Beispiel #1
0
def train(img_size, start_layer, learning_rate, n_epoch, data_x, data_y):
    model, base_model = _build_regressor(img_size, 1, start_layer, learning_rate)

    weights_history = []
    get_weights_cb = LambdaCallback(on_batch_end=lambda batch,
                                    logs: weights_history.append(model.layers[-1].get_weights()[0]))

    data_gen = ImageDataGenerator(rotation_range=180, zoom_range=0.1, horizontal_flip=True)
    data_gen.fit(data_x)
    history = model.fit_generator(data_gen.flow(data_x, data_y, batch_size=batch_size),
                                               validation_data=(data_x[:1000], data_y[:1000]),
                                               workers=4,
                                               callbacks=[get_weights_cb],
                                               use_multiprocessing=True,
                                               epochs=n_epoch)

    save_obj(weights_history, name=model_out_dir+"/weights.pkl")
    base_model.save(model_out_dir+"/base_model.h5")
    model.save(model_out_dir+"/model.h5")

    return base_model, weights_history
Beispiel #2
0
def train(n_epoch=N_TRAINING_EPOCH,
          img_size=299,
          sex=0,
          batch_size=16,
          num_gpu=1,
          start_layer=-1):
    assert start_layer in [
        -1, XCEPTION_EXIT_START, XCEPTION_MID_START, XCEPTION_ENTRY_START, 0
    ]
    assert sex in [0, 1, 2]
    # model file path
    if start_layer != -1:
        model_file = model_out_dir + "/model.h5"
    else:
        model_file = None

    # learning rate
    if start_layer == -1:
        learning_rate = 1E-3
    elif start_layer == XCEPTION_EXIT_START:
        learning_rate = 1E-4
    elif start_layer == XCEPTION_MID_START:
        learning_rate = 5E-5
    elif start_layer == XCEPTION_ENTRY_START:
        learning_rate = 1E-5
    else:
        learning_rate = 5E-6

    model = _build_regressor(img_size, num_gpu, start_layer, model_file,
                             learning_rate)

    print "[x] load data ..."
    data_x, data_y = load_data_sex(sex, img_size, xception_input)
    print "[x] loaded data_x {}, data_y {} data".format(
        data_x.shape, data_y.shape)

    data_gen = ImageDataGenerator(rotation_range=180,
                                  zoom_range=0.1,
                                  horizontal_flip=True)

    x_train, x_test, y_train, y_test = train_test_split(data_x, data_y)
    data_gen.fit(x_train)

    model_callback = ModelCheckpoint(filepath=model_out_dir + "/model.h5",
                                     verbose=1,
                                     save_best_only=True)
    loss_callback = LossHistory()
    model.fit_generator(data_gen.flow(x_train, y_train, batch_size=batch_size),
                        validation_data=(x_test, y_test),
                        workers=4,
                        callbacks=[model_callback, loss_callback],
                        use_multiprocessing=True,
                        epochs=n_epoch)
    save_obj(obj=loss_callback.losses,
             name=metric_out_dir + "/losses_S{}.pkl".format(start_layer))

    y_true = []
    y_pred = []
    for mini_batch in range(int(data_x.shape[0] // batch_size)):
        pred_y = model.predict_on_batch(
            data_x[mini_batch * batch_size:(mini_batch + 1) * batch_size])
        for i in range(batch_size):
            y_true.append(data_y[mini_batch * batch_size + i] * SCALE)
            y_pred.append(pred_y[i] * SCALE)

    evs, mae, mse, meae, r2s, ccc = regression_metric(np.array(y_true),
                                                      np.array(y_pred))
    save_obj(
        {
            "evs": evs,
            "mae": mae,
            "mse": mse,
            "meae": meae,
            "r2s": r2s,
            "ccc": ccc
        },
        name=metric_out_dir + "/evaluate_S{}.pkl".format(start_layer))
def train(n_epoch=N_TRAINING_EPOCH,
          img_size=299,
          sex=0,
          batch_size=16,
          num_gpu=1,
          start_layer=-1,
          start_epoch=0,
          data_thread=10):
    assert start_layer in [
        -1, XCEPTION_EXIT_START, XCEPTION_MID_START, XCEPTION_ENTRY_START, 0
    ]
    assert sex in [0, 1, 2]
    # model file path
    if start_layer != -1:
        model_file = model_out_dir + "/model.h5"
    else:
        model_file = None

    # learning rate
    if start_layer == -1:
        learning_rate = 1E-3
    elif start_layer == XCEPTION_EXIT_START:
        learning_rate = 1E-4
    elif start_layer == XCEPTION_MID_START:
        learning_rate = 5E-5
    elif start_layer == XCEPTION_ENTRY_START:
        learning_rate = 1E-5
    else:
        learning_rate = 5E-6

    model = _build_regressor(img_size, num_gpu, start_layer, model_file,
                             learning_rate)

    best_mae = np.inf
    tolerance = 0

    data_ids = load_sex_ids(sex)
    for i in range(data_thread):
        train_data_thread = DataLoadingThread(
            name="training_data_thread_{}".format(i))
        train_data_thread.set_data(train_data_queue, True)
        train_data_thread.setDaemon(True)
        train_data_thread.start()

        test_data_thread = DataLoadingThread(
            name="test_data_thread_{}".format(i))
        test_data_thread.set_data(test_data_queue, False)
        test_data_thread.setDaemon(True)
        test_data_thread.start()

    for epoch in tqdm(range(start_epoch + 1, start_epoch + n_epoch + 1)):
        print "[x] epoch {} -------------------------------------------".format(
            epoch)
        for mini_batch in range(len(data_ids) // batch_size):
            while train_data_queue.qsize() <= 0:
                time.sleep(1)
            if DEBUG_MODEL:
                print "train data queue, qsize = %d " % train_data_queue.qsize(
                )
            data_dict = train_data_queue.get()
            loss = model.train_on_batch(x=data_dict["x"], y=data_dict["y"])
            if mini_batch % 50 == 0:
                print "--epoch {}, mini_batch {}, loss {}".format(
                    epoch, mini_batch, loss)

        # test
        print "[x] test in epoch {}".format(epoch)
        losses = 0.0
        for mini_batch in range(int(0.2 * len(data_ids) // batch_size)):
            while test_data_queue.qsize() <= 0:
                time.sleep(1)
            data_dict = test_data_queue.get()
            loss = model.test_on_batch(data_dict["x"], data_dict["y"])
            losses += loss
        losses = losses / (int(0.3 * len(data_ids) // batch_size))
        print "== epoch {}, test loss {}".format(epoch, losses)

        # test and metric
        print "[x] predict in epoch {}".format(epoch)
        y_true = []
        y_pred = []
        for mini_batch in range(int(0.2 * len(data_ids) // batch_size)):
            while test_data_queue.qsize() <= 0:
                time.sleep(1)
            data_dict = test_data_queue.get()
            pred_y = model.predict_on_batch(data_dict["x"])
            for i in range(batch_size):
                y_true.append(data_dict["y"][i] * SCALE)
                y_pred.append(pred_y[i] * SCALE)

        evs, mae, mse, meae, r2s, ccc = regression_metric(
            np.array(y_true), np.array(y_pred))
        save_obj(
            {
                "evs": evs,
                "mae": mae,
                "mse": mse,
                "meae": meae,
                "r2s": r2s,
                "ccc": ccc,
                "loss": losses
            },
            name=metric_out_dir + "/epoch_{}.pkl".format(epoch))

        if mae < best_mae:
            best_mae = mae
            tolerance = 0
            model.save_weights(model_out_dir + "/model.h5")
        else:
            tolerance += 1

        print "[x] epoch {}, evs {}, mae {}, mse {}, meae {}, r2s {}, ccc {}".format(
            epoch, evs, mae, mse, meae, r2s, ccc)

        if tolerance > TOLERANCE:
            break
Beispiel #4
0
                                           feed_dict={
                                               x_1: batch_x,
                                               is_train: False
                                           })
            binary_preds_0, dice_coeff_0, acc_0, sensitivity_0, specificity_0 = metric_all_value(
                batch_y, batch_segmented_0)
            binary_preds_1, dice_coeff_1, acc_1, sensitivity_1, specificity_1 = metric_all_value(
                batch_y, batch_segmented_1)
            utils_data.save_obj(
                {
                    "step": step,
                    "batch_loss_0": batch_loss_0,
                    "batch_loss_1": batch_loss_1,
                    "dice_coeff_0": dice_coeff_0,
                    "acc_0": acc_0,
                    "sensitivity_0": sensitivity_0,
                    "specificity_0": specificity_0,
                    "dice_coeff_1": dice_coeff_1,
                    "acc_1": acc_1,
                    "sensitivity_1": sensitivity_1,
                    "specificity_1": specificity_1
                },
                name=metrics_out_dir + "/step_{}_loss.pkl".format(step))

            if step % 500 == 0:
                output_dir = img_out_dir + "/step_{}".format(step)
                if not os.path.isdir(output_dir):
                    os.makedirs(output_dir)
                for i in range(batch_size):
                    data_index = shuffled_indexes[mini_batch * batch_size + i]
                    data_id = annotated_ids[data_index]
Beispiel #5
0
def train(n_epoch=N_TRAINING_EPOCH,
          img_size=299,
          sex=0,
          batch_size=16,
          num_gpu=1,
          start_layer=-1,
          start_epoch=0):
    assert start_layer in [
        -1, XCEPTION_EXIT_START, XCEPTION_MID_START, XCEPTION_ENTRY_START, 0
    ]
    assert sex in [0, 1, 2]
    # model file path
    if start_layer != -1:
        model_file = model_out_dir + "/model.h5"
    else:
        model_file = None

    # learning rate
    if start_layer == -1:
        learning_rate = 1E-2
    elif start_layer == XCEPTION_EXIT_START:
        learning_rate = 1E-3
    elif start_layer == XCEPTION_MID_START:
        learning_rate = 5E-4
    elif start_layer == XCEPTION_ENTRY_START:
        learning_rate = 1E-4
    else:
        learning_rate = 5E-5

    model = _build_regressor(img_size, num_gpu, start_layer, model_file,
                             learning_rate)

    best_mae = np.inf
    tolerance = 0

    data_ids = load_sex_ids(sex)

    for epoch in tqdm(range(start_epoch + 1, start_epoch + n_epoch + 1)):
        print "[x] epoch {} -------------------------------------------".format(
            epoch)
        for mini_batch in range(len(data_ids) // batch_size):
            batch_x, batch_y = load_data(sex=sex,
                                         img_size=img_size,
                                         batch_size=batch_size,
                                         augment_times=7)
            loss = model.train_on_batch(x=batch_x, y=batch_y)
            if mini_batch % 50 == 0:
                print "--epoch {}, mini_batch {}, loss {}".format(
                    epoch, mini_batch, loss)

        # test
        print "[x] test in epoch {}".format(epoch)
        losses = 0.0
        for mini_batch in range(int(0.2 * len(data_ids) // batch_size)):
            batch_x, batch_y = load_data(sex=sex,
                                         img_size=img_size,
                                         batch_size=batch_size,
                                         augment_times=0)
            loss = model.test_on_batch(batch_x, batch_y)
            losses += loss
        losses = losses / (int(0.3 * len(data_ids) // batch_size))
        print "== epoch {}, test loss {}".format(epoch, losses)

        # test and metric
        print "[x] predict in epoch {}".format(epoch)
        y_true = []
        y_pred = []
        for mini_batch in range(int(0.2 * len(data_ids) // batch_size)):
            batch_x, batch_y = load_data(sex=sex,
                                         img_size=img_size,
                                         batch_size=batch_size,
                                         augment_times=0)
            pred_y = model.predict_on_batch(batch_x)
            for i in range(batch_size):
                y_true.append(batch_y[i] * SCALE)
                y_pred.append(pred_y[i] * SCALE)

        evs, mae, mse, meae, r2s, ccc = regression_metric(
            np.array(y_true), np.array(y_pred))
        save_obj(
            {
                "evs": evs,
                "mae": mae,
                "mse": mse,
                "meae": meae,
                "r2s": r2s,
                "ccc": ccc,
                "loss": losses
            },
            name=metric_out_dir + "/epoch_{}.pkl".format(epoch))

        if mae < best_mae:
            best_mae = mae
            tolerance = 0
            model.save_weights(model_out_dir + "/model.h5")
        else:
            tolerance += 1

        print "[x] epoch {}, evs {}, mae {}, mse {}, meae {}, r2s {}, ccc {}".format(
            epoch, evs, mae, mse, meae, r2s, ccc)

        if tolerance > TOLERANCE:
            break
def train(model_name,
          weights="imagenet",
          n_epoch=N_TRAINING_EPOCH,
          sex=0,
          batch_size=16,
          augment=False,
          num_gpu=1,
          fine_tune=""):
    model, input_shape, base_model = _build_regresser(model_name, weights,
                                                      num_gpu, fine_tune)
    if model_name == "inception_v3":
        preprocess_fn = inception_v3_input
    elif model_name == "inception_resnet_v2":
        preprocess_fn = inception_resnet_input
    elif model_name == "xception":
        preprocess_fn = xception_input
    else:
        raise ValueError("Not a supported model name")

    data_x, data_y = load_data(sex, input_shape[0], augment, preprocess_fn)
    print "[x] total data size {} G".format(sys.getsizeof(data_x) / 1024**3)
    best_loss = np.inf
    for epoch in tqdm(range(n_epoch)):
        print "========================================================================================================"
        x_train, x_test, y_train, y_test = train_test_split(data_x,
                                                            data_y,
                                                            test_size=0.3,
                                                            random_state=0,
                                                            shuffle=True)
        for mini_batch in range(x_train.shape[0] // batch_size):
            batch_x = x_train[mini_batch * batch_size:(mini_batch + 1) *
                              batch_size]
            batch_x_cvt = _batch_cvt(batch_x)
            batch_y = y_train[mini_batch * batch_size:(mini_batch + 1) *
                              batch_size]
            loss = model.train_on_batch(x=batch_x_cvt, y=batch_y)
            if mini_batch % 100 == 0:
                print "--epoch {}, mini_batch {}, loss {}".format(
                    epoch, mini_batch, loss)

        # test
        print "[x] test in epoch {}".format(epoch)
        losses = 0.0
        for mini_batch in range(x_test.shape[0] // batch_size):
            batch_x = x_test[mini_batch * (batch_size):(mini_batch + 1) *
                             batch_size]
            batch_y = y_test[mini_batch * (batch_size):(mini_batch + 1) *
                             batch_size]
            batch_x_cvt = _batch_cvt(batch_x)
            loss = model.test_on_batch(batch_x_cvt, batch_y)
            losses += loss
        losses = losses / (x_test.shape[0] // batch_size)
        if losses < best_loss:
            best_loss = losses
            model.save_weights(model_out_dir + "/epoch_{}.h5".format(epoch))
        print "== epoch {}, test loss {}".format(epoch, losses)

        # test and metric
        print "[x] predict in epoch {}".format(epoch)
        y_true = []
        y_pred = []
        for mini_batch in range(x_test.shape[0] // batch_size):
            batch_x = x_test[mini_batch * (batch_size):(mini_batch + 1) *
                             batch_size]
            batch_y = y_test[mini_batch * (batch_size):(mini_batch + 1) *
                             batch_size]
            batch_x_cvt = _batch_cvt(batch_x)
            pred_y = model.predict_on_batch(batch_x_cvt)
            for i in range(batch_size):
                y_true.append(batch_y[i] * SCALE)
                y_pred.append(pred_y[i] * SCALE)

        evs, mae, mse, meae, r2s, ccc = regression_metric(
            np.array(y_true), np.array(y_pred))
        save_obj(
            {
                "evs": evs,
                "mae": mae,
                "mse": mse,
                "meae": meae,
                "r2s": r2s,
                "ccc": ccc,
                "loss": losses
            },
            name=metric_out_dir + "/epoch_{}.pkl".format(epoch))
        print "[x] epoch {}, evs {}, mae {}, mse {}, meae {}, r2s {}, ccc {}".format(
            epoch, evs, mae, mse, meae, r2s, ccc)
Beispiel #7
0
    batch_size = FLAGS.batch_size * num_gpu
    model_name = FLAGS.model_name
    exp_name = FLAGS.exp
    sex = FLAGS.sex
    augment_data = True if FLAGS.augment == "true" else False
    fine_tune = FLAGS.fine_tune

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    set_session(tf.Session(config=config))

    metric_out_dir = "E{}_M{}_S{}_A{}_F{}/metric".format(
        exp_name, model_name, sex, augment_data, fine_tune)
    model_out_dir = "E{}_M{}_S{}_A{}_F{}/model".format(exp_name, model_name,
                                                       sex, augment_data,
                                                       fine_tune)
    if not os.path.isdir(metric_out_dir):
        os.makedirs(metric_out_dir)
    if not os.path.isdir(model_out_dir):
        os.makedirs(model_out_dir)

    # training
    weights_history, base_model, img_size, pre_fn = \
        train(model_name=model_name, weights="imagenet", n_epoch=N_TRAINING_EPOCH, sex=sex,
              batch_size=batch_size, augment=augment_data, num_gpu=num_gpu, fine_tune=fine_tune)

    # save weight and base model
    save_obj(weights_history, name=model_out_dir + "/weights_history.pkl")
    base_model.save_weights(filepath=model_out_dir + "/base_model.h5")