def evaluate_images(self):
        par_obj.feat_arr = {}
        par_obj.pred_arr = {}
        par_obj.sum_pred = {}
        count = -1
        for b in par_obj.left_2_calc:
            frames = par_obj.frames_2_load[b]
            for i in frames:

                v2.im_pred_inline_fn(par_obj,
                                     self,
                                     inline=True,
                                     outer_loop=b,
                                     inner_loop=i,
                                     count=count)
                v2.evaluate_forest(par_obj,
                                   self,
                                   False,
                                   0,
                                   inline=True,
                                   outer_loop=b,
                                   inner_loop=i,
                                   count=count)
                count = count + 1
        v2.apply_correction(par_obj)

        self.save_output_data_btn.setEnabled(True)
        self.image_status_text.showMessage('Status: evaluation finished.')
        par_obj.eval_load_im_win_eval = True
        v2.eval_pred_show_fn(par_obj.curr_img, par_obj, self)
Beispiel #2
0
 def train_model_btn_fn(self):
     self.image_status_text.showMessage('Training Ensemble of Decision Trees. ')
     v2.update_training_samples_fn(par_obj,0)
     self.image_status_text.showMessage('Evaluating Images with the Trained Model. ')
     app.processEvents()    
     v2.evaluate_forest(par_obj,self, False,0)
     v2.make_correction(par_obj, 0)
     self.image_status_text.showMessage('Model Trained. Continue adding samples, or click \'Save Training Model\'. ')
     par_obj.eval_load_im_win_eval = True
     self.goto_img_fn(par_obj.curr_img)
     self.save_model_btn.setEnabled(True)  
Beispiel #3
0
    def evaluate_images(self):
        par_obj.feat_arr = {}
        par_obj.pred_arr = {}
        par_obj.sum_pred = {}
        count = -1
        for b in par_obj.left_2_calc:
            frames =par_obj.frames_2_load[b]
            for i in frames:
                
                v2.im_pred_inline_fn(par_obj, self,inline=True,outer_loop=b,inner_loop=i,count=count)
                v2.evaluate_forest(par_obj,self, False, 0,inline=True,outer_loop=b,inner_loop=i,count=count)
                count = count+1
        v2.apply_correction(par_obj)

        self.save_output_data_btn.setEnabled(True)
        self.image_status_text.showMessage('Status: evaluation finished.')
        par_obj.eval_load_im_win_eval = True
        v2.eval_pred_show_fn(par_obj.curr_img, par_obj,self)