Beispiel #1
0
    def process(self):
        try:
            self.progress.emit('Проверка имени пользователя и пароля')
            if not self.checkAuth():
                self.progress.emit(
                    '<font color=red>Неверное имя пользователя и/или пароль</font>'
                )
                self.finished.emit()
                return

            self.progress.emit(
                'Синхронизация локального хранилища с сервером...')
            for client in Options.get().local_clients:
                Models.get().clients.saveItem(client)
            for application in Options.get().local_applications:
                Models.get().applications.saveItem(application)
            Options.get().local_clients = []
            Options.get().local_applications = []

            self.progress.emit('Загрузка типов заявок')
            Models.get().application_types.loadData()
            self.progress.emit('Загрузка заказчиков')
            Models.get().clients.loadData()
            self.progress.emit('Загрузка специалистов')
            Models.get().specialists.loadData()
            self.progress.emit('')
            self.result.emit(True)
        except requests.exceptions.ConnectionError:
            self.result.emit(False)
        self.finished.emit()
Beispiel #2
0
 def autonomy_mode(self):
     Options.get().autonomy_mode = True
     Models.get().application_types.setItems(
         Options.get().cache_application_types)
     Models.get().clients.setItems(Options.get().cache_clients)
     Models.get().specialists.setItems(Options.get().cache_specialists)
     self.accept()
    def __init__(self,
                 options=None,
                 title='EmdrosApplication',
                 DO_REF=True,
                 DO_OUT=True,
                 DO_LBL=True):
        if options is None:
            options = Options()
        kernel_cfg_name = options.get('kernel')
        if kernel_cfg_name is not None:
            kernel_cfg_name = 'emdros_application.syscfg.' + re.sub(
                '\.py[c]?$', '', kernel_cfg_name)
        else:
            kernel_cfg_name = syscfg.config.DEFAULT_KERNEL
        import importlib
        kernel = importlib.import_module(kernel_cfg_name)
        self.kernel = kernel
        #kernel = __import__(kernel_cfg_name)

        self.title = title
        self.DO_REF = DO_REF
        self.DO_OUT = DO_OUT
        self.DO_LBL = DO_LBL
        self.title = title

        self.spinner = Spinner()

        if options is None:
            self.options = Options(
                addPathAndExt('options', kernel.CFG_DIR, kernel.CFG_EXT))
        else:
            self.options = options

        self.cfg = self.configure(self.options, kernel)
        self.modeCfgs = self.setupModeConfigurations(kernel)

        self.mql = MQLEngine(database=self.database,
                             usr=self.usr,
                             pwd=self.pwd,
                             be=self.backend,
                             domainfile=self.domainqueryfile,
                             domain=self.domain,
                             VERBOSE=self.VERBOSE,
                             verbose=self.verbose,
                             test=self.test,
                             outstream=self.outstream,
                             errstream=self.errstream,
                             kernel=kernel)

        if self.DO_OUT or self.DO_REF:
            self.ref, self.out = self.setupOutput(kernel=kernel)

        if self.DO_LBL:
            self.lbl = self.setupLabelManagers(options.args, kernel=kernel)

        if self.options.get('gui'):
            self.gui = GUI(title=title, app=self)
            self.gui.mainloop()
        else:
            self.gui = None
Beispiel #4
0
 def fetchMore(self, index):
     headers = {'Authorization': 'Token ' + Options.get().token}
     try:
         if not self._next:
             url = 'http://' + Options.get(
             ).server_url + '/api/applications/?'
             if self._search_date:
                 url += 'contract_date=' + self._search_date.toString(
                     'yyyy-MM-dd') + '&'
             if self._search_number:
                 url += 'contract_number=' + self._search_number + '&'
             data = requests.get(url, headers=headers).json()
         else:
             data = requests.get(self._next).json()
     except requests.exceptions.ConnectionError:
         QMessageBox().warning(
             None, 'Ошибка',
             'Соединение с сервером потеряно. Программа будет закрыта.')
         die()
         return
     self.beginInsertRows(QModelIndex(), len(self._items),
                          len(self._items) + len(data['results']) - 1)
     for item in data['results']:
         self._items.append(Application.fromDict(item))
     self.endInsertRows()
     self._next = data['next']
     self._has_next_page = bool(data['next'])
Beispiel #5
0
 def loadData(cls):
     headers = {'Authorization': 'Token ' + Options.get().token}
     data = requests.get('http://' + Options.get().server_url + '/' +
                         cls.url,
                         headers=headers).json()
     cls._items = []
     for item in data:
         cls._items.append(cls.item_class.fromDict(item))
Beispiel #6
0
 def checkAuth(self):
     data = requests.post('http://' + Options.get().server_url +
                          '/api/auth/',
                          json={
                              'username': self.username,
                              'password': self.password
                          }).json()
     if data['status'] != 'success':
         return False
     Options.get().token = data['token']
     Options.get().group = data['user']['group']
     return True
Beispiel #7
0
    def login(self):
        Options.get().username = self.ui.edtUsername.text()

        self.ui.btnAutonomyMode.setEnabled(False)
        self.ui.btnLogin.setEnabled(False)

        self.loadModels()
Beispiel #8
0
 def loadOptions(self):
     '''create the self.options object from values stored in the settings'''
     self.options = Options()
     for opt, dflt in zip(self.options.optlist, self.options.dfltlist):
         if isinstance(dflt, (str, unicode)):
             setattr(
                 self.options, opt,
                 unicode(
                     self.settings.value(
                         'Options/' + opt,
                         QtCore.QVariant(QtCore.QString(dflt))).toString()))
         elif isinstance(dflt, float):
             setattr(
                 self.options, opt,
                 self.settings.value('Options/' + opt,
                                     QtCore.QVariant(dflt)).toDouble()[0])
         elif isinstance(dflt, bool):
             setattr(
                 self.options, opt,
                 self.settings.value('Options/' + opt,
                                     QtCore.QVariant(dflt)).toBool())
         elif isinstance(dflt, int):
             setattr(
                 self.options, opt,
                 self.settings.value('Options/' + opt,
                                     QtCore.QVariant(dflt)).toInt()[0])
         else:
             raise ValueError('Unsupported type in option "%s"' % dflt)
Beispiel #9
0
 def __init__(self):
     super(ApplicationModel, self).__init__()
     self._items = Options.get().local_applications.copy()
     self._next = None
     self._has_next_page = True
     self._search_date = None
     self._search_number = None
Beispiel #10
0
    def add_process(self, process, quiet):
        if not quiet and Options.auto_show_process_window():
            self.show_process(process)

        (first_line, _) = self.__command_window.write(CommandWindowProcessFormat(process))
        self.__command_window_line_maps[process.get_pid()] = first_line + 1
        self.__command_window_line_map_order.append(process.get_pid())
def evaluate():
    if mx.context.num_gpus() > 0:
        ctx = mx.gpu()
    else:
        ctx = mx.cpu(0)

    # loading configs
    args = Options().parse()
    cfg = Configs(args.config_path)
    # set logging level
    logging.basicConfig(level=logging.INFO)

    # images
    content_image = tensor_load_rgbimage(cfg.content_image,
                                         ctx,
                                         size=cfg.val_img_size,
                                         keep_asp=True)
    style_image = tensor_load_rgbimage(cfg.style_image,
                                       ctx,
                                       size=cfg.val_style_size)
    style_image = preprocess_batch(style_image)
    # model
    style_model = Net(ngf=cfg.ngf)
    style_model.collect_params().load(cfg.val_model, ctx=ctx)
    # forward
    output = style_model(content_image, style_image)
    # save img
    tensor_save_bgrimage(output[0], cfg.output_img)
    logging.info("Save img to {}".format(cfg.output_img))
Beispiel #12
0
    def add_process(self, process, quiet):
        if not quiet and Options.auto_show_process_window():
            self.show_process(process)

        (first_line, _) = self.__command_window.write(CommandWindowProcessFormat(process))
        self.__command_window_line_maps[process.get_pid()] = first_line + 1
        self.__command_window_line_map_order.append(process.get_pid())
Beispiel #13
0
def get_estimator():
    opt = Options()

    model_dir = "./cnn_model/hist_len_{}_pob_siz_{}_cub_siz_{}".format(
        opt.hist_len, opt.pob_siz, opt.cub_siz)

    return tf.estimator.Estimator(model_fn=cnn.cnn_model_fn,
                                  model_dir=model_dir)
Beispiel #14
0
 def saveItem(cls, item):
     headers = {'Authorization': 'Token ' + Options.get().token}
     try:
         if item.id is None:
             data = requests.post('http://' + Options.get().server_url +
                                  '/' + cls.url,
                                  json=item.toDict(),
                                  headers=headers).json()
             item.id = data['id']
         else:
             requests.put('http://' + Options.get().server_url + '/' +
                          cls.url + str(item.id) + '/',
                          json=item.toDict(),
                          headers=headers)
         return True
     except requests.exceptions.ConnectionError:
         return False
Beispiel #15
0
 def search(self, number=None, date=None):
     self._search_date = date
     self._search_number = number
     self.beginResetModel()
     self._next = None
     self._has_next_page = True
     self._items = Options.get().local_applications.copy()
     self.endResetModel()
Beispiel #16
0
    def show_process(self, process):
        log("showing process output: %s" % process.get_pid())
        self.__process_window_process = process

        self.__process_window.clean()
        self.__process_window_output_line = 0
        self.__process_window.create(Options.new_process_window_command())

        self.__process_window.write(ProcessWindowHeaderFormat(process))
        self.__write_output(process.output().all())
Beispiel #17
0
    def show_process(self, process):
        log("showing process output: %s" % process.get_pid())
        self.__process_window_process = process

        self.__process_window.clean()
        self.__process_window_output_line = 0
        self.__process_window.create(Options.new_process_window_command())

        self.__process_window.write(ProcessWindowHeaderFormat(process))
        self.__write_output(process.output().all())
Beispiel #18
0
 def setupContract(self):
     has_perms = Options.get().group in ('supervisor', 'accounting')
     if self.currentApplication().contract is not None:
         self.ui.btnEditContract.setEnabled(has_perms)
         self.ui.btnCreateContract.setEnabled(False)
         self.ui.btnPrintContract.setEnabled(True)
         self.ui.lblContractNumber.setText('№%s' % self.currentApplication().contract.number)
     else:
         self.ui.btnEditContract.setEnabled(False)
         self.ui.btnCreateContract.setEnabled(has_perms)
         self.ui.btnPrintContract.setEnabled(False)
         self.ui.lblContractNumber.setText('не создан')
Beispiel #19
0
def get_data(opt=Options()):
    sim = Simulator(opt.map_ind, opt.cub_siz, opt.pob_siz, opt.act_num)
    states = np.zeros([opt.data_steps, opt.state_siz], float)
    labels = np.zeros([opt.data_steps], int)

    # Note I am forcing the display to be off here to make data collection fast
    # you can turn it on again for debugging purposes
    # opt.disp_on = False

    # 1. control loop
    if opt.disp_on:
        win_all = None
        win_pob = None
    epi_step = 0  # #steps in current episode
    nepisodes = 1  # total #episodes executed

    state = sim.newGame(opt.tgt_y, opt.tgt_x)
    for step in range(opt.data_steps):
        if state.terminal or epi_step >= opt.early_stop:
            epi_step = 0
            nepisodes += 1
            state = sim.newGame(opt.tgt_y, opt.tgt_x)
        else:
            state = sim.step()  # will perform A* actions

        # save data & label
        states[step, :] = rgb2gray(state.pob).reshape(opt.state_siz)
        labels[step] = state.action

        epi_step += 1

        if step % opt.prog_freq == 0:
            print(step)

        if opt.disp_on:
            if win_all is None:
                import pylab as pl
                pl.figure()
                win_all = pl.imshow(state.screen)
                pl.figure()
                win_pob = pl.imshow(state.pob)
            else:
                win_all.set_data(state.screen)
                win_pob.set_data(state.pob)
            pl.pause(opt.disp_interval)
            pl.draw()

    # 2. save to disk
    print('saving data ...')
    np.savetxt(opt.states_fil, states, delimiter=',')
    np.savetxt(opt.labels_fil, labels, delimiter=',')
    print("states saved to " + opt.states_fil)
    print("labels saved to " + opt.labels_fil)
Beispiel #20
0
def plt_heat_map_results(plt_file_name = None):
    opt = Options()
    opt.disp_on = False
    pob_siz_len = np.arange(start=3, stop=11,step=2) #not even steps needed
    hist_len = np.arange(start=1, stop=5)
    # pob_siz_len =[5,3,5,9,1]
    results_success_rate_map_zero = []
    results_astar_diff = []
    cnt_Test=0
    with K.get_session():
        for p in pob_siz_len:
            opt.pob_siz = p
            opt.state_siz = (p * opt.cub_siz) ** 2
            print("start with opt.pob_siz: {}".format(opt.pob_siz))
            print("start with opt.state_siz: {}".format(opt.state_siz))
            # get_data(opt)#generaten new data
            for l in hist_len:
                opt.hist_len = l
                print("start with opt.hist_len: {}".format(opt.hist_len))
                # train_model(opt, mdl_name,epochs=EPOCHS)
                # [success_rate, astar_diff] = test_model(opt,mdl_name)
                # results_success_rate_map_zero.append(success_rate)

                results_success_rate_map_zero.append(cnt_Test)
                cnt_Test1+=1
                # results_astar_diff.append(astar_diff)
    results_success_rate_map_zero=np.array(results_success_rate_map_zero)
    plt.imshow(results_success_rate_map_zero.reshape(len(pob_siz_len),len(hist_len)), cmap='hot', interpolation='nearest')
    plt.colorbar()
    # plt.show()
    helper_save(plt_file_name)
Beispiel #21
0
def plt_pob_siz_results(plt_file_name = None):
    mdl_name = "list_len_mdl.h5"
    opt = Options()
    pob_siz_len = np.arange(start=3, stop=11,step=2) #not even steps needed
    # pob_siz_len =[5,3,5,9,1]
    results_success_rate_map_zero = []
    results_astar_diff = []


    for p in pob_siz_len:
        opt.pob_siz = p
        opt.state_siz = (p * opt.cub_siz) ** 2
        print("start with opt.pob_siz: {}".format(opt.pob_siz))
        print("start with opt.state_siz: {}".format(opt.state_siz))
        map_ind = opt.map_ind
        opt.map_ind = 0
        get_data(opt)#generaten new data with the map 0
        opt.map_ind = map_ind
        train_model(opt, mdl_name, epochs=EPOCHS)
        [success_rate, astar_diff] = test_model(opt,mdl_name)
        results_success_rate_map_zero.append(success_rate)
        results_astar_diff.append(astar_diff)

    # Four polar axes
    f, axarr = plt.subplots(1,2)
    axarr[0].scatter(pob_siz_len, results_success_rate_map_zero)
    axarr[0].set_ylabel(r'success rate',usetex=True)
    axarr[1].scatter(pob_siz_len, results_astar_diff)
    # axarr[1].set_title('difference to astar in number of steps')
    axarr[1].set_ylabel(r'mean difference to astar in steps',usetex=True)

    axarr[0].set_xlabel(r'view size',usetex=True)
    axarr[1].set_xlabel(r'view size',usetex=True)
    helper_save(plt_file_name)
def main(unused_argv):
	opt = Options()
	sim = Simulator(opt.map_ind, opt.cub_siz, opt.pob_siz, opt.act_num)
	trans = TransitionTable(opt.state_siz, opt.act_num, opt.hist_len,
	                             opt.minibatch_size, opt.valid_size,
	                             opt.states_fil, opt.labels_fil)

	# 1. train
	######################################
	# TODO implement your training here!
	# you can get the full data from the transition table like this:
	#
	# # both train_data and valid_data contain tupes of images and labels
	train_data = trans.get_train()
	valid_data = trans.get_valid()

	samples_train_data = np.float32(train_data[0])
	labels_train_data = np.float32(train_data[1])
	unhotted_labels_train_data = unhot(labels_train_data)

	samples_valid_data = np.float32(valid_data[0])
	labels_valid_data = np.float32(valid_data[1])
	unhotted_labels_valid_data = unhot(labels_valid_data)

	print("Shape of samples_train_data {}".format(samples_train_data.shape))
	print("Shape of labels_train_data {}".format(labels_train_data.shape))
	print("Shape of unhotted_labels_train_data {}".format(unhotted_labels_train_data.shape))

	classifier = cnn.get_estimator()

	# Train the model
	train_input_fn = tf.estimator.inputs.numpy_input_fn(
	    x={"x": samples_train_data},
	    y=unhotted_labels_train_data,
	    batch_size=100,
	    num_epochs=None,
	    shuffle=True)

	classifier.train(
	    input_fn=train_input_fn,
	    steps=1000
	)

	eval_input_fn = tf.estimator.inputs.numpy_input_fn(
		x={"x": samples_valid_data},
		y=unhotted_labels_valid_data,
		num_epochs=1,
		shuffle=False
	)

	eval_results = classifier.evaluate(input_fn=eval_input_fn)
	print(eval_results)
Beispiel #23
0
 def tblApplicationsSelectionChanged(self, selected, deselected):
     if len(self.ui.tblApplications.selectedIndexes()):
         self.ui.btnEditApplication.setEnabled(not Options.get().autonomy_mode)
         self.ui.pnlDocuments.setEnabled(bool(self.currentApplication().id))
         self.ui.btnPrintApplication.setEnabled(True)
         self.setupContract()
         self.setupAccount()
         self.setupOrder()
         self.setupProtocols()
     else:
         self.ui.btnEditApplication.setEnabled(False)
         self.ui.pnlDocuments.setEnabled(False)
         self.ui.btnPrintApplication.setEnabled(False)
Beispiel #24
0
 def setupOrder(self):
     has_perms = self.currentApplication().contract is not None and \
                 self.currentApplication().account is not None and \
                 Options.get().group in ('supervisor', 'secretary', 'testing')
     if self.currentApplication().order is not None:
         self.ui.btnEditOrder.setEnabled(has_perms)
         self.ui.btnCreateOrder.setEnabled(False)
         self.ui.btnPrintOrder.setEnabled(True)
         self.ui.lblOrderNumber.setText('№%s' % self.currentApplication().order.number)
     else:
         self.ui.btnEditOrder.setEnabled(False)
         self.ui.btnCreateOrder.setEnabled(has_perms)
         self.ui.btnPrintOrder.setEnabled(False)
         self.ui.lblOrderNumber.setText('не создан')
Beispiel #25
0
 def loadModelsFinished(self, success):
     if not success:
         if Options.get().autonomy_available:
             ans = QMessageBox().warning(
                 None, 'Ошибка',
                 'Произошла ошибка при соединении с сервером. Перейти в автономный режим?',
                 QMessageBox.Yes | QMessageBox.No)
             if ans == QMessageBox.Yes:
                 self.autonomy_mode()
                 return
         else:
             QMessageBox().warning(
                 None, 'Ошибка',
                 'Произошла ошибка при соединении с сервером.',
                 QMessageBox.Ok)
         self.reset()
     else:
         self.accept()
Beispiel #26
0
 def edit(cls, client, parent=None):
     from views.client_form import ClientForm
     dlg = ClientForm(parent)
     dlg.setClient(client)
     result = dlg.exec()
     if result == ClientForm.Accepted:
         client = dlg.getClient()
         if not Options.get().autonomy_mode:
             while not cls.model.saveItem(client):
                 p = QMessageBox().warning(
                     parent, 'Ошибка',
                     'Потеряно соединение с сервером. Повторить?\nПри отмене программа будет '
                     'закрыта, а несохраненные изменения потеряны.',
                     QMessageBox.Retry | QMessageBox.Cancel)
                 if p != QMessageBox.Retry:
                     die()
         return True
     return False
Beispiel #27
0
 def createApplication(self, parent=None):
     dlg = ApplicationWizard(parent)
     result = dlg.exec()
     if result == ApplicationWizard.Accepted:
         application = dlg.getApplication()
         if not Options.get().autonomy_mode:
             while not self.saveItem(application):
                 p = QMessageBox().warning(
                     None, 'Ошибка',
                     'Потеряно соединение с сервером. Повторить?\nПри отмене программа будет '
                     'закрыта, а несохраненные изменения потеряны.',
                     QMessageBox.Retry | QMessageBox.Cancel)
                 if p != QMessageBox.Retry:
                     self.addItem(application)
                     die()
         self.addItem(application)
         return True
     return False
Beispiel #28
0
def model(input_shape, model_name='', visualize_model=False):
    opt = Options()

    model = Sequential()
    model.add(
        Convolution2D(input_shape=input_shape,
                      filters=default_n_filters,
                      kernel_size=default_kernel_size,
                      activation='relu',
                      padding='same',
                      name='ConvLayer1'))
    model.add(Flatten())
    model.add(Dense(512, activation='relu'))
    model.add(Dense(opt.act_num))
    model.compile(loss='mse', metrics=['acc'], optimizer=Adam(lr=1e-6))

    if visualize_model:
        print("Saving model diagram")
        plot_model(model,
                   to_file=opt.model_path.format(model_name),
                   show_shapes=True)
    return model
Beispiel #29
0
def plt_hist_len_results(plt_file_name = None, opt = Options()):
    mdl_name = "list_len_mdl.h5"
    hist_len = np.arange(start=1, stop=11)
    results_success_rate_map_zero = []
    results_astar_diff = []

    map_ind = opt.map_ind
    opt.map_ind = 0
    #opt.change_tgt = False
    get_data(opt)#generaten new data with the map 0
    opt.map_ind = map_ind
    print("map used {}".format(opt.map_ind))
    #opt.change_tgt = True
    for l in hist_len:
        opt.hist_len = l
        print("start with opt.hist_len: {}".format(opt.hist_len))
        train_model(opt, mdl_name,epochs=EPOCHS)

        [success_rate, astar_diff] = test_model(opt,mdl_name)
        results_success_rate_map_zero.append(success_rate)
        results_astar_diff.append(astar_diff)

    f, axarr = plt.subplots(1,2)
    axarr[0].scatter(hist_len, results_success_rate_map_zero)
    # axarr[0].set_title('map 1')
    axarr[0].set_ylabel(r'success rate',usetex=True)

    axarr[1].scatter(hist_len, results_astar_diff)
    # axarr[1].set_title('map 1')
    axarr[1].set_ylabel(r'mean difference to astar in steps',usetex=True)

    axarr[1].set_xlabel(r'history length',usetex=True)
    axarr[0].set_xlabel(r'history length',usetex=True)

    # Fine-tune figure; make subplots farther from each other.
    f.subplots_adjust(hspace=0.3)
    helper_save(plt_file_name)
Beispiel #30
0
    "--steps",
    help="(Optional) Number of steps to train the model for. Default is 1000",
    type=int,
    default=1000)
parser.add_argument("-ss",
                    "--silent",
                    help="Runs test without displaying the simulation",
                    action="store_false")

args = parser.parse_args()

model_path = args.model

# --------------------------------------------------------
# 0. initialization
opt = Options()
sim = Simulator(opt.map_ind, opt.cub_siz, opt.pob_siz, opt.act_num)

opt.disp_on = args.silent

if args.steps:
    opt.steps = args.steps

# --------------------------------------------------------
# Input layer
image_dimension = opt.cub_siz * opt.pob_siz
img_rows = img_cols = image_dimension
input_shape = [img_rows, img_cols, opt.hist_len]

# --------------------------------------------------------
# Model
import tensorflow as tf

# custom modules
from utils     import Options
from simulator import Simulator
from transitionTable import TransitionTable

#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# NOTE:
# this script assumes you did generate your data with the get_data.py script
# you are of course allowed to change it and generate data here but if you
# want this to work out of the box first run get_data.py
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

# 0. initialization
opt = Options()
sim = Simulator(opt.map_ind, opt.cub_siz, opt.pob_siz, opt.act_num)
trans = TransitionTable(opt.state_siz, opt.act_num, opt.hist_len,
                             opt.minibatch_size, opt.valid_size,
                             opt.states_fil, opt.labels_fil)

# 1. train
######################################
# TODO implement your training here!
# you can get the full data from the transition table like this:
#
# # both train_data and valid_data contain tupes of images and labels
# train_data = trans.get_train()
# valid_data = trans.get_valid()
# 
# alternatively you can get one random mini batch line this
Beispiel #32
0
import numpy as np
np.random.seed(0)
from random import randrange
# custom modules
from utils import Options, rgb2gray
from simulator import Simulator

# 0. initialization
opt = Options()
sim = Simulator(opt.map_ind, opt.cub_siz, opt.pob_siz, opt.act_num)
states = np.zeros([opt.data_steps, opt.state_siz], float)
labels = np.zeros([opt.data_steps], int)

# Note I am forcing the display to be off here to make data collection fast
# you can turn it on again for debugging purposes
opt.disp_on = False

# 1. control loop
if opt.disp_on:
    win_all = None
    win_pob = None
epi_step = 0  # #steps in current episode
nepisodes = 1  # total #episodes executed

state = sim.newGame(opt.tgt_y, opt.tgt_x)
for step in range(opt.data_steps):
    if state.terminal or epi_step >= opt.early_stop:
        epi_step = 0
        nepisodes += 1
        state = sim.newGame(opt.tgt_y, opt.tgt_x)
    else: