decode(preds_s_index.data, preds_s_size.data)

                #predict ocr recognition on gt stylecontent images
                preds_sc = ocrModel(image_gt_tensors, text_for_pred, is_train=False)
                # preds_sc = preds_sc[:, :text_2.shape[1] - 1, :]
                preds_sc_size = torch.IntTensor([preds_sc.size(1)] * batch_size)
                _, preds_sc_index = preds_sc.max(2)
                labels_sc_ocr = converter.decode(preds_sc_index.data, preds_sc_size.data)

            else:
                preds_recon = ocrModel(images_recon_2, text_for_pred[:, :-1], is_train=False)  # align with Attention.forward
                target_2 = text_2[:, 1:]  # without [GO] Symbol
                ocrCost = ocrCriterion(preds_recon.view(-1, preds_recon.shape[-1]), target_2.contiguous().view(-1))

                #predict ocr recognition on generated images
                _, preds_o_index = preds_recon.max(2)
                labels_o_ocr = converter.decode(preds_o_index, length_for_pred)
                for idx, pred in enumerate(labels_o_ocr):
                    pred_EOS = pred.find('[s]')
                    labels_o_ocr[idx] = pred[:pred_EOS]  # prune after "end of sentence" token ([s])

                #predict ocr recognition on gt style images
                preds_s = ocrModel(image_input_tensors, text_for_pred, is_train=False)
                _, preds_s_index = preds_s.max(2)
                labels_s_ocr = converter.decode(preds_s_index, length_for_pred)
                for idx, pred in enumerate(labels_s_ocr):
                    pred_EOS = pred.find('[s]')
                    labels_s_ocr[idx] = pred[:pred_EOS]  # prune after "end of sentence" token ([s])
                
                #predict ocr recognition on gt stylecontent images
                preds_sc = ocrModel(image_gt_tensors, text_for_pred, is_train=False)
                _, preds_sc_index = preds_sc.max(2)
                labels_sc_ocr = converter.decode(preds_sc_index, length_for_pred)
                for idx, pred in enumerate(labels_sc_ocr):
                    pred_EOS = pred.find('[s]')
                    labels_sc_ocr[idx] = pred[:pred_EOS]  # prune after "end of sentence" token ([s])

        # cost =  opt.reconWeight*recCost + opt.disWeight*disGenCost + opt.vggPerWeight*vggPerCost + opt.vggStyWeight*vggStyleCost + opt.ocrWeight*ocrCost
        cost =  opt.disWeight*disGenCost + opt.ocrWeight*ocrCost

        # styleModel.zero_grad()
        genModel.zero_grad()
        # mixModel.zero_grad()
        disModel.zero_grad()
        # vggModel.zero_grad()
        ocrModel.zero_grad()
        
        cost.backward()
        optimizer.step()
        loss_avg.add(cost)

        g_regularize = cntr % opt.g_reg_every == 0

        if g_regularize:
            image_input_tensors, image_gt_tensors, labels_1, labels_2 = iter(train_loader).next()
        
            image_input_tensors = image_input_tensors.to(device)
            image_gt_tensors = image_gt_tensors.to(device)
            batch_size = image_input_tensors.size(0)

            text_1, length_1 = converter.encode(labels_1, batch_max_length=opt.batch_max_length)
            text_2, length_2 = converter.encode(labels_2, batch_max_length=opt.batch_max_length)

            path_batch_size = max(1, batch_size // opt.path_batch_shrink)

            # style = styleModel(image_input_tensors).squeeze(2).squeeze(2)
            # scInput = mixModel(style,text_2)

            # images_recon_2, latents = genModel([scInput],input_is_latent=opt.input_latent, return_latents=True)

            style = mixing_noise(path_batch_size, opt.latent, opt.mixing, device)
            
            
            if 'CTC' in opt.Prediction:
                images_recon_2, latents = genModel(style, text_2[:path_batch_size], return_latents=True)
            else:
                images_recon_2, latents = genModel(style, text_2[:path_batch_size,1:-1], return_latents=True)
            
            
            path_loss, mean_path_length, path_lengths = g_path_regularize(
                images_recon_2, latents, mean_path_length
            )

            genModel.zero_grad()
            weighted_path_loss = opt.path_regularize * opt.g_reg_every * path_loss

            if opt.path_batch_shrink:
                weighted_path_loss += 0 * images_recon_2[0, 0, 0, 0]

            weighted_path_loss.backward()

            optimizer.step()

            mean_path_length_avg = (
                reduce_sum(mean_path_length).item() / get_world_size()
            )

        loss_dict["path"] = path_loss
        loss_dict["path_length"] = path_lengths.mean()

        accumulate(g_ema, g_module, accum)

        loss_reduced = reduce_loss_dict(loss_dict)

        d_loss_val = loss_reduced["d"].mean().item()
        g_loss_val = loss_reduced["g"].mean().item()
        r1_val = loss_reduced["r1"].mean().item()
        path_loss_val = loss_reduced["path"].mean().item()
        real_score_val = loss_reduced["real_score"].mean().item()
        fake_score_val = loss_reduced["fake_score"].mean().item()
        path_length_val = loss_reduced["path_length"].mean().item()


        #Individual losses
        loss_avg_gen.add(opt.disWeight*disGenCost)
        loss_avg_imgRecon.add(torch.tensor(0.0))
        loss_avg_vgg_per.add(torch.tensor(0.0))
        loss_avg_vgg_sty.add(torch.tensor(0.0))
        loss_avg_ocr.add(opt.ocrWeight*ocrCost)

        log_r1_val.add(loss_reduced["path"])
        log_avg_path_loss_val.add(loss_reduced["path"])
        log_avg_mean_path_length_avg.add(torch.tensor(mean_path_length_avg))
        log_ada_aug_p.add(torch.tensor(ada_aug_p))
        
        if get_rank() == 0:
            # pbar.set_description(
            #     (
            #         f"d: {d_loss_val:.4f}; g: {g_loss_val:.4f}; r1: {r1_val:.4f}; "
            #         f"path: {path_loss_val:.4f}; mean path: {mean_path_length_avg:.4f}; "
            #         f"augment: {ada_aug_p:.4f}"
            #     )
            # )

            if wandb and opt.wandb:
                wandb.log(
                    {
                        "Generator": g_loss_val,
                        "Discriminator": d_loss_val,
                        "Augment": ada_aug_p,
                        "Rt": r_t_stat,
                        "R1": r1_val,
                        "Path Length Regularization": path_loss_val,
                        "Mean Path Length": mean_path_length,
                        "Real Score": real_score_val,
                        "Fake Score": fake_score_val,   
                        "Path Length": path_length_val,
                    }
                )
            # if cntr % 100 == 0:
            #     with torch.no_grad():
            #         g_ema.eval()
            #         sample, _ = g_ema([scInput[:,:opt.latent],scInput[:,opt.latent:]])
            #         utils.save_image(
            #             sample,
            #             os.path.join(opt.trainDir, f"sample_{str(cntr).zfill(6)}.png"),
            #             nrow=int(opt.n_sample ** 0.5),
            #             normalize=True,
            #             range=(-1, 1),
            #         )


        # validation part
        if (iteration + 1) % opt.valInterval == 0 or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0' 
            
            #Save training images
            curr_batch_size = style[0].shape[0]
            images_recon_2, _ = g_ema(style, text_2[:curr_batch_size], input_is_latent=opt.input_latent)
            
            os.makedirs(os.path.join(opt.trainDir,str(iteration)), exist_ok=True)
            for trImgCntr in range(batch_size):
                try:
                    if opt.contentLoss == 'vis' or opt.contentLoss == 'seq':
                        save_image(tensor2im(image_input_tensors[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_sInput_'+labels_1[trImgCntr]+'.png'))
                        save_image(tensor2im(image_gt_tensors[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_csGT_'+labels_2[trImgCntr]+'.png'))
                        save_image(tensor2im(images_recon_2[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_csRecon_'+labels_2[trImgCntr]+'.png'))
                    else:
                        save_image(tensor2im(image_input_tensors[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_sInput_'+labels_1[trImgCntr]+'_'+labels_s_ocr[trImgCntr]+'.png'))
                        save_image(tensor2im(image_gt_tensors[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_csGT_'+labels_2[trImgCntr]+'_'+labels_sc_ocr[trImgCntr]+'.png'))
                        save_image(tensor2im(images_recon_2[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_csRecon_'+labels_2[trImgCntr]+'_'+labels_o_ocr[trImgCntr]+'.png'))
                except:
                    print('Warning while saving training image')
            
            elapsed_time = time.time() - start_time
            # for log
            
            with open(os.path.join(opt.exp_dir,opt.exp_name,'log_train.txt'), 'a') as log:
                # styleModel.eval()
                genModel.eval()
                g_ema.eval()
                # mixModel.eval()
                disModel.eval()
                
                with torch.no_grad():                    
                    valid_loss, infer_time, length_of_data = validation_synth_v6(
                        iteration, g_ema, ocrModel, disModel, ocrCriterion, valid_loader, converter, opt)
                
                # styleModel.train()
                genModel.train()
                # mixModel.train()
                disModel.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train Synth loss: {loss_avg.val():0.5f}, \
                    Train Dis loss: {loss_avg_dis.val():0.5f}, Train Gen loss: {loss_avg_gen.val():0.5f},\
                    Train OCR loss: {loss_avg_ocr.val():0.5f}, \
                    Train R1-val loss: {log_r1_val.val():0.5f}, Train avg-path-loss: {log_avg_path_loss_val.val():0.5f}, \
                    Train mean-path-length loss: {log_avg_mean_path_length_avg.val():0.5f}, Train ada-aug-p: {log_ada_aug_p.val():0.5f}, \
                    Valid Synth loss: {valid_loss[0]:0.5f}, \
                    Valid Dis loss: {valid_loss[1]:0.5f}, Valid Gen loss: {valid_loss[2]:0.5f}, \
                    Valid OCR loss: {valid_loss[6]:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                
                
                #plotting
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Synth-Loss'), loss_avg.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Dis-Loss'), loss_avg_dis.val().item())
                
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Gen-Loss'), loss_avg_gen.val().item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Train-ImgRecon1-Loss'), loss_avg_imgRecon.val().item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Train-VGG-Per-Loss'), loss_avg_vgg_per.val().item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Train-VGG-Sty-Loss'), loss_avg_vgg_sty.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-OCR-Loss'), loss_avg_ocr.val().item())

                lib.plot.plot(os.path.join(opt.plotDir,'Train-r1_val'), log_r1_val.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-path_loss_val'), log_avg_path_loss_val.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-mean_path_length_avg'), log_avg_mean_path_length_avg.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-ada_aug_p'), log_ada_aug_p.val().item())

                lib.plot.plot(os.path.join(opt.plotDir,'Valid-Synth-Loss'), valid_loss[0].item())
                lib.plot.plot(os.path.join(opt.plotDir,'Valid-Dis-Loss'), valid_loss[1].item())

                lib.plot.plot(os.path.join(opt.plotDir,'Valid-Gen-Loss'), valid_loss[2].item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Valid-ImgRecon1-Loss'), valid_loss[3].item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Valid-VGG-Per-Loss'), valid_loss[4].item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Valid-VGG-Sty-Loss'), valid_loss[5].item())
                lib.plot.plot(os.path.join(opt.plotDir,'Valid-OCR-Loss'), valid_loss[6].item())
                
                print(loss_log)

                loss_avg.reset()
                loss_avg_dis.reset()

                loss_avg_gen.reset()
                loss_avg_imgRecon.reset()
                loss_avg_vgg_per.reset()
                loss_avg_vgg_sty.reset()
                loss_avg_ocr.reset()

                log_r1_val.reset()
                log_avg_path_loss_val.reset()
                log_avg_mean_path_length_avg.reset()
                log_ada_aug_p.reset()
                

            lib.plot.flush()

        lib.plot.tick()

        # save model per 1e+5 iter.
        if (iteration) % 1e+4 == 0:
            torch.save({
                # 'styleModel':styleModel.state_dict(),
                # 'mixModel':mixModel.state_dict(),
                'genModel':g_module.state_dict(),
                'g_ema':g_ema.state_dict(),
                'disModel':d_module.state_dict(),
                'optimizer':optimizer.state_dict(),
                'dis_optimizer':dis_optimizer.state_dict()}, 
                os.path.join(opt.exp_dir,opt.exp_name,'iter_'+str(iteration+1)+'_synth.pth'))
            

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
        cntr+=1
def train(opt):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '	')
    log.close()
    """ model configuration """
    # if 'CTC' in opt.Prediction:
    if opt.baiduCTC:
        CTC_converter = CTCLabelConverterForBaiduWarpctc(opt.character)
    else:
        CTC_converter = CTCLabelConverter(opt.character)


# else:
    Attn_converter = AttnLabelConverter(opt.character)
    opt.num_class_ctc = len(CTC_converter.character)
    opt.num_class_attn = len(Attn_converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class_ctc, opt.num_class_attn, opt.batch_max_length,
          opt.Transformation, opt.FeatureExtraction, opt.SequenceModeling,
          opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        # print(name)
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    print("Model:")
    print(model)
    # print(summary(model, (1, opt.imgH, opt.imgW,1)))
    """ setup loss """
    if opt.baiduCTC:
        # need to install warpctc. see our guideline.
        if opt.label_smooth:
            criterion_major_path = SmoothCTCLoss(num_classes=opt.num_class_ctc,
                                                 weight=0.05)
        else:
            criterion_major_path = CTCLoss()
        #criterion_major_path = CTCLoss(average_frames=False, reduction="mean", blank=0)
    else:
        criterion_major_path = torch.nn.CTCLoss(zero_infinity=True).to(device)
    # else:
    #     criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0
    # loss averager
    #criterion_major_path = torch.nn.CTCLoss(zero_infinity=True).to(device)
    criterion_guide_path = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)
    loss_avg_major_path = Averager()
    loss_avg_guide_path = Averager()
    # filter that only require gradient decent
    guide_parameters = []
    major_parameters = []
    guide_model_part_names = [
        "Transformation", "FeatureExtraction", "SequenceModeling_Attn",
        "Attention"
    ]
    major_model_part_names = ["SequenceModeling_CTC", "CTC"]
    for name, param in model.named_parameters():
        if param.requires_grad:
            if name.split(".")[1] in guide_model_part_names:
                guide_parameters.append(param)
            elif name.split(".")[1] in major_model_part_names:
                major_parameters.append(param)
            # print(name)
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]
    if opt.continue_training:
        guide_parameters = []
    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer_ctc = AdamW(major_parameters, lr=opt.lr)
        if not opt.continue_training:
            optimizer_attn = AdamW(guide_parameters, lr=opt.lr)
    scheduler_ctc = get_linear_schedule_with_warmup(
        optimizer_ctc, num_warmup_steps=10000, num_training_steps=opt.num_iter)
    scheduler_attn = get_linear_schedule_with_warmup(
        optimizer_attn,
        num_warmup_steps=10000,
        num_training_steps=opt.num_iter)
    start_iter = 0
    if opt.saved_model != '' and (not opt.continue_training):
        print(f'loading pretrained model from {opt.saved_model}')
        checkpoint = torch.load(opt.saved_model)
        start_iter = checkpoint['start_iter'] + 1
        if not opt.adam:
            optimizer_ctc.load_state_dict(
                checkpoint['optimizer_ctc_state_dict'])
            if not opt.continue_training:
                optimizer_attn.load_state_dict(
                    checkpoint['optimizer_attn_state_dict'])
            scheduler_ctc.load_state_dict(
                checkpoint['scheduler_ctc_state_dict'])
            scheduler_attn.load_state_dict(
                checkpoint['scheduler_attn_state_dict'])
            print(scheduler_ctc.get_lr())
            print(scheduler_attn.get_lr())
        if opt.FT:
            model.load_state_dict(checkpoint['model_state_dict'], strict=False)
        else:
            model.load_state_dict(checkpoint['model_state_dict'])
    if opt.continue_training:
        model.load_state_dict(torch.load(opt.saved_model))
    # print("Optimizer:")
    # print(optimizer)
    #
    scheduler_ctc = get_linear_schedule_with_warmup(
        optimizer_ctc,
        num_warmup_steps=10000,
        num_training_steps=opt.num_iter,
        last_epoch=start_iter - 1)
    scheduler_attn = get_linear_schedule_with_warmup(
        optimizer_attn,
        num_warmup_steps=10000,
        num_training_steps=opt.num_iter,
        last_epoch=start_iter - 1)
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------	'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}	'
        opt_log += '---------------------------------------	'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter - 1
    if opt.continue_training:
        start_iter = 0
    while (True):
        # train part
        image_tensors, labels = train_dataset.get_batch()
        iteration += 1
        if iteration < start_iter:
            continue
        image = image_tensors.to(device)
        # print(image.size())
        text_attn, length_attn = Attn_converter.encode(
            labels, batch_max_length=opt.batch_max_length)
        #print("1")
        text_ctc, length_ctc = CTC_converter.encode(
            labels, batch_max_length=opt.batch_max_length)
        #print("2")
        #if iteration == start_iter :
        #    writer.add_graph(model, (image, text_attn))
        batch_size = image.size(0)
        preds_major, preds_guide = model(image, text_attn[:, :-1])
        #print("10")
        preds_size = torch.IntTensor([preds_major.size(1)] * batch_size)
        if opt.baiduCTC:
            preds_major = preds_major.permute(1, 0, 2)  # to use CTCLoss format
            if opt.label_smooth:
                cost_ctc = criterion_major_path(preds_major, text_ctc,
                                                preds_size, length_ctc,
                                                batch_size)
            else:
                cost_ctc = criterion_major_path(
                    preds_major, text_ctc, preds_size, length_ctc) / batch_size
        else:
            preds_major = preds_major.log_softmax(2).permute(1, 0, 2)
            cost_ctc = criterion_major_path(preds_major, text_ctc, preds_size,
                                            length_ctc)
        #print("3")
        # preds = model(image, text[:, :-1])  # align with Attention.forward
        target = text_attn[:, 1:]  # without [GO] Symbol
        if not opt.continue_training:
            cost_attn = criterion_guide_path(
                preds_guide.view(-1, preds_guide.shape[-1]),
                target.contiguous().view(-1))
            optimizer_attn.zero_grad()
            cost_attn.backward(retain_graph=True)
            torch.nn.utils.clip_grad_norm_(
                guide_parameters,
                opt.grad_clip)  # gradient clipping with 5 (Default)
            optimizer_attn.step()
        optimizer_ctc.zero_grad()
        cost_ctc.backward()
        torch.nn.utils.clip_grad_norm_(
            major_parameters,
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer_ctc.step()
        scheduler_ctc.step()
        scheduler_attn.step()
        #print("4")
        loss_avg_major_path.add(cost_ctc)
        if not opt.continue_training:
            loss_avg_guide_path.add(cost_attn)
        if (iteration + 1) % 100 == 0:
            writer.add_scalar("Loss/train_ctc", loss_avg_major_path.val(),
                              (iteration + 1) // 100)
            loss_avg_major_path.reset()
            if not opt.continue_training:
                writer.add_scalar("Loss/train_attn", loss_avg_guide_path.val(),
                                  (iteration + 1) // 100)
                loss_avg_guide_path.reset()
        # validation part
        if (
                iteration + 1
        ) % opt.valInterval == 0:  #or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0'
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.exp_name}/log_train.txt',
                      'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion_major_path, valid_loader,
                        CTC_converter, opt)
                model.train()
                writer.add_scalar("Loss/valid", valid_loss,
                                  (iteration + 1) // opt.valInterval)
                writer.add_scalar("Metrics/accuracy", current_accuracy,
                                  (iteration + 1) // opt.valInterval)
                writer.add_scalar("Metrics/norm_ED", current_norm_ED,
                                  (iteration + 1) // opt.valInterval)
                # loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss: {train_loss:0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                # loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'
                # training loss and validation loss
                if not opt.continue_training:
                    loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss ctc: {loss_avg_major_path.val():0.5f}, Train loss attn: {loss_avg_guide_path.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                else:
                    loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss ctc: {loss_avg_major_path.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg_major_path.reset()
                if not opt.continue_training:
                    loss_avg_guide_path.reset()
                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(model.state_dict(),
                               f'{fol_ckpt}/best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(model.state_dict(),
                               f'{fol_ckpt}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}	{current_model_log}	{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '	')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}	{head}	{dashed_line}	'
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    # if 'Attn' in opt.Prediction:
                    #     gt = gt[:gt.find('[s]')]
                    #     pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}	{str(pred == gt)}	'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '	')

        # save model per 1e+5 iter.
        if (iteration + 1) % 1e+3 == 0 and (not opt.continue_training):
            # print(scheduler_ctc.get_lr())
            # print(scheduler_attn.get_lr())
            torch.save(
                {
                    'model_state_dict': model.state_dict(),
                    'optimizer_attn_state_dict': optimizer_attn.state_dict(),
                    'optimizer_ctc_state_dict': optimizer_ctc.state_dict(),
                    'start_iter': iteration,
                    'scheduler_ctc_state_dict': scheduler_ctc.state_dict(),
                    'scheduler_attn_state_dict': scheduler_attn.state_dict(),
                }, f'{fol_ckpt}/current_model.pth')

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
def train(opt):
    lib.print_model_settings(locals().copy())

    if 'Attn' in opt.Prediction:
        converter = AttnLabelConverter(opt.character)
        text_len = opt.batch_max_length+2
    else:
        converter = CTCLabelConverter(opt.character)
        text_len = opt.batch_max_length

    opt.classes = converter.character
    
    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    log = open(os.path.join(opt.exp_dir,opt.exp_name,'log_dataset.txt'), 'a')
    AlignCollate_valid = AlignPairCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)

    train_dataset = LmdbStyleDataset(root=opt.train_data, opt=opt)
    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=opt.batch_size*2, #*2 to sample different images from training encoder and discriminator real images
        shuffle=True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True, drop_last=True)
    
    print('-' * 80)
    
    valid_dataset = LmdbStyleDataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size*2, #*2 to sample different images from training encoder and discriminator real images
        shuffle=False,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True, drop_last=True)
    
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()

    text_dataset = text_gen(opt)
    text_loader = torch.utils.data.DataLoader(
        text_dataset, batch_size=opt.batch_size,
        shuffle=True,
        num_workers=int(opt.workers),
        pin_memory=True, drop_last=True)
    opt.num_class = len(converter.character)
    

    c_code_size = opt.latent
    cEncoder = GlobalContentEncoder(opt.num_class, text_len, opt.char_embed_size, c_code_size)
    ocrModel = ModelV1(opt)

    
    genModel = styleGANGen(opt.size, opt.latent, opt.latent, opt.n_mlp, channel_multiplier=opt.channel_multiplier)
    g_ema = styleGANGen(opt.size, opt.latent, opt.latent, opt.n_mlp, channel_multiplier=opt.channel_multiplier)
   
    disEncModel = styleGANDis(opt.size, channel_multiplier=opt.channel_multiplier, input_dim=opt.input_channel, code_s_dim=c_code_size)
    
    accumulate(g_ema, genModel, 0)
    
    # uCriterion = torch.nn.MSELoss()
    # sCriterion = torch.nn.MSELoss()
    # if opt.contentLoss == 'vis' or opt.contentLoss == 'seq':
    #     ocrCriterion = torch.nn.L1Loss()
    # else:
    if 'CTC' in opt.Prediction:
        ocrCriterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        print('Not implemented error')
        sys.exit()
        # ocrCriterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0

    cEncoder= torch.nn.DataParallel(cEncoder).to(device)
    cEncoder.train()
    genModel = torch.nn.DataParallel(genModel).to(device)
    g_ema = torch.nn.DataParallel(g_ema).to(device)
    genModel.train()
    g_ema.eval()

    disEncModel = torch.nn.DataParallel(disEncModel).to(device)
    disEncModel.train()

    ocrModel = torch.nn.DataParallel(ocrModel).to(device)
    if opt.ocrFixed:
        if opt.Transformation == 'TPS':
            ocrModel.module.Transformation.eval()
        ocrModel.module.FeatureExtraction.eval()
        ocrModel.module.AdaptiveAvgPool.eval()
        # ocrModel.module.SequenceModeling.eval()
        ocrModel.module.Prediction.eval()
    else:
        ocrModel.train()

    g_reg_ratio = opt.g_reg_every / (opt.g_reg_every + 1)
    d_reg_ratio = opt.d_reg_every / (opt.d_reg_every + 1)

    
    optimizer = optim.Adam(
        list(genModel.parameters())+list(cEncoder.parameters()),
        lr=opt.lr * g_reg_ratio,
        betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),
    )
    dis_optimizer = optim.Adam(
        disEncModel.parameters(),
        lr=opt.lr * d_reg_ratio,
        betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
    )
    
    ocr_optimizer = optim.Adam(
        ocrModel.parameters(),
        lr=opt.lr,
        betas=(0.9, 0.99),
    )


    ## Loading pre-trained files
    if opt.modelFolderFlag:
        if len(glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth")))>0:
            opt.saved_synth_model = glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth"))[-1]

    if opt.saved_ocr_model !='' and opt.saved_ocr_model !='None':
        print(f'loading pretrained ocr model from {opt.saved_ocr_model}')
        checkpoint = torch.load(opt.saved_ocr_model)
        ocrModel.load_state_dict(checkpoint)
    
    # if opt.saved_gen_model !='' and opt.saved_gen_model !='None':
    #     print(f'loading pretrained gen model from {opt.saved_gen_model}')
    #     checkpoint = torch.load(opt.saved_gen_model, map_location=lambda storage, loc: storage)
    #     genModel.module.load_state_dict(checkpoint['g'])
    #     g_ema.module.load_state_dict(checkpoint['g_ema'])

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        print(f'loading pretrained synth model from {opt.saved_synth_model}')
        checkpoint = torch.load(opt.saved_synth_model)
        
        # styleModel.load_state_dict(checkpoint['styleModel'])
        # mixModel.load_state_dict(checkpoint['mixModel'])
        genModel.load_state_dict(checkpoint['genModel'])
        g_ema.load_state_dict(checkpoint['g_ema'])
        disEncModel.load_state_dict(checkpoint['disEncModel'])
        ocrModel.load_state_dict(checkpoint['ocrModel'])
        
        optimizer.load_state_dict(checkpoint["optimizer"])
        dis_optimizer.load_state_dict(checkpoint["dis_optimizer"])
        ocr_optimizer.load_state_dict(checkpoint["ocr_optimizer"])

    # if opt.imgReconLoss == 'l1':
    #     recCriterion = torch.nn.L1Loss()
    # elif opt.imgReconLoss == 'ssim':
    #     recCriterion = ssim
    # elif opt.imgReconLoss == 'ms-ssim':
    #     recCriterion = msssim
    

    # loss averager
    loss_avg_dis = Averager()
    loss_avg_gen = Averager()
    loss_avg_unsup = Averager()
    loss_avg_sup = Averager()
    log_r1_val = Averager()
    log_avg_path_loss_val = Averager()
    log_avg_mean_path_length_avg = Averager()
    log_ada_aug_p = Averager()
    loss_avg_ocr_sup = Averager()
    loss_avg_ocr_unsup = Averager()

    """ final options """
    with open(os.path.join(opt.exp_dir,opt.exp_name,'opt.txt'), 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    
    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        try:
            start_iter = int(opt.saved_synth_model.split('_')[-2].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    
    #get schedulers
    scheduler = get_scheduler(optimizer,opt)
    dis_scheduler = get_scheduler(dis_optimizer,opt)
    ocr_scheduler = get_scheduler(ocr_optimizer,opt)

    start_time = time.time()
    iteration = start_iter
    cntr=0
    
    mean_path_length = 0
    d_loss_val = 0
    r1_loss = torch.tensor(0.0, device=device)
    g_loss_val = 0
    path_loss = torch.tensor(0.0, device=device)
    path_lengths = torch.tensor(0.0, device=device)
    mean_path_length_avg = 0
    # loss_dict = {}

    accum = 0.5 ** (32 / (10 * 1000))
    ada_augment = torch.tensor([0.0, 0.0], device=device)
    ada_aug_p = opt.augment_p if opt.augment_p > 0 else 0.0
    ada_aug_step = opt.ada_target / opt.ada_length
    r_t_stat = 0
    epsilon = 10e-50
    # sample_z = torch.randn(opt.n_sample, opt.latent, device=device)

    while(True):
        # print(cntr)
        # train part
        if opt.lr_policy !="None":
            scheduler.step()
            dis_scheduler.step()
            ocr_scheduler.step()
        
        image_input_tensors, _, labels, _ = iter(train_loader).next()
        labels_z_c = iter(text_loader).next()

        image_input_tensors = image_input_tensors.to(device)
        gt_image_tensors = image_input_tensors[:opt.batch_size].detach()
        real_image_tensors = image_input_tensors[opt.batch_size:].detach()
        
        labels_gt = labels[:opt.batch_size]
        
        requires_grad(cEncoder, False)
        requires_grad(genModel, False)
        requires_grad(disEncModel, True)
        requires_grad(ocrModel, False)

        text_z_c, length_z_c = converter.encode(labels_z_c, batch_max_length=opt.batch_max_length)
        text_gt, length_gt = converter.encode(labels_gt, batch_max_length=opt.batch_max_length)

        z_c_code = cEncoder(text_z_c)
        noise_style = mixing_noise_style(opt.batch_size, opt.latent, opt.mixing, device)
        style=[]
        style.append(noise_style[0]*z_c_code)
        if len(noise_style)>1:
            style.append(noise_style[1]*z_c_code)
        
        if opt.zAlone:
            #to validate orig style gan results
            newstyle = []
            newstyle.append(style[0][:,:opt.latent])
            if len(style)>1:
                newstyle.append(style[1][:,:opt.latent])
            style = newstyle
        
        fake_img,_ = genModel(style, input_is_latent=opt.input_latent)
        
        # #unsupervised code prediction on generated image
        # u_pred_code = disEncModel(fake_img, mode='enc')
        # uCost = uCriterion(u_pred_code, z_code)

        # #supervised code prediction on gt image
        # s_pred_code = disEncModel(gt_image_tensors, mode='enc')
        # sCost = uCriterion(s_pred_code, gt_phoc_tensors)

        #Domain discriminator
        fake_pred = disEncModel(fake_img)
        real_pred = disEncModel(real_image_tensors)
        disCost = d_logistic_loss(real_pred, fake_pred)

        # dis_cost = disCost + opt.gamma_e*uCost + opt.beta*sCost
        loss_avg_dis.add(disCost)
        # loss_avg_sup.add(opt.beta*sCost)
        # loss_avg_unsup.add(opt.gamma_e * uCost)

        disEncModel.zero_grad()
        disCost.backward()
        dis_optimizer.step()

        d_regularize = cntr % opt.d_reg_every == 0

        if d_regularize:
            real_image_tensors.requires_grad = True
            real_pred = disEncModel(real_image_tensors)
            
            r1_loss = d_r1_loss(real_pred, real_image_tensors)

            disEncModel.zero_grad()
            (opt.r1 / 2 * r1_loss * opt.d_reg_every + 0 * real_pred[0]).backward()

            dis_optimizer.step()
        log_r1_val.add(r1_loss)
        
        # Recognizer update
        if not opt.ocrFixed and not opt.zAlone:
            requires_grad(disEncModel, False)
            requires_grad(ocrModel, True)

            if 'CTC' in opt.Prediction:
                preds_recon = ocrModel(gt_image_tensors, text_gt, is_train=True)
                preds_size = torch.IntTensor([preds_recon.size(1)] * opt.batch_size)
                preds_recon_softmax = preds_recon.log_softmax(2).permute(1, 0, 2)
                ocrCost = ocrCriterion(preds_recon_softmax, text_gt, preds_size, length_gt)
            else:
                print("Not implemented error")
                sys.exit()
            
            ocrModel.zero_grad()
            ocrCost.backward()
            # torch.nn.utils.clip_grad_norm_(ocrModel.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
            ocr_optimizer.step()
            loss_avg_ocr_sup.add(ocrCost)
        else:
            loss_avg_ocr_sup.add(torch.tensor(0.0))


        # [Word Generator] update
        # image_input_tensors, _, labels, _ = iter(train_loader).next()
        labels_z_c = iter(text_loader).next()

        # image_input_tensors = image_input_tensors.to(device)
        # gt_image_tensors = image_input_tensors[:opt.batch_size]
        # real_image_tensors = image_input_tensors[opt.batch_size:]
        
        # labels_gt = labels[:opt.batch_size]

        requires_grad(cEncoder, True)
        requires_grad(genModel, True)
        requires_grad(disEncModel, False)
        requires_grad(ocrModel, False)

        text_z_c, length_z_c = converter.encode(labels_z_c, batch_max_length=opt.batch_max_length)
        
        z_c_code = cEncoder(text_z_c)
        noise_style = mixing_noise_style(opt.batch_size, opt.latent, opt.mixing, device)
        style=[]
        style.append(noise_style[0]*z_c_code)
        if len(noise_style)>1:
            style.append(noise_style[1]*z_c_code)

        if opt.zAlone:
            #to validate orig style gan results
            newstyle = []
            newstyle.append(style[0][:,:opt.latent])
            if len(style)>1:
                newstyle.append(style[1][:,:opt.latent])
            style = newstyle
        
        fake_img,_ = genModel(style, input_is_latent=opt.input_latent)

        fake_pred = disEncModel(fake_img)
        disGenCost = g_nonsaturating_loss(fake_pred)

        if opt.zAlone:
            ocrCost = torch.tensor(0.0)
        else:
            #Compute OCR prediction (Reconstruction of content)
            # text_for_pred = torch.LongTensor(opt.batch_size, opt.batch_max_length + 1).fill_(0).to(device)
            # length_for_pred = torch.IntTensor([opt.batch_max_length] * opt.batch_size).to(device)
            
            if 'CTC' in opt.Prediction:
                preds_recon = ocrModel(fake_img, text_z_c, is_train=False)
                preds_size = torch.IntTensor([preds_recon.size(1)] * opt.batch_size)
                preds_recon_softmax = preds_recon.log_softmax(2).permute(1, 0, 2)
                ocrCost = ocrCriterion(preds_recon_softmax, text_z_c, preds_size, length_z_c)
            else:
                print("Not implemented error")
                sys.exit()
        
        genModel.zero_grad()
        cEncoder.zero_grad()

        gen_enc_cost = disGenCost + opt.ocrWeight * ocrCost
        grad_fake_OCR = torch.autograd.grad(ocrCost, fake_img, retain_graph=True)[0]
        loss_grad_fake_OCR = 10**6*torch.mean(grad_fake_OCR**2)
        grad_fake_adv = torch.autograd.grad(disGenCost, fake_img, retain_graph=True)[0]
        loss_grad_fake_adv = 10**6*torch.mean(grad_fake_adv**2)
        
        if opt.grad_balance:
            gen_enc_cost.backward(retain_graph=True)
            grad_fake_OCR = torch.autograd.grad(ocrCost, fake_img, create_graph=True, retain_graph=True)[0]
            grad_fake_adv = torch.autograd.grad(disGenCost, fake_img, create_graph=True, retain_graph=True)[0]
            a = opt.ocrWeight * torch.div(torch.std(grad_fake_adv), epsilon+torch.std(grad_fake_OCR))
            if a is None:
                print(ocrCost, disGenCost, torch.std(grad_fake_adv), torch.std(grad_fake_OCR))
            if a>1000 or a<0.0001:
                print(a)
            
            ocrCost = a.detach() * ocrCost
            gen_enc_cost = disGenCost + ocrCost
            gen_enc_cost.backward(retain_graph=True)
            grad_fake_OCR = torch.autograd.grad(ocrCost, fake_img, create_graph=False, retain_graph=True)[0]
            grad_fake_adv = torch.autograd.grad(disGenCost, fake_img, create_graph=False, retain_graph=True)[0]
            loss_grad_fake_OCR = 10 ** 6 * torch.mean(grad_fake_OCR ** 2)
            loss_grad_fake_adv = 10 ** 6 * torch.mean(grad_fake_adv ** 2)
            with torch.no_grad():
                gen_enc_cost.backward()
        else:
            gen_enc_cost.backward()

        loss_avg_gen.add(disGenCost)
        loss_avg_ocr_unsup.add(opt.ocrWeight * ocrCost)

        optimizer.step()
        
        g_regularize = cntr % opt.g_reg_every == 0

        if g_regularize:
            path_batch_size = max(1, opt.batch_size // opt.path_batch_shrink)
            # image_input_tensors, _, labels, _ = iter(train_loader).next()
            labels_z_c = iter(text_loader).next()

            # image_input_tensors = image_input_tensors.to(device)
            # gt_image_tensors = image_input_tensors[:path_batch_size]

            # labels_gt = labels[:path_batch_size]

            text_z_c, length_z_c = converter.encode(labels_z_c[:path_batch_size], batch_max_length=opt.batch_max_length)
            # text_gt, length_gt = converter.encode(labels_gt, batch_max_length=opt.batch_max_length)
        
            z_c_code = cEncoder(text_z_c)
            noise_style = mixing_noise_style(path_batch_size, opt.latent, opt.mixing, device)
            style=[]
            style.append(noise_style[0]*z_c_code)
            if len(noise_style)>1:
                style.append(noise_style[1]*z_c_code)

            if opt.zAlone:
                #to validate orig style gan results
                newstyle = []
                newstyle.append(style[0][:,:opt.latent])
                if len(style)>1:
                    newstyle.append(style[1][:,:opt.latent])
                style = newstyle

            fake_img, grad = genModel(style, return_latents=True, g_path_regularize=True, mean_path_length=mean_path_length)
            
            decay = 0.01
            path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))

            mean_path_length_orig = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
            path_loss = (path_lengths - mean_path_length_orig).pow(2).mean()
            mean_path_length = mean_path_length_orig.detach().item()

            genModel.zero_grad()
            cEncoder.zero_grad()
            weighted_path_loss = opt.path_regularize * opt.g_reg_every * path_loss

            if opt.path_batch_shrink:
                weighted_path_loss += 0 * fake_img[0, 0, 0, 0]

            weighted_path_loss.backward()

            optimizer.step()

            # mean_path_length_avg = (
            #     reduce_sum(mean_path_length).item() / get_world_size()
            # )
            #commented above for multi-gpu , non-distributed setting
            mean_path_length_avg = mean_path_length

        accumulate(g_ema, genModel, accum)

        log_avg_path_loss_val.add(path_loss)
        log_avg_mean_path_length_avg.add(torch.tensor(mean_path_length_avg))
        log_ada_aug_p.add(torch.tensor(ada_aug_p))
        

        if get_rank() == 0:
            if wandb and opt.wandb:
                wandb.log(
                    {
                        "Generator": g_loss_val,
                        "Discriminator": d_loss_val,
                        "Augment": ada_aug_p,
                        "Rt": r_t_stat,
                        "R1": r1_val,
                        "Path Length Regularization": path_loss_val,
                        "Mean Path Length": mean_path_length,
                        "Real Score": real_score_val,
                        "Fake Score": fake_score_val,   
                        "Path Length": path_length_val,
                    }
                )
        
        # validation part
        if (iteration + 1) % opt.valInterval == 0 or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0' 
            
            #generate paired content with similar style
            labels_z_c_1 = iter(text_loader).next()
            labels_z_c_2 = iter(text_loader).next()
            
            text_z_c_1, length_z_c_1 = converter.encode(labels_z_c_1, batch_max_length=opt.batch_max_length)
            text_z_c_2, length_z_c_2 = converter.encode(labels_z_c_2, batch_max_length=opt.batch_max_length)

            z_c_code_1 = cEncoder(text_z_c_1)
            z_c_code_2 = cEncoder(text_z_c_2)

            
            style_c1_s1 = []
            style_c2_s1 = []
            style_s1 = mixing_noise_style(opt.batch_size, opt.latent, opt.mixing, device)
            style_c1_s1.append(style_s1[0]*z_c_code_1)
            style_c2_s1.append(style_s1[0]*z_c_code_2)
            if len(style_s1)>1:
                style_c1_s1.append(style_s1[1]*z_c_code_1)
                style_c2_s1.append(style_s1[1]*z_c_code_2)
            
            noise_style = mixing_noise_style(opt.batch_size, opt.latent, opt.mixing, device)
            style_c1_s2 = []
            style_c1_s2.append(noise_style[0]*z_c_code_1)
            if len(noise_style)>1:
                style_c1_s2.append(noise_style[1]*z_c_code_1)
            
            if opt.zAlone:
                #to validate orig style gan results
                newstyle = []
                newstyle.append(style_c1_s1[0][:,:opt.latent])
                if len(style_c1_s1)>1:
                    newstyle.append(style_c1_s1[1][:,:opt.latent])
                style_c1_s1 = newstyle
                style_c2_s1 = newstyle
                style_c1_s2 = newstyle
            
            fake_img_c1_s1, _ = g_ema(style_c1_s1, input_is_latent=opt.input_latent)
            fake_img_c2_s1, _ = g_ema(style_c2_s1, input_is_latent=opt.input_latent)
            fake_img_c1_s2, _ = g_ema(style_c1_s2, input_is_latent=opt.input_latent)

            if not opt.zAlone:
                #Run OCR prediction
                if 'CTC' in opt.Prediction:
                    preds = ocrModel(fake_img_c1_s1, text_z_c_1, is_train=False)
                    preds_size = torch.IntTensor([preds.size(1)] * opt.batch_size)
                    _, preds_index = preds.max(2)
                    preds_str_fake_img_c1_s1 = converter.decode(preds_index.data, preds_size.data)

                    preds = ocrModel(fake_img_c2_s1, text_z_c_2, is_train=False)
                    preds_size = torch.IntTensor([preds.size(1)] * opt.batch_size)
                    _, preds_index = preds.max(2)
                    preds_str_fake_img_c2_s1 = converter.decode(preds_index.data, preds_size.data)

                    preds = ocrModel(fake_img_c1_s2, text_z_c_1, is_train=False)
                    preds_size = torch.IntTensor([preds.size(1)] * opt.batch_size)
                    _, preds_index = preds.max(2)
                    preds_str_fake_img_c1_s2 = converter.decode(preds_index.data, preds_size.data)

                    preds = ocrModel(gt_image_tensors, text_gt, is_train=False)
                    preds_size = torch.IntTensor([preds.size(1)] * gt_image_tensors.shape[0])
                    _, preds_index = preds.max(2)
                    preds_str_gt = converter.decode(preds_index.data, preds_size.data)

                else:
                    print("Not implemented error")
                    sys.exit()
            else:
                preds_str_fake_img_c1_s1 = [':None:'] * fake_img_c1_s1.shape[0]
                preds_str_gt = [':None:'] * fake_img_c1_s1.shape[0] 

            os.makedirs(os.path.join(opt.trainDir,str(iteration)), exist_ok=True)
            for trImgCntr in range(opt.batch_size):
                try:
                    save_image(tensor2im(fake_img_c1_s1[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_c1_s1_'+labels_z_c_1[trImgCntr]+'_ocr:'+preds_str_fake_img_c1_s1[trImgCntr]+'.png'))
                    if not opt.zAlone:
                        save_image(tensor2im(fake_img_c2_s1[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_c2_s1_'+labels_z_c_2[trImgCntr]+'_ocr:'+preds_str_fake_img_c2_s1[trImgCntr]+'.png'))
                        save_image(tensor2im(fake_img_c1_s2[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_c1_s2_'+labels_z_c_1[trImgCntr]+'_ocr:'+preds_str_fake_img_c1_s2[trImgCntr]+'.png'))
                        if trImgCntr<gt_image_tensors.shape[0]:
                            save_image(tensor2im(gt_image_tensors[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_gt_act:'+labels_gt[trImgCntr]+'_ocr:'+preds_str_gt[trImgCntr]+'.png'))
                except:
                    print('Warning while saving training image')
            
            elapsed_time = time.time() - start_time
            # for log
            
            with open(os.path.join(opt.exp_dir,opt.exp_name,'log_train.txt'), 'a') as log:

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}]  \
                    Train Dis loss: {loss_avg_dis.val():0.5f}, Train Gen loss: {loss_avg_gen.val():0.5f},\
                    Train UnSup OCR loss: {loss_avg_ocr_unsup.val():0.5f}, Train Sup OCR loss: {loss_avg_ocr_sup.val():0.5f}, \
                    Train R1-val loss: {log_r1_val.val():0.5f}, Train avg-path-loss: {log_avg_path_loss_val.val():0.5f}, \
                    Train mean-path-length loss: {log_avg_mean_path_length_avg.val():0.5f}, Train ada-aug-p: {log_ada_aug_p.val():0.5f}, \
                    Elapsed_time: {elapsed_time:0.5f}'
                
                
                #plotting
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Dis-Loss'), loss_avg_dis.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Gen-Loss'), loss_avg_gen.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-UnSup-OCR-Loss'), loss_avg_ocr_unsup.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Sup-OCR-Loss'), loss_avg_ocr_sup.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-r1_val'), log_r1_val.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-path_loss_val'), log_avg_path_loss_val.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-mean_path_length_avg'), log_avg_mean_path_length_avg.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-ada_aug_p'), log_ada_aug_p.val().item())

                
                print(loss_log)

                loss_avg_dis.reset()
                loss_avg_gen.reset()
                loss_avg_ocr_unsup.reset()
                loss_avg_ocr_sup.reset()
                log_r1_val.reset()
                log_avg_path_loss_val.reset()
                log_avg_mean_path_length_avg.reset()
                log_ada_aug_p.reset()
                

            lib.plot.flush()

        lib.plot.tick()

        # save model per 1e+5 iter.
        if (iteration) % 1e+4 == 0:
            torch.save({
                'cEncoder':cEncoder.state_dict(),
                'genModel':genModel.state_dict(),
                'g_ema':g_ema.state_dict(),
                'ocrModel':ocrModel.state_dict(),
                'disEncModel':disEncModel.state_dict(),
                'optimizer':optimizer.state_dict(),
                'ocr_optimizer':ocr_optimizer.state_dict(),
                'dis_optimizer':dis_optimizer.state_dict()}, 
                os.path.join(opt.exp_dir,opt.exp_name,'iter_'+str(iteration+1)+'_synth.pth'))
            

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
        cntr+=1
def train(opt):
    lib.print_model_settings(locals().copy())

    if 'Attn' in opt.Prediction:
        converter = AttnLabelConverter(opt.character)
    else:
        converter = CTCLabelConverter(opt.character)
    opt.classes = converter.character
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    log = open(os.path.join(opt.exp_dir, opt.exp_name, 'log_dataset.txt'), 'a')
    AlignCollate_valid = AlignPHOCCollate(imgH=opt.imgH,
                                          imgW=opt.imgW,
                                          keep_ratio_with_pad=opt.PAD)

    train_dataset = LmdbStylePHOCDataset(root=opt.train_data, opt=opt)
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=opt.batch_size *
        2,  #*2 to sample different images from training encoder and discriminator real images
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True,
        drop_last=True)

    print('-' * 80)

    valid_dataset = LmdbStylePHOCDataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size *
        2,  #*2 to sample different images from training encoder and discriminator real images
        shuffle=
        False,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True,
        drop_last=True)

    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()

    phoc_dataset = phoc_gen(opt)
    phoc_loader = torch.utils.data.DataLoader(phoc_dataset,
                                              batch_size=opt.batch_size,
                                              shuffle=True,
                                              num_workers=int(opt.workers),
                                              pin_memory=True,
                                              drop_last=True)
    opt.num_class = len(converter.character)

    if opt.zAlone:
        genModel = styleGANGen(opt.size,
                               opt.latent,
                               opt.latent,
                               opt.n_mlp,
                               channel_multiplier=opt.channel_multiplier)
        g_ema = styleGANGen(opt.size,
                            opt.latent,
                            opt.latent,
                            opt.n_mlp,
                            channel_multiplier=opt.channel_multiplier)
    else:
        genModel = styleGANGen(opt.size,
                               opt.latent + phoc_dataset.phoc_size,
                               opt.latent,
                               opt.n_mlp,
                               channel_multiplier=opt.channel_multiplier)
        g_ema = styleGANGen(opt.size,
                            opt.latent + phoc_dataset.phoc_size,
                            opt.latent,
                            opt.n_mlp,
                            channel_multiplier=opt.channel_multiplier)
    disEncModel = styleGANDis(opt.size,
                              channel_multiplier=opt.channel_multiplier,
                              input_dim=opt.input_channel,
                              code_s_dim=phoc_dataset.phoc_size)

    accumulate(g_ema, genModel, 0)

    uCriterion = torch.nn.MSELoss()
    sCriterion = torch.nn.MSELoss()

    genModel = torch.nn.DataParallel(genModel).to(device)
    g_ema = torch.nn.DataParallel(g_ema).to(device)
    genModel.train()
    g_ema.eval()

    disEncModel = torch.nn.DataParallel(disEncModel).to(device)
    disEncModel.train()

    g_reg_ratio = opt.g_reg_every / (opt.g_reg_every + 1)
    d_reg_ratio = opt.d_reg_every / (opt.d_reg_every + 1)

    optimizer = optim.Adam(
        genModel.parameters(),
        lr=opt.lr * g_reg_ratio,
        betas=(0**g_reg_ratio, 0.99**g_reg_ratio),
    )
    dis_optimizer = optim.Adam(
        disEncModel.parameters(),
        lr=opt.lr * d_reg_ratio,
        betas=(0**d_reg_ratio, 0.99**d_reg_ratio),
    )

    ## Loading pre-trained files
    if opt.modelFolderFlag:
        if len(
                glob.glob(
                    os.path.join(opt.exp_dir, opt.exp_name,
                                 "iter_*_synth.pth"))) > 0:
            opt.saved_synth_model = glob.glob(
                os.path.join(opt.exp_dir, opt.exp_name,
                             "iter_*_synth.pth"))[-1]

    # if opt.saved_ocr_model !='' and opt.saved_ocr_model !='None':
    #     print(f'loading pretrained ocr model from {opt.saved_ocr_model}')
    #     checkpoint = torch.load(opt.saved_ocr_model)
    #     ocrModel.load_state_dict(checkpoint)

    # if opt.saved_gen_model !='' and opt.saved_gen_model !='None':
    #     print(f'loading pretrained gen model from {opt.saved_gen_model}')
    #     checkpoint = torch.load(opt.saved_gen_model, map_location=lambda storage, loc: storage)
    #     genModel.module.load_state_dict(checkpoint['g'])
    #     g_ema.module.load_state_dict(checkpoint['g_ema'])

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        print(f'loading pretrained synth model from {opt.saved_synth_model}')
        checkpoint = torch.load(opt.saved_synth_model)

        # styleModel.load_state_dict(checkpoint['styleModel'])
        # mixModel.load_state_dict(checkpoint['mixModel'])
        genModel.load_state_dict(checkpoint['genModel'])
        g_ema.load_state_dict(checkpoint['g_ema'])
        disEncModel.load_state_dict(checkpoint['disEncModel'])

        optimizer.load_state_dict(checkpoint["optimizer"])
        dis_optimizer.load_state_dict(checkpoint["dis_optimizer"])

    # if opt.imgReconLoss == 'l1':
    #     recCriterion = torch.nn.L1Loss()
    # elif opt.imgReconLoss == 'ssim':
    #     recCriterion = ssim
    # elif opt.imgReconLoss == 'ms-ssim':
    #     recCriterion = msssim

    # loss averager
    loss_avg_dis = Averager()
    loss_avg_gen = Averager()
    loss_avg_unsup = Averager()
    loss_avg_sup = Averager()
    log_r1_val = Averager()
    log_avg_path_loss_val = Averager()
    log_avg_mean_path_length_avg = Averager()
    log_ada_aug_p = Averager()
    """ final options """
    with open(os.path.join(opt.exp_dir, opt.exp_name, 'opt.txt'),
              'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        try:
            start_iter = int(
                opt.saved_synth_model.split('_')[-2].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    #get schedulers
    scheduler = get_scheduler(optimizer, opt)
    dis_scheduler = get_scheduler(dis_optimizer, opt)

    start_time = time.time()
    iteration = start_iter
    cntr = 0

    mean_path_length = 0
    d_loss_val = 0
    r1_loss = torch.tensor(0.0, device=device)
    g_loss_val = 0
    path_loss = torch.tensor(0.0, device=device)
    path_lengths = torch.tensor(0.0, device=device)
    mean_path_length_avg = 0
    # loss_dict = {}

    accum = 0.5**(32 / (10 * 1000))
    ada_augment = torch.tensor([0.0, 0.0], device=device)
    ada_aug_p = opt.augment_p if opt.augment_p > 0 else 0.0
    ada_aug_step = opt.ada_target / opt.ada_length
    r_t_stat = 0

    # sample_z = torch.randn(opt.n_sample, opt.latent, device=device)

    while (True):
        # print(cntr)
        # train part
        if opt.lr_policy != "None":
            scheduler.step()
            dis_scheduler.step()

        image_input_tensors, _, labels_1, _, phoc_1, _ = iter(
            train_loader).next()
        z_code, z_labels = iter(phoc_loader).next()

        image_input_tensors = image_input_tensors.to(device)
        gt_image_tensors = image_input_tensors[:opt.batch_size]
        real_image_tensors = image_input_tensors[opt.batch_size:]
        phoc_1 = phoc_1.to(device)
        gt_phoc_tensors = phoc_1[:opt.batch_size]
        labels_1 = labels_1[:opt.batch_size]
        z_code = z_code.to(device)

        requires_grad(genModel, False)
        # requires_grad(styleModel, False)
        # requires_grad(mixModel, False)
        requires_grad(disEncModel, True)

        text_1, length_1 = converter.encode(
            labels_1, batch_max_length=opt.batch_max_length)

        style = mixing_noise(z_code, opt.batch_size, opt.latent, opt.mixing,
                             device)
        if opt.zAlone:
            #to validate orig style gan results
            newstyle = []
            newstyle.append(style[0][:, :opt.latent])
            if len(style) > 1:
                newstyle.append(style[1][:, :opt.latent])
            style = newstyle

        fake_img, _ = genModel(style, input_is_latent=opt.input_latent)

        #unsupervised code prediction on generated image
        u_pred_code = disEncModel(fake_img, mode='enc')
        uCost = uCriterion(u_pred_code, z_code)

        #supervised code prediction on gt image
        s_pred_code = disEncModel(gt_image_tensors, mode='enc')
        sCost = uCriterion(s_pred_code, gt_phoc_tensors)

        #Domain discriminator
        fake_pred = disEncModel(fake_img)
        real_pred = disEncModel(real_image_tensors)
        disCost = d_logistic_loss(real_pred, fake_pred)

        dis_enc_cost = disCost + opt.gamma_e * uCost + opt.beta * sCost

        loss_avg_dis.add(disCost)
        loss_avg_sup.add(opt.beta * sCost)
        loss_avg_unsup.add(opt.gamma_e * uCost)

        disEncModel.zero_grad()
        dis_enc_cost.backward()
        dis_optimizer.step()

        d_regularize = cntr % opt.d_reg_every == 0

        if d_regularize:
            real_image_tensors.requires_grad = True

            real_pred = disEncModel(real_image_tensors)

            r1_loss = d_r1_loss(real_pred, real_image_tensors)

            disEncModel.zero_grad()
            (opt.r1 / 2 * r1_loss * opt.d_reg_every +
             0 * real_pred[0]).backward()

            dis_optimizer.step()

        # loss_dict["r1"] = r1_loss

        # [Word Generator] update
        image_input_tensors, _, labels_1, _, phoc_1, _ = iter(
            train_loader).next()
        z_code, z_labels = iter(phoc_loader).next()

        image_input_tensors = image_input_tensors.to(device)
        gt_image_tensors = image_input_tensors[:opt.batch_size]
        real_image_tensors = image_input_tensors[opt.batch_size:]
        phoc_1 = phoc_1.to(device)
        gt_phoc_tensors = phoc_1[:opt.batch_size]
        labels_1 = labels_1[:opt.batch_size]
        z_code = z_code.to(device)

        requires_grad(genModel, True)
        requires_grad(disEncModel, False)

        text_1, length_1 = converter.encode(
            labels_1, batch_max_length=opt.batch_max_length)

        style = mixing_noise(z_code, opt.batch_size, opt.latent, opt.mixing,
                             device)
        if opt.zAlone:
            #to validate orig style gan results
            newstyle = []
            newstyle.append(style[0][:, :opt.latent])
            if len(style) > 1:
                newstyle.append(style[1][:, :opt.latent])
            style = newstyle
        fake_img, _ = genModel(style, input_is_latent=opt.input_latent)

        #unsupervised code prediction on generated image
        u_pred_code = disEncModel(fake_img, mode='enc')
        uCost = uCriterion(u_pred_code, z_code)

        fake_pred = disEncModel(fake_img)
        disGenCost = g_nonsaturating_loss(fake_pred)

        gen_enc_cost = disGenCost + opt.gamma_g * uCost
        loss_avg_gen.add(disGenCost)
        loss_avg_unsup.add(opt.gamma_g * uCost)
        # loss_dict["g"] = disGenCost

        genModel.zero_grad()
        disEncModel.zero_grad()

        gen_enc_cost.backward()
        optimizer.step()

        g_regularize = cntr % opt.g_reg_every == 0

        if g_regularize:
            image_input_tensors, _, labels_1, _, phoc_1, _ = iter(
                train_loader).next()
            z_code, z_labels = iter(phoc_loader).next()

            image_input_tensors = image_input_tensors.to(device)
            path_batch_size = max(1, opt.batch_size // opt.path_batch_shrink)

            gt_image_tensors = image_input_tensors[:path_batch_size]
            phoc_1 = phoc_1.to(device)
            gt_phoc_tensors = phoc_1[:path_batch_size]
            labels_1 = labels_1[:path_batch_size]
            z_code = z_code.to(device)
            z_code = z_code[:path_batch_size]
            z_labels = z_labels[:path_batch_size]

            text_1, length_1 = converter.encode(
                labels_1, batch_max_length=opt.batch_max_length)

            style = mixing_noise(z_code, path_batch_size, opt.latent,
                                 opt.mixing, device)
            if opt.zAlone:
                #to validate orig style gan results
                newstyle = []
                newstyle.append(style[0][:, :opt.latent])
                if len(style) > 1:
                    newstyle.append(style[1][:, :opt.latent])
                style = newstyle

            fake_img, grad = genModel(style,
                                      return_latents=True,
                                      g_path_regularize=True,
                                      mean_path_length=mean_path_length)

            decay = 0.01
            path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))

            mean_path_length_orig = mean_path_length + decay * (
                path_lengths.mean() - mean_path_length)
            path_loss = (path_lengths - mean_path_length_orig).pow(2).mean()
            mean_path_length = mean_path_length_orig.detach().item()

            # path_loss, mean_path_length, path_lengths = g_path_regularize(
            #     images_recon_2, latents, mean_path_length
            # )

            genModel.zero_grad()
            weighted_path_loss = opt.path_regularize * opt.g_reg_every * path_loss

            if opt.path_batch_shrink:
                weighted_path_loss += 0 * fake_img[0, 0, 0, 0]

            weighted_path_loss.backward()

            optimizer.step()

            # mean_path_length_avg = (
            #     reduce_sum(mean_path_length).item() / get_world_size()
            # )
            #commented above for multi-gpu , non-distributed setting
            mean_path_length_avg = mean_path_length

        accumulate(g_ema, genModel, accum)

        log_r1_val.add(r1_loss)
        log_avg_path_loss_val.add(path_loss)
        log_avg_mean_path_length_avg.add(torch.tensor(mean_path_length_avg))
        log_ada_aug_p.add(torch.tensor(ada_aug_p))

        if get_rank() == 0:
            if wandb and opt.wandb:
                wandb.log({
                    "Generator": g_loss_val,
                    "Discriminator": d_loss_val,
                    "Augment": ada_aug_p,
                    "Rt": r_t_stat,
                    "R1": r1_val,
                    "Path Length Regularization": path_loss_val,
                    "Mean Path Length": mean_path_length,
                    "Real Score": real_score_val,
                    "Fake Score": fake_score_val,
                    "Path Length": path_length_val,
                })

        # validation part
        if (
                iteration + 1
        ) % opt.valInterval == 0 or iteration == 0:  # To see training progress, we also conduct validation when 'iteration == 0'

            #generate paired content with similar style
            z_code_1, z_labels_1 = iter(phoc_loader).next()
            z_code_2, z_labels_2 = iter(phoc_loader).next()
            z_code_1 = z_code_1.to(device)
            z_code_2 = z_code_2.to(device)

            style_1 = mixing_noise(z_code_1, opt.batch_size, opt.latent,
                                   opt.mixing, device)
            style_2 = []
            style_2.append(
                torch.cat((style_1[0][:, :opt.latent], z_code_2), dim=1))
            if len(style_1) > 1:
                style_2.append(
                    torch.cat((style_1[1][:, :opt.latent], z_code_2), dim=1))

            if opt.zAlone:
                #to validate orig style gan results
                newstyle = []
                newstyle.append(style_1[0][:, :opt.latent])
                if len(style_1) > 1:
                    newstyle.append(style_1[1][:, :opt.latent])
                style_1 = newstyle
                style_2 = newstyle

            fake_img_1, _ = g_ema(style_1, input_is_latent=opt.input_latent)
            fake_img_2, _ = g_ema(style_2, input_is_latent=opt.input_latent)

            os.makedirs(os.path.join(opt.trainDir, str(iteration)),
                        exist_ok=True)
            for trImgCntr in range(opt.batch_size):
                try:
                    save_image(
                        tensor2im(fake_img_1[trImgCntr].detach()),
                        os.path.join(
                            opt.trainDir, str(iteration),
                            str(trImgCntr) + '_pair1_' +
                            z_labels_1[trImgCntr] + '.png'))
                    save_image(
                        tensor2im(fake_img_2[trImgCntr].detach()),
                        os.path.join(
                            opt.trainDir, str(iteration),
                            str(trImgCntr) + '_pair2_' +
                            z_labels_2[trImgCntr] + '.png'))
                except:
                    print('Warning while saving training image')

            elapsed_time = time.time() - start_time
            # for log

            with open(os.path.join(opt.exp_dir, opt.exp_name, 'log_train.txt'),
                      'a') as log:

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}]  \
                    Train Dis loss: {loss_avg_dis.val():0.5f}, Train Gen loss: {loss_avg_gen.val():0.5f},\
                    Train UnSup loss: {loss_avg_unsup.val():0.5f}, Train Sup loss: {loss_avg_sup.val():0.5f}, \
                    Train R1-val loss: {log_r1_val.val():0.5f}, Train avg-path-loss: {log_avg_path_loss_val.val():0.5f}, \
                    Train mean-path-length loss: {log_avg_mean_path_length_avg.val():0.5f}, Train ada-aug-p: {log_ada_aug_p.val():0.5f}, \
                    Elapsed_time: {elapsed_time:0.5f}'

                #plotting
                lib.plot.plot(os.path.join(opt.plotDir, 'Train-Dis-Loss'),
                              loss_avg_dis.val().item())
                lib.plot.plot(os.path.join(opt.plotDir, 'Train-Gen-Loss'),
                              loss_avg_gen.val().item())
                lib.plot.plot(os.path.join(opt.plotDir, 'Train-UnSup-Loss'),
                              loss_avg_unsup.val().item())
                lib.plot.plot(os.path.join(opt.plotDir, 'Train-Sup-Loss'),
                              loss_avg_sup.val().item())
                lib.plot.plot(os.path.join(opt.plotDir, 'Train-r1_val'),
                              log_r1_val.val().item())
                lib.plot.plot(os.path.join(opt.plotDir, 'Train-path_loss_val'),
                              log_avg_path_loss_val.val().item())
                lib.plot.plot(
                    os.path.join(opt.plotDir, 'Train-mean_path_length_avg'),
                    log_avg_mean_path_length_avg.val().item())
                lib.plot.plot(os.path.join(opt.plotDir, 'Train-ada_aug_p'),
                              log_ada_aug_p.val().item())

                print(loss_log)

                loss_avg_dis.reset()
                loss_avg_gen.reset()
                loss_avg_unsup.reset()
                loss_avg_sup.reset()
                log_r1_val.reset()
                log_avg_path_loss_val.reset()
                log_avg_mean_path_length_avg.reset()
                log_ada_aug_p.reset()

            lib.plot.flush()

        lib.plot.tick()

        # save model per 1e+5 iter.
        if (iteration) % 1e+4 == 0:
            torch.save(
                {
                    'genModel': genModel.state_dict(),
                    'g_ema': g_ema.state_dict(),
                    'disEncModel': disEncModel.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'dis_optimizer': dis_optimizer.state_dict()
                },
                os.path.join(opt.exp_dir, opt.exp_name,
                             'iter_' + str(iteration + 1) + '_synth.pth'))

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
        cntr += 1
def train(opt):
    os.makedirs(opt.log, exist_ok=True)
    writer = SummaryWriter(opt.log)
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)

    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    """ model configuration """

    ctc_converter = CTCLabelConverter(opt.character)
    attn_converter = AttnLabelConverter(opt.character)
    opt.num_class = len(attn_converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)

    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    """ setup loss """
    loss_avg = Averager()
    ctc_loss = torch.nn.CTCLoss(zero_infinity=True).to(device)
    attn_loss = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter
    pbar = tqdm(range(opt.num_iter))

    for iteration in pbar:

        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        ctc_text, ctc_length = ctc_converter.encode(
            labels, batch_max_length=opt.batch_max_length)
        attn_text, attn_length = attn_converter.encode(
            labels, batch_max_length=opt.batch_max_length)

        batch_size = image.size(0)

        preds, refiner = model(image, attn_text[:, :-1])

        refiner_size = torch.IntTensor([refiner.size(1)] * batch_size)
        refiner = refiner.log_softmax(2).permute(1, 0, 2)
        refiner_loss = ctc_loss(refiner, ctc_text, refiner_size, ctc_length)

        total_loss = opt.lambda_ctc * refiner_loss
        target = attn_text[:, 1:]  # without [GO] Symbol
        for pred in preds:
            total_loss += opt.lambda_attn * attn_loss(
                pred.view(-1, pred.shape[-1]),
                target.contiguous().view(-1))

        model.zero_grad()
        total_loss.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()
        loss_avg.add(total_loss)
        if loss_avg.val() <= 0.6:
            opt.grad_clip = 2
        if loss_avg.val() <= 0.3:
            opt.grad_clip = 1

        preds = (p.cpu() for p in preds)
        refiner = refiner.cpu()
        image = image.cpu()
        torch.cuda.empty_cache()

        writer.add_scalar('train_loss', loss_avg.val(), iteration)
        pbar.set_description('Iteration {0}/{1}, AvgLoss {2}'.format(
            iteration, opt.num_iter, loss_avg.val()))

        # validation part
        if (iteration + 1) % opt.valInterval == 0 or iteration == 0:
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.exp_name}/log_train.txt',
                      'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, attn_loss, valid_loader, attn_converter, opt)
                model.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                writer.add_scalar('Val_loss', valid_loss)
                pbar.set_description(loss_log)
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_accuracy_{str(best_accuracy)}.pth'
                    )
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                # print(loss_model_log)

                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    if 'Attn' or 'Transformer' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                log.write(predicted_result_log + '\n')

        # save model per 1e+3 iter.
        if (iteration + 1) % 1e+3 == 0:
            torch.save(model.state_dict(),
                       f'./saved_models/{opt.exp_name}/SCATTER_STR.pth')

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
def train(model, optimizer, scheduler, train_loader, val_loader):
    '''
        train model
    '''

    print("Start training.\n")
    early_stopping = EarlyStopping(patience=CFG.patience,
                                   verbose=True,
                                   trace_func=print)
    train_loss_hist = Averager()

    for epoch in tqdm(range(1, CFG.nepochs + 1)):
        now = time.localtime()
        print("%04d/%02d/%02d %02d:%02d:%02d" %
              (now.tm_year, now.tm_mon, now.tm_mday, now.tm_hour, now.tm_min,
               now.tm_sec))

        model.train()
        train_loss_hist.reset()

        for step, (images, targets, _) in enumerate(train_loader):
            images = torch.stack(images).to(CFG.device).float()
            bboxes = [
                target['boxes'].to(CFG.device).float() for target in targets
            ]
            labels = [
                target['labels'].to(CFG.device).float() for target in targets
            ]
            batch_size = images.shape[0]

            target_res = dict()
            target_res['bbox'] = bboxes
            target_res['cls'] = labels

            # forward pass & calculate loss
            loss = model(images, target_res)['loss']
            loss_value = loss.detach().item()
            train_loss_hist.update(loss_value, batch_size)

            # backward
            optimizer.zero_grad()  # reset previous gradient
            loss.backward()  # backward propagation
            optimizer.step()  # parameters update

            # log train loss by step
            if (step + 1) % 25 == 0:
                print('Epoch [{}/{}], Step [{}/{}], Train Loss: {:.6f}'.format(
                    epoch, CFG.nepochs, step + 1, len(train_loader),
                    loss_value))

            del images, targets, bboxes

        # scheduler step
        scheduler.step()

        # Print score after each epoch
        if ((epoch % CFG.print_freq) == 0) or (epoch == (CFG.nepochs)):
            val_loss = validation(model, val_loader)
            print("epoch:[%d] train_loss:[%.6f] val_loss:[%.6f]" %
                  (epoch, train_loss_hist.value, val_loss))

        # wandb.log({
        #     "Train Loss": train_loss,
        #     "Val Loss": val_loss,
        #     "Val mIoU": mIoU,
        #     "Val pix_acc": acc,
        #     "Seg": fig_mask,
        # })

        if early_stopping(model=model, val_loss=val_loss):
            best_metric = {'epoch': epoch, 'val_loss': val_loss}
            torch.save(
                model.state_dict(),
                os.path.join(
                    CFG.models_path, CFG.model_save_name,
                    f"{CFG.model_save_name}_{str(epoch).zfill(2)}.pt"))

        if early_stopping.early_stop or epoch == CFG.nepochs:
            print("best model information")
            print(f"epoch : {best_metric['epoch']}")
            print(f"val_loss : {best_metric['val_loss']}")
            break

    print("Done")
Beispiel #27
0
def train(opt):
    """ dataset preparation """
    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')

    #import ipdb;ipdb.set_trace()

    train_dataset = Batch_Balanced_Dataset(opt)

    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    print('-' * 80)
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU

    model = torch.nn.DataParallel(model).to(device)
    model.train()

    if opt.continue_model != '':
        print(f'loading pretrained model from {opt.continue_model}')
        model.load_state_dict(torch.load(opt.continue_model))
    print("Model:")
    #print(model)
    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.experiment_name}/opt.txt',
              'a',
              encoding="utf-8") as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    if opt.continue_model != '':
        start_iter = int(opt.continue_model.split('_')[-1].split('.')[0])
        print(f'continue to train, start_iter: {start_iter}')

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = 1e+6
    i = start_iter

    while (True):
        # train part
        image_tensors, labels = train_dataset.get_batch()

        image = image_tensors.to(device)
        text, length = converter.encode(labels,
                                        batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)
        #import ipdb;ipdb.set_trace()

        if 'CTC' in opt.Prediction:
            preds = model(image, text).log_softmax(2)

            preds_size = torch.IntTensor([preds.size(1)] *
                                         batch_size).to(device)
            preds = preds.permute(1, 0, 2)  # to use CTCLoss format

            # To avoid ctc_loss issue, disabled cudnn for the computation of the ctc_loss
            # https://github.com/jpuigcerver/PyLaia/issues/16
            torch.backends.cudnn.enabled = False
            cost = criterion(preds, text, preds_size, length)
            torch.backends.cudnn.enabled = True

        else:

            preds = model(image, text[:, :-1])  # align with Attention.forward

            target = text[:, 1:]  # without [GO] Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        # validation part
        if i % opt.valInterval == 0:
            elapsed_time = time.time() - start_time
            print(
                f'[{i}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}'
            )
            # for log
            with open(f'./saved_models/{opt.experiment_name}/log_train.txt',
                      'a',
                      encoding="utf-8") as log:
                log.write(
                    f'[{i}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}\n'
                )
                loss_avg.reset()

                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)
                model.train()

                for pred, gt in zip(preds[:5], labels[:5]):
                    if 'Attn' in opt.Prediction:
                        pred = pred[:pred.find('[s]')]
                        gt = gt[:gt.find('[s]')]
                    print(f'{pred:20s}, gt: {gt:20s},   {str(pred == gt)}')
                    #pred = pred.encode('utf-8')
                    #gt = gt.encode('utf-8')
                    log.write(
                        f'{pred:20s}, gt: {gt:20s},   {str(pred == gt)}\n')

                valid_log = f'[{i}/{opt.num_iter}] valid loss: {valid_loss:0.5f}'
                valid_log += f' accuracy: {current_accuracy:0.3f}, norm_ED: {current_norm_ED:0.2f}'
                print(valid_log)
                log.write(valid_log + '\n')

                # keep best accuracy model
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.experiment_name}/best_accuracy.pth'
                    )
                if current_norm_ED < best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.experiment_name}/best_norm_ED.pth'
                    )
                best_model_log = f'best_accuracy: {best_accuracy:0.3f}, best_norm_ED: {best_norm_ED:0.2f}'
                print(best_model_log)
                log.write(best_model_log + '\n')

        # save model per 1e+5 iter.
        if (i + 1) % 1e+5 == 0:
            torch.save(model.state_dict(),
                       f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')

        if i == opt.num_iter:
            print('end the training')
            sys.exit()
        i += 1
def train_fn(start_epochs,
             epochs,
             train_loader,
             val_loader,
             model,
             device,
             optimizer,
             best_loss,
             checkpoint_path,
             best_model_path,
             lr_scheduler=None):
    print("Starting Training")
    model.train()

    loss_hist = Averager()
    itr = 1
    train_loss = []
    validation_loss = []
    for epoch in range(start_epochs, epochs + 1):
        loss_hist.reset()

        for images, targets, image_ids in train_loader:

            images = list(image.to(device) for image in images)
            # images = images.to(device)
            targets = [{k: v.to(device)
                        for k, v in t.items()} for t in targets]

            loss_dict = model(images, targets)

            losses = sum(loss for loss in loss_dict.values())
            loss_value = losses.item()

            loss_hist.send(loss_value)

            optimizer.zero_grad()
            losses.backward()
            optimizer.step()

            if itr % 10 == 0:
                print(f"Iteration #{itr} loss: {loss_value}")

            itr += 1

        # update the learning rate
        if lr_scheduler is not None:
            lr_scheduler.step()

        # val_loss = validate(val_loader, model, device)
        print(
            f"Epoch #{epoch} Train loss: {loss_hist.value}, Validation Loss : Commented"
        )
        train_loss.append(loss_hist.value)
        # validation_loss.append(val_loss)
        checkpoint = {
            'epoch': epoch + 1,
            # 'best_loss': val_loss,
            'state_dict': model.state_dict(),
            'optimizer': optimizer.state_dict(),
        }

        save_ckp(checkpoint, False, checkpoint_path, best_model_path)
        # if best_loss <= val_loss:
        #     print('Validation loss decreased ({:.6f} --> {:.6f}).  Saving model ...'.format(best_loss, val_loss))
        #     save_ckp(checkpoint, True, checkpoint_path, best_model_path)
        #     best_loss = val_loss

    return model, train_loss  #, validation_loss
def train(opt, tb):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.experiment_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size,
        shuffle=True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    print("Model:")
    print(model)

    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    print("~~~~~~~~~~~~Gradient Descent~~~~~~~~~~~~~")
    #print(model.parameters())
    #print(model.)
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Filtered parameters for gradient descent: \n', len(filtered_parameters))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
    print("Optimizer:")
    print(optimizer)

    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.experiment_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    i = start_iter

    while(True):
        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        text, length = converter.encode(labels, batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        if 'CTC' in opt.Prediction:
            preds = model(image, text).log_softmax(2)
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            preds = preds.permute(1, 0, 2)

            # (ctc_a) For PyTorch 1.2.0 and 1.3.0. To avoid ctc_loss issue, disabled cudnn for the computation of the ctc_loss
            # https://github.com/jpuigcerver/PyLaia/issues/16
            torch.backends.cudnn.enabled = False
            cost = criterion(preds, text.to(device), preds_size.to(device), length.to(device))
            torch.backends.cudnn.enabled = True

            # # (ctc_b) To reproduce our pretrained model / paper, use our previous code (below code) instead of (ctc_a).
            # # With PyTorch 1.2.0, the below code occurs NAN, so you may use PyTorch 1.1.0.
            # # Thus, the result of CTCLoss is different in PyTorch 1.1.0 and PyTorch 1.2.0.
            # # See https://github.com/clovaai/deep-text-recognition-benchmark/issues/56#issuecomment-526490707
            # cost = criterion(preds, text, preds_size, length)

        else:
            preds = model(image, text[:, :-1])  # align with Attention.forward
            print(preds[0][0])
            target = text[:, 1:]  # without [GO] Symbol
            print(target[0])
            cost = criterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        # validation part
        if i % opt.valInterval == 0:
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.experiment_name}/log_train.txt', 'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)
                model.train()

                # training loss and validation loss
                loss_log = f'[{i}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                tb.add_scalar('Training Loss vs Iteration', loss_avg.val(), i)              # Record to Tensorboard
                tb.add_scalar('Validation Loss vs Iteration', valid_loss, i)                # Record to Tensorboard
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'
                tb.add_scalar('Current Accuracy vs Iteration', current_accuracy, i)         # Record to Tensorboard
                tb.add_scalar('Current Norm ED vs Iteration', current_norm_ED, i)           # Record to Tensorboard            

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5], confidence_score[:5]):
                    if 'Attn' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (i + 1) % 1e+5 == 0:
            torch.save(
                model.state_dict(), f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')

        if i == opt.num_iter:
            print('end the training')
            sys.exit()
        i += 1
def train(opt):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    # train_dataset (image, label)
    train_dataset = Batch_Balanced_Dataset(opt)
    log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    """ model configuration """
    if 'CTC' in opt.Prediction:
        if opt.baiduCTC:
            converter = CTCLabelConverterForBaiduWarpctc(opt.character)
        else:
            converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)

    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)

    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    print("Model:")
    print(model)

    total_num, true_grad_num, false_grad_num = calculate_model_params(model)
    print("Total parameters: ", total_num)
    print("Number of parameters requires grad: ", true_grad_num)
    print("Number of parameters do not require grad: ", false_grad_num)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if isinstance(model, torch.nn.DataParallel):
        model = model.module
    # load pretrained model
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_pretrained_networks()
        elif opt.continue_train:
            model.load_checkpoint(opt.model_name)
        else:
            raise Exception('Something went wrong!')
    """ setup loss """
    if 'CTC' in opt.Prediction:
        if opt.baiduCTC:
            # need to install warpctc. see our guideline.
            from warpctc_pytorch import CTCLoss
            criterion = CTCLoss()
        else:
            criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()
    log_dir = f'./saved_models/{opt.exp_name}'
    writer = SummaryWriter(log_dir)

    # """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter

    while (True):
        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        text, length = converter.encode(labels,
                                        batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        if 'CTC' in opt.Prediction:
            preds = model(image, text)
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            if opt.baiduCTC:
                preds = preds.permute(1, 0, 2)  # to use CTCLoss format
                cost = criterion(preds, text, preds_size, length) / batch_size
            else:
                preds = preds.log_softmax(2).permute(1, 0, 2)
                cost = criterion(preds, text, preds_size, length)

        else:
            preds = model(image, text[:, :-1])  # align with Attention.forward
            target = text[:, 1:]  # without [GO] Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        model.optimize_parameters()
        writer.add_scalar('train_loss', cost, iteration + 1)
        loss_avg.add(cost)

        # validation part
        if (
                iteration + 1
        ) % opt.valInterval == 0 or iteration == 0:  # To see training progress, we also conduct validation when 'iteration == 0'
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.exp_name}/log_train.txt',
                      'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt,
                        iteration)
                model.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                writer.add_scalar('val_loss', valid_loss, iteration + 1)
                writer.add_scalar('accuracy', current_accuracy, iteration + 1)
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    model.save_checkpoints(iteration, 'best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    model.save_checkpoints(iteration, 'best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    if 'Attn' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]
                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (iteration + 1) % 1e+5 == 0:
            model.save_checkpoints(iteration + 1, opt.model_name)

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1