Beispiel #1
0
    parser = argparse.ArgumentParser()
    parser.add_argument('--val', action='store_true', help='weither to run validation')
    parser.add_argument('--bench', action='store_true',
                        help = 'weither to generate results on benchmark dataset')
    parser.add_argument('--smooth', action='store_true',
                        help = 'weither to generator smootGrad results on benchmark dataset')
    parser.add_argument('--gen', action = 'store_true',
                        help = 'weither to generate Large eps adversarial examples on benchmark data')

    parser.add_argument('--resume', type=str, default=None,
                        help='checkpoint path')

    args = parser.parse_args()

    clock = TrainClock()
    clock.epoch = 21
    net = ant_model()
    net.cuda()
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            check_point = torch.load(args.resume)
            net.load_state_dict(check_point['state_dict'])

            print('Modeled loaded from {} with metrics:'.format(args.resume))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

        base_path = os.path.split(args.resume)[0]
    else:
        base_path = './'
Beispiel #2
0
best_prec = 0.0
if args.resume:
    if os.path.isfile(args.resume):
        print("=> loading checkpoint '{}'".format(args.resume))
        check_point = torch.load(args.resume)
        args.start_epoch = check_point['epoch']
        net.load_state_dict(check_point['state_dict'])
        best_prec = check_point['best_prec']

        print('Modeled loaded from {} with metrics:'.format(args.resume))
        print(results)
    else:
        print("=> no checkpoint found at '{}'".format(args.resume))

clock.epoch = args.start_epoch
#for epoch in ds_train.epoch_generator():
while True:
    if clock.epoch > args.epochs:
        break
    adjust_learning_rate(optimizer, clock.epoch)

    Trainresults = adversairal_train_one_epoch(net,
                                               optimizer,
                                               ds_train,
                                               criterion,
                                               PgdAttack,
                                               clock,
                                               attack_freq=args.adv_freq,
                                               use_adv=not args.no_adv,
                                               DEVICE=DEVICE)