Beispiel #1
0
def VAE_interpolating_experiment(device):
    batch_size = 2
    latent_dim = 100
    z = Variable(torch.randn(batch_size, latent_dim)).to(device)

    model = VAE(100).to(device)

    model.load_state_dict(torch.load(vae_path, map_location=device), strict=False)

    x = Variable(model.generate(z)).to(device)
    x_0 = x[0]
    x_1 = x[1]

    a_list = np.arange(0, 1.1, 0.1)
    z_list = []
    x_list = []
    for a in a_list:
        z_list.append(a*z[0] + (1-a)*z[1])
        x_list.append(a*x_0 + (1-a)*x_1)

    z_list = torch.cat(z_list, dim=0).view(len(a_list),-1)
    x_list =  torch.cat(x_list, dim=0).view(-1,3,32,32)

    zh_y = Variable(model.generate(z_list)).to(device)

    path = 'vae/results/interpolated/VAE_interpolated_zs.png'
    save_images(zh_y, path, nrow=len(zh_y))

    path = 'vae/results/interpolated/VAE_interpolated_xs.png'
    save_images(x_list, path, nrow= len(x_list))

    path = 'vae/results/interpolated/VAE_interpolated_xs_zs.png'
    save_images(torch.cat((x_list, zh_y), dim=0), path, nrow=11)
    results = torch.cat((x_list, zh_y), dim=0)
    difference = x_list - zh_y
    results = torch.cat((results,  difference), dim=0)
    save_images(results, path, nrow=11)
Beispiel #2
0
def VAE_disentangled_representation_experiment(device):
    batch_size = 1
    latent_dim=100
    noise = Variable(torch.randn(batch_size, latent_dim)).to(device)

    model = VAE(100).to(device)

    model.load_state_dict(torch.load(vae_path, map_location=device), strict=False)

    dims = range(0,100)
    outputs = []
    z_y =  Variable(model.generate(noise)).to(device)
    for d in dims:
        zh = make_interpolation(noise, dim=d).view(batch_size, latent_dim)
        output = Variable(model.generate(zh)).to(device)
        outputs.append(output)

    outputs = torch.cat(outputs, dim=0)

    difference = outputs - z_y
    difference = torch.abs(difference).view(100,-1)
    sum_dif = torch.sum(difference, dim=1).detach().cpu().numpy()
    top_sum_diff_indcs = np.unravel_index(np.argsort(sum_dif, axis=None), sum_dif.shape)[0]
    top_sum_diff_indcs = top_sum_diff_indcs[-10:]

    top_k_images = Variable(outputs[top_sum_diff_indcs]).to(device).view(len(top_sum_diff_indcs), -1)
    top_k_images = torch.cat((z_y.view(1, -1), top_k_images))

    path = 'vae/results/interpolated/VAE_top_disentangleds.png'
    save_images(top_k_images, path, nrow=len(top_k_images))
    difference = top_k_images - z_y.view(1, -1)
    top_k_images = torch.cat((top_k_images,  difference), dim=0)
    save_images(top_k_images, path, nrow=11)

    path = 'vae/results/interpolated/VAE_disentangleds_all.png'
    save_images(outputs, path, nrow=10)
sindex = 999
a = train_x[sindex]
b = train_cond[sindex]
print(a.shape)
print(b.shape)
a = np.reshape(a, (-1, 32, 130))
b = np.reshape(b, (-1, 32, 12))
print(a.shape)
print(b.shape)
#initialize model
model = VAE(130, 2048, 3, 12, 128, 128, 32)
model.eval()
dic = torch.load("vae/tr_chord.pt")
for name in list(dic.keys()):
    dic[name.replace('module.', '')] = dic.pop(name)
model.load_state_dict(dic)
if torch.cuda.is_available():
    model = model.cuda()
print(model)

a = torch.from_numpy(a).float()
b = torch.from_numpy(b).float()
res = model.encoder(a, b)
z1 = res[0].loc.detach().numpy()
z2 = res[1].loc.detach().numpy()
print(z1)
print(z1.shape)
print(z2)
print(z2.shape)

z1 = torch.from_numpy(z1).float()
Beispiel #4
0
import torchvision
from torchvision import transforms
from torchvision.utils import save_image
import numpy as np
from tqdm import trange

from sa.model import MnistClassifier
from vae.model import VAE

img_size = 28*28*1
torch.no_grad() # since nothing is trained here


### Prep (e.g. Load Models) ###
vae = VAE(img_size = 28*28, h_dim = 1600, z_dim = 400)
vae.load_state_dict(torch.load('./vae/models/MNIST_EnD.pth'))
vae.cuda()

classifier = MnistClassifier(img_size = img_size)
classifier.load_state_dict(torch.load('./sa/models/MNIST_conv_classifier.pth'))
classifier.eval()
classifier.cuda()
print("models loaded...")

test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=False)
test_data_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=1, shuffle=True)
print("Data loader ready...")

### GA Params ###
gen_num = 500
pop_size = 50