def tiers_allvars(in_file, out_stem, gene_file, pop, yaml_cmds): # populate parameters from YAML module specifications freq = yaml_cmds[yaml_keys.kModules][yaml_keys.kTiering][yaml_keys.kTRareAlleleFreqCutoff] gene_name_col_header = yaml_cmds[yaml_keys.kModules][yaml_keys.kTiering][yaml_keys.kTGeneNameCol] functional_column_headers = yaml_utils.convertColumns(yaml_cmds[yaml_keys.kModules][yaml_keys.kTiering][yaml_keys.kTFunctionalCols], yaml_cmds) skip_filter_pass_check = yaml_cmds[yaml_keys.kModules][yaml_keys.kTiering][yaml_keys.kTSkipFilterPassCheck] # check for whether any variant contains "PASS" cmd = 'grep "PASS" {infile}|grep -v "#"|wc -l'.format(infile=in_file) process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout,stderr = process.communicate() returncode = process.returncode if(returncode != 0): raise ValueError('Failed to search annotated VCF for "PASS" prior to tiering.\ncmd: ' + str(cmd) + '\nErr: ' + str(stderr) + '\nReturncode: ' + returncode + '\nOutput: ' + str(stdout)) #else numHits = int(stdout) # TODO move this to pre-checks (prior to even annotation) if(numHits == 0 and not skip_filter_pass_check): raise ValueError('No variants detected that passed filtering. Re-run STMP with "Skip_Filter_Pass_Check: True" in modules.yml to prioritize all variants anyway.') elif(numHits == 0): print 'NOTICE: no variants detected that passed filtering. Skipping filter PASS check and prioritizing all variants anyway.' else: print 'Found ' + str(numHits) + ' variants that passed filtering.' + ' Tiering just these variants.' skip_filter_pass_check = False #open input and output files and initialize counters and lists for background populations filein = open(in_file, "r") output_log = open(out_stem+".metrics", "w") output_log.write("Metrics for stmp filtering, all variants from reference\n") header = filein.readline().rstrip("\n") headlist = header.split("\t") if(gene_file != None): g_file = open(gene_file, "r") fileoutrare = open(out_stem+'.rare.txt', 'w') fileout0 = open(out_stem+".tier0.txt", 'w') fileout1 = open(out_stem+".tier1.txt", "w") fileout2 = open(out_stem+".tier2.txt", "w") fileout3 = open(out_stem+".tier3.txt", "w") fileout4 = open(out_stem+".tier4.txt", "w") fileoutrare.write(header+"\n") fileout0.write("tier\t"+header + "\n") fileout1.write("tier\t"+header + "\n") fileout2.write("tier\t"+header + "\n") fileout3.write("tier\t"+header + "\n") fileout4.write("tier\t"+header + "\n") total = 0 damaging0 = 0 damaging1 = 0 damaging2 = 0 damaging3 = 0 damaging4 = 0 target_genes = 0 rarevars = 0 allele_freq_cols = yaml_utils.convertColumns(yaml_cmds[yaml_keys.kModules][yaml_keys.kTiering][yaml_keys.kTAlleleFreqCols], yaml_cmds) #convertTieringColumns(yaml_cmds) #debug print 'allele freq cols: ' + str(allele_freq_cols) backpoplist = vcfUtils.get_listindex(headlist, allele_freq_cols) #debug # print 'backpoplist: ' + str(backpoplist) #initialize gene list for region prioritization if(gene_file != None): genes = {} for line in g_file: if line.startswith('#'): continue linelist = line.rstrip("\n").split("\t") gene = linelist[0] if not genes.has_key(gene): genes[gene] = 1 else: # debug: uncomment if not debugging # print 'warning: duplicate gene ' + gene + ' in gene list ' + gene_file None #iterate over input file and parse into tiers for line in filein: total+=1 if ((skip_filter_pass_check or "PASS" in line) and ("#" in line) == 0 and vcfUtils.is_rare(line, freq, backpoplist, yaml_cmds) and not vcfUtils.contains_text('MT', line, [stmp_consts.vcf_col_header_chrom], headlist, yaml_cmds, case_sensitive=False) and not vcfUtils.contains_text('ncRNA', line, functional_column_headers, headlist, yaml_cmds, case_sensitive=True) ): rarevars+=1 fileoutrare.write(line) linelist = line.rstrip("\n").split("\t") # for now tmp = linelist[headlist.index(gene_name_col_header)].split(',') gene = tmp[0] if gene_file == None or genes.has_key(gene): target_genes+=1 # tier 0: clinvar if(vcfUtils.isClinvarPathogenicOrLikelyPathogenic(line, headlist, yaml_cmds) and not vcfUtils.contains_text('0', line, [yaml_utils.get_datasets(yaml_cmds)['clinvar'][yaml_keys.kDAnnotation]+'_'+vcfHeaders.kClinvarStarHeader], headlist, yaml_cmds, case_sensitive=False)): fileout0.write("0\t"+line) damaging0+=1 # tier 1 elif vcfUtils.is_functional(line, "stoploss stopgain splicing frameshift", functional_column_headers, headlist): fileout1.write("1\t"+line) damaging1+=1 # tier 2 elif ((vcfUtils.is_functional(line, "nonsynonymous", functional_column_headers, headlist) and vcfUtils.is_conserved(line, headlist, yaml_cmds)) or vcfUtils.is_functional(line, "nonframeshift", functional_column_headers, headlist)): fileout2.write("2\t"+line) damaging2+=1 # tier 3 elif vcfUtils.is_functional(line, "nonsynonymous", functional_column_headers, headlist) and vcfUtils.is_pathogenic(line, headlist, yaml_cmds): fileout3.write("3\t"+line) damaging3+=1 # tier 4 elif vcfUtils.tolerance_pass(line, headlist, yaml_cmds) and vcfUtils.is_functional(line, "exonic splicing", functional_column_headers, headlist): fileout4.write("4\t"+line) damaging4+=1 # else ignore variant output_log.write("Total variants queried: "+str(total)+"\n") output_log.write("Rare variants (allele freq < {freq}) queried: ".format(freq=str(freq))+str(rarevars)+"\n") output_log.write("Rare variants in {num} target genes: ".format(num=str(len(genes)) if gene_file != None else '')+str(target_genes)+"\n") output_log.write("Candidate variants, tier 0 (rare clinvar pathogenic or likely pathogenic variants with rating > 0 stars): "+str(damaging0)+"\n") output_log.write("Candidate variants, tier 1 (rare LOF variants -- stoploss, stopgain, splicing, and frameshift): "+str(damaging1)+"\n") output_log.write("Candidate variants, tier 2 (rare nonframeshift or (nonsynonymous and conserved) variants): "+str(damaging2)+"\n") output_log.write("Candidate variants, tier 3 (rare nonsynonymous pathogenic variants): "+str(damaging3)+"\n") output_log.write("Candidate variants, tier 4 (all other rare exonic/splicing variants with ExAC tolerance z-score (syn_z or mis_z or lof_z) > 2): "+str(damaging4)+"\n") filein.close() if(gene_file != None): g_file.close() fileoutrare.close() fileout0.close() fileout1.close() fileout2.close() fileout3.close() fileout4.close()
gto_list = linelist[offspring].split(":") if (int(gto_list[dp_num]) == 0): oimputedcounter += 1 gto_list = linelist[mother].split(":") if (int(gto_list[dp_num]) == 0): mimputedcounter += 1 gto_list = linelist[father].split(":") if (int(gto_list[dp_num]) == 0): fimputedcounter += 1 if ((("3" in alleles2) == 0) and (("4" in alleles2) == 0)): tempcode = int(inmap[alleles2]) n_confident += 1 if tempcode in [1, 2, 5, 6, 8, 11, 15, 18, 20, 21, 24, 25]: MIEcounter += 1 if ("#" in line) == 0 and vcfUtils.is_rare( line, freq, backpopindex) and mq >= mapQual and mq0 <= mapQual0: if ((("3" in alleles2) == 0) and (("4" in alleles2) == 0)): #simple de novo case if alleles2 == "0,0,1": deNovo.write(line) counterDN += 1 #rare homozygous case elif alleles2 == "1,1,2": rareHomozygous.write(line) counterRH += 1 #hemizygosity or gene conversion case elif alleles2 == "0,0,2" or alleles2 == "1,0,2" or alleles2 == "0,1,2" or alleles2 == "1,2,0" or alleles2 == "2,1,0":
def tiers_allvars(in_file, out_stem, gene_file, pop, yaml_cmds): # populate parameters from YAML module specifications freq = yaml_cmds[yaml_keys.kModules][yaml_keys.kTiering][yaml_keys.kTRareAlleleFreqCutoff] gene_name_col_header = yaml_cmds[yaml_keys.kModules][yaml_keys.kTiering][yaml_keys.kTGeneNameCol] functional_column_headers = yaml_utils.convertColumns(yaml_cmds[yaml_keys.kModules][yaml_keys.kTiering][yaml_keys.kTFunctionalCols], yaml_cmds) #open input and output files and initialize counters and lists for background populations filein = open(in_file, "r") output_log = open(out_stem+".metrics", "w") output_log.write("Metrics for stmp filtering, all variants from reference\n") header = filein.readline().rstrip("\n") headlist = header.split("\t") if(gene_file != None): g_file = open(gene_file, "r") fileoutrare = open(out_stem+'.rare.txt', 'w') fileout0 = open(out_stem+".tier0.txt", 'w') fileout1 = open(out_stem+".tier1.txt", "w") fileout2 = open(out_stem+".tier2.txt", "w") fileout3 = open(out_stem+".tier3.txt", "w") fileout4 = open(out_stem+".tier4.txt", "w") fileoutrare.write(header+"\n") fileout0.write("tier\t"+header + "\n") fileout1.write("tier\t"+header + "\n") fileout2.write("tier\t"+header + "\n") fileout3.write("tier\t"+header + "\n") fileout4.write("tier\t"+header + "\n") total = 0 damaging0 = 0 damaging1 = 0 damaging2 = 0 damaging3 = 0 damaging4 = 0 target_genes = 0 rarevars = 0 allele_freq_cols = yaml_utils.convertColumns(yaml_cmds[yaml_keys.kModules][yaml_keys.kTiering][yaml_keys.kTAlleleFreqCols], yaml_cmds) #convertTieringColumns(yaml_cmds) backpoplist = vcfUtils.get_listindex(headlist, allele_freq_cols) #initialize gene list for region prioritization if(gene_file != None): genes = {} for line in g_file: if line.startswith('#'): continue linelist = line.rstrip("\n").split("\t") gene = linelist[0] if not genes.has_key(gene): genes[gene] = 1 else: # debug: uncomment if not debugging # print 'warning: duplicate gene ' + gene + ' in gene list ' + gene_file None #iterate over input file and parse into tiers for line in filein: total+=1 if (("PASS" in line) and ("#" in line) == 0 and vcfUtils.is_rare(line, freq, backpoplist) and not vcfUtils.contains_text('MT', line, [stmp_consts.vcf_col_header_chrom], headlist, yaml_cmds, case_sensitive=False) and not vcfUtils.contains_text('ncRNA', line, functional_column_headers, headlist, yaml_cmds, case_sensitive=True) ): rarevars+=1 fileoutrare.write(line) linelist = line.rstrip("\n").split("\t") # for now tmp = linelist[headlist.index(gene_name_col_header)].split(',') gene = tmp[0] if gene_file == None or genes.has_key(gene): target_genes+=1 # tier 0: clinvar if(vcfUtils.isClinvarPathogenicOrLikelyPathogenic(line, headlist, yaml_cmds) and not vcfUtils.contains_text('0', line, [yaml_cmds['clinvar'][yaml_keys.kDAnnotation]+'_'+vcfHeaders.kClinvarStarHeader], headlist, yaml_cmds, case_sensitive=False)): fileout0.write("0\t"+line) damaging0+=1 elif vcfUtils.is_functional(line, "stoploss stopgain splicing frameshift", functional_column_headers, headlist): fileout1.write("1\t"+line) damaging1+=1 elif ((vcfUtils.is_functional(line, "nonsynonymous", functional_column_headers, headlist) and vcfUtils.is_conserved(line, headlist, yaml_cmds)) or vcfUtils.is_functional(line, "nonframeshift", functional_column_headers, headlist)): fileout2.write("2\t"+line) damaging2+=1 elif vcfUtils.is_functional(line, "nonsynonymous", functional_column_headers, headlist) and vcfUtils.is_pathogenic(line, headlist, yaml_cmds): fileout3.write("3\t"+line) damaging3+=1 elif vcfUtils.tolerance_pass(line, headlist, yaml_cmds): fileout4.write("4\t"+line) damaging4+=1 # else ignore variant output_log.write("Total variants queried: "+str(total)+"\n") output_log.write("Rare variants (allele freq < {freq}) queried: ".format(freq=str(freq))+str(rarevars)+"\n") output_log.write("Rare variants in {num} target genes: ".format(num=str(len(genes)) if gene_file != None else '')+str(target_genes)+"\n") output_log.write("Candidate variants, tier 0 (rare clinvar pathogenic or likely pathogenic variants): "+str(damaging0)+"\n") output_log.write("Candidate variants, tier 1 (rare LOF variants -- stoploss, stopgain, splicing, and frameshift): "+str(damaging1)+"\n") output_log.write("Candidate variants, tier 2 (rare nonframeshift or (nonsynonymous and conserved) variants): "+str(damaging2)+"\n") output_log.write("Candidate variants, tier 3 (rare nonsynonymous pathogenic variants): "+str(damaging3)+"\n") output_log.write("Candidate variants, tier 4 (all other rare variants with ExAC tolerance z-score (syn_z or mis_z or lof_z) > 2): "+str(damaging4)+"\n") filein.close() if(gene_file != None): g_file.close() fileoutrare.close() fileout0.close() fileout1.close() fileout2.close() fileout3.close() fileout4.close()
def tiers_allvars(in_file, out_stem, gene_file, pop, yaml_cmds, freq=0.01, geneNameCol=82): #open input and output files and initialize counters and lists for background populations filein = open(in_file, "r") output_log = open(out_stem+".metrics", "w") output_log.write("Metrics for stmp filtering, all variants from reference\n") header = filein.readline().rstrip("\n") headlist = header.split("\t") g_file = open(gene_file, "r") fileout0 = open(out_stem+".tier0.txt", 'w') fileout1 = open(out_stem+".tier1.txt", "w") fileout2 = open(out_stem+".tier2.txt", "w") fileout3 = open(out_stem+".tier3.txt", "w") fileout4 = open(out_stem+".tier4.txt", "w") fileout0.write(header + "\n") fileout1.write(header + "\n") fileout2.write(header + "\n") fileout3.write(header + "\n") fileout4.write(header + "\n") total = 0 damaging0 = 0 damaging1 = 0 damaging2 = 0 damaging3 = 0 damaging4 = 0 target_genes = 0 rarevars = 0 if (pop == "CEU") or (pop == "c"): backpoplist = vcfUtils.get_listindex(headlist, [vcfHeaders.kHapMap2And3_CEU, vcfHeaders.k1000g_all, vcfHeaders.k1000g_eur, vcfHeaders.kCg69, vcfHeaders.kEsp6500si_ALL, vcfHeaders.kEsp6500si_EA]) elif (pop == "ASN") or (pop == "a"): backpoplist = vcfUtils.get_listindex(headlist, [vcfHeaders.k_hapmap2and3_CHB, vcfHeaders.k1000g_all, vcfHeaders.kCg69, vcfHeaders.kEsp6500si_ALL]) elif (pop == "AFR") or (pop == "f"): backpoplist = vcfUtils.get_listindex(headlist, [vcfHeaders.k_hapmap2and3_YRI, vcfHeaders.k1000g_all, vcfHeaders.k1000g_afr, vcfHeaders.kCg69, vcfHeaders.kEsp6500si_ALL, vcfHeaders.k_esp6500si_AA]) else: print >> sys.stderr, "Error in diseaseUtils.tiers_allvars - Population specified is not supported" exit(1) #initialize gene list for region prioritization genes = {} for line in g_file: linelist = line.split("\t") gene = linelist[1] if genes.has_key(gene) == 0: genes[gene] = linelist[2]+":"+linelist[3] else: genes[gene] = genes[gene]+";"+linelist[2]+":"+linelist[3] #iterate over input file and parse into tiers for line in filein: total+=1 if ("PASS" in line) and ("#" in line) == 0 and vcfUtils.is_rare(line, freq, backpoplist): rarevars+=1 linelist = line.split("\t") # for now tmp = linelist[geneNameCol].split(',') gene = tmp[0] if genes.has_key(gene): target_genes+=1 # tier 0: clinvar if(vcfUtils.isClinvarPathogenicOrLikelyPathogenic(line, headlist, yaml_cmds)): fileout0.write(line) damaging0+=1 elif vcfUtils.is_functional(line, "stoploss stopgain splicing frameshift"): fileout1.write(line) damaging1+=1 elif (vcfUtils.is_functional(line, "nonsynonymous") and vcfUtils.is_conserved(line, headlist, 2)) or ("nonframeshift" in line): fileout2.write(line) damaging2+=1 elif vcfUtils.is_functional(line, "nonsynonymous") and vcfUtils.is_pathogenic(line, headlist, 2): fileout3.write(line) damaging3+=1 else: fileout4.write(line) damaging4+=1 output_log.write("Total variants queried: "+str(total)+"\n") output_log.write("Rare variants queried: "+str(rarevars)+"\n") output_log.write("Rare variants in target genes: "+str(target_genes)+"\n") output_log.write("Candidate variants, tier 0: "+str(damaging0)+"\n") output_log.write("Candidate variants, tier 1: "+str(damaging1)+"\n") output_log.write("Candidate variants, tier 2: "+str(damaging2)+"\n") output_log.write("Candidate variants, tier 3: "+str(damaging3)+"\n") output_log.write("Candidate variants, tier 4: "+str(damaging4)+"\n") filein.close() g_file.close() fileout0.close() fileout1.close() fileout2.close() fileout3.close() fileout4.close()
def tiers_target(in_file, out_stem, gene_file, pop, yaml_cmds, freq=0.01): #open input and output files and initialize counters and lists for background populations filein = open(in_file, "r") g_file = open(gene_file, "r") header = filein.readline().rstrip("\n") headlist = header.split("\t") output_log = open(out_stem+".metrics", "w") output_log.write("Metrics for stmp filtering, clinvar variants\n") fileout0 = open(out_stem+".tier0.txt", 'w') fileout1 = open(out_stem+".tier1.txt", "w") fileout2 = open(out_stem+".tier2.txt", "w") fileout3 = open(out_stem+".tier3.txt", "w") fileout4 = open(out_stem+".tier4.txt", "w") fileout1.write(header + "\n") fileout2.write(header + "\n") fileout3.write(header + "\n") fileout4.write(header + "\n") total = 0 damaging0 = 0 damaging1 = 0 damaging2 = 0 damaging3 = 0 damaging4 = 0 target_genes = 0 # TODO: generate these headers as dynamically as possible using info in the YAML. # TODO test to make sure each of these headers actually exists in the annotated file and warn if any are missing if (pop == "CEU") or (pop == "c"): backpoplist = vcfUtils.get_listindex(headlist, "hg19_hapmap2and3_CEU_info hg19_popfreq_all_20150413_1000g_all hg19_popfreq_all_20150413_1000g_eur hg19_cg69_info hg19_esp6500si_all_info hg19_popfreq_all_20150413_esp6500siv2_all hg19_esp6500si_ea_info hg19_popfreq_all_20150413_esp6500siv2_ea") # backpoplist = vcfUtils.get_listindex(headlist, "hapmap2and3_CEU 1000g2010nov_ALL 1000g2011may_ALL 1000g2012apr_ALL 1000g2012apr_EUR cg69 esp6500si_ALL esp6500si_EA") elif (pop == "ASN") or (pop == "a"): backpoplist = vcfUtils.get_listindex(headlist, "hg19_hapmap2and3_CHB_info hg19_popfreq_all_20150413_1000g_all 1000g2012apr_ASN hg19_cg69_info hg19_esp6500si_all_info hg19_popfreq_all_20150413_esp6500siv2_all") # WARNING missing 1000g_ASN in curent datasets # backpoplist = vcfUtils.get_listindex(headlist, "hapmap2and3_CHB 1000g2010nov_ALL 1000g2011may_ALL 1000g2012apr_ALL 1000g2012apr_ASN cg69 esp6500si_ALL") elif (pop == "AFR") or (pop == "f"): backpoplist = vcfUtils.get_listindex(headlist, "hg19_hapmap2and3_YRI_info hg19_popfreq_all_20150413_1000g_all hg19_popfreq_all_20150413_1000g_afr hg19_cg69_info hg19_esp6500si_all_info hg19_popfreq_all_20150413_esp6500siv2_all hg19_esp6500si_aa_info hg19_popfreq_all_20150413_esp6500siv2_aa") else: print >> sys.stderr, "Error in diseaseUtils.tiers_allvars - Population specified is not supported" exit(1) #initialize gene list for region prioritization genes = {} for line in g_file: linelist = line.split("\t") gene = linelist[1] if genes.has_key(gene) == 0: genes[gene] = linelist[2]+":"+linelist[3] else: genes[gene] = genes[gene]+";"+linelist[2]+":"+linelist[3] #iterate over input file and parse into tiers for line in filein: total+=1 if ("PASS" in line) and (("#" in line) == 0) and (("0/1" in line) or ("1/1" in line)): linelist = line.split("\t") gene = linelist[1] if genes.has_key(gene): target_genes+=1 # tier 0: clinvar if(vcfUtils.isClinvarPathogenicOrLikelyPathogenic(line, headlist, yaml_cmds)): fileout0.write(line) damaging0+=1 elif vcfUtils.is_functional(line, "stoploss stopgain splicing frameshift"): fileout1.write(line) damaging1+=1 elif vcfUtils.is_rare(line, freq, backpoplist): fileout2.write(line) damaging2+=1 elif vcfUtils.is_functional(line, "nonframeshift nonsynonymous"): fileout3.write(line) damaging3+=1 else: fileout4.write(line) damaging4+=1 output_log.write("Total variants queried: "+str(total)+"\n") output_log.write("Total variants in gene list: "+str(target_genes)+"\n") output_log.write("Candidate variants, tier 0: "+str(damaging0)+"\n") output_log.write("Candidate variants, tier 1: "+str(damaging1)+"\n") output_log.write("Candidate variants, tier 2: "+str(damaging2)+"\n") output_log.write("Candidate variants, tier 3: "+str(damaging3)+"\n") output_log.write("Candidate variants, tier 4: "+str(damaging4)+"\n") filein.close() g_file.close() fileout0.close() fileout1.close() fileout2.close() fileout3.close() fileout4.close()
def tiers_allvars(in_file, out_stem, gene_file, pop, yaml_cmds): # populate parameters from YAML module specifications freq = yaml_cmds[yaml_keys.kModules][yaml_keys.kTiering][ yaml_keys.kTRareAlleleFreqCutoff] gene_name_col_header = yaml_cmds[yaml_keys.kModules][yaml_keys.kTiering][ yaml_keys.kTGeneNameCol] functional_column_headers = yaml_utils.convertColumns( yaml_cmds[yaml_keys.kModules][yaml_keys.kTiering][ yaml_keys.kTFunctionalCols], yaml_cmds) skip_filter_pass_check = yaml_cmds[yaml_keys.kModules][yaml_keys.kTiering][ yaml_keys.kTSkipFilterPassCheck] # check for whether any variant contains "PASS" cmd = 'grep "PASS" {infile}|grep -v "#"|wc -l'.format(infile=in_file) process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() returncode = process.returncode if (returncode != 0): raise ValueError( 'Failed to search annotated VCF for "PASS" prior to tiering.\ncmd: ' + str(cmd) + '\nErr: ' + str(stderr) + '\nReturncode: ' + returncode + '\nOutput: ' + str(stdout)) #else numHits = int(stdout) # TODO move this to pre-checks (prior to even annotation) if (numHits == 0 and not skip_filter_pass_check): raise ValueError( 'No variants detected that passed filtering. Re-run STMP with "Skip_Filter_Pass_Check: True" in modules.yml to prioritize all variants anyway.' ) elif (numHits == 0): print 'NOTICE: no variants detected that passed filtering. Skipping filter PASS check and prioritizing all variants anyway.' else: print 'Found ' + str( numHits ) + ' variants that passed filtering.' + ' Tiering just these variants.' skip_filter_pass_check = False #open input and output files and initialize counters and lists for background populations filein = open(in_file, "r") output_log = open(out_stem + ".metrics", "w") output_log.write( "Metrics for stmp filtering, all variants from reference\n") header = filein.readline().rstrip("\n") headlist = header.split("\t") if (gene_file != None): g_file = open(gene_file, "r") fileoutrare = open(out_stem + '.rare.txt', 'w') fileout0 = open(out_stem + ".tier0.txt", 'w') fileout1 = open(out_stem + ".tier1.txt", "w") fileout2 = open(out_stem + ".tier2.txt", "w") fileout3 = open(out_stem + ".tier3.txt", "w") fileout4 = open(out_stem + ".tier4.txt", "w") fileoutrare.write(header + "\n") fileout0.write("tier\t" + header + "\n") fileout1.write("tier\t" + header + "\n") fileout2.write("tier\t" + header + "\n") fileout3.write("tier\t" + header + "\n") fileout4.write("tier\t" + header + "\n") total = 0 damaging0 = 0 damaging1 = 0 damaging2 = 0 damaging3 = 0 damaging4 = 0 target_genes = 0 rarevars = 0 allele_freq_cols = yaml_utils.convertColumns( yaml_cmds[yaml_keys.kModules][yaml_keys.kTiering][ yaml_keys.kTAlleleFreqCols], yaml_cmds) #convertTieringColumns(yaml_cmds) #debug print 'allele freq cols: ' + str(allele_freq_cols) backpoplist = vcfUtils.get_listindex(headlist, allele_freq_cols) #debug # print 'backpoplist: ' + str(backpoplist) #initialize gene list for region prioritization if (gene_file != None): genes = {} for line in g_file: if line.startswith('#'): continue linelist = line.rstrip("\n").split("\t") gene = linelist[0] if not genes.has_key(gene): genes[gene] = 1 else: # debug: uncomment if not debugging # print 'warning: duplicate gene ' + gene + ' in gene list ' + gene_file None #iterate over input file and parse into tiers for line in filein: total += 1 if ((skip_filter_pass_check or "PASS" in line) and ("#" in line) == 0 and vcfUtils.is_rare(line, freq, backpoplist, yaml_cmds) and not vcfUtils.contains_text( 'MT', line, [stmp_consts.vcf_col_header_chrom], headlist, yaml_cmds, case_sensitive=False) and not vcfUtils.contains_text('ncRNA', line, functional_column_headers, headlist, yaml_cmds, case_sensitive=True)): rarevars += 1 fileoutrare.write(line) linelist = line.rstrip("\n").split("\t") # for now tmp = linelist[headlist.index(gene_name_col_header)].split(',') gene = tmp[0] if gene_file == None or genes.has_key(gene): target_genes += 1 # tier 0: clinvar if (vcfUtils.isClinvarPathogenicOrLikelyPathogenic( line, headlist, yaml_cmds) and not vcfUtils.contains_text( '0', line, [ yaml_utils.get_datasets(yaml_cmds)['clinvar'][ yaml_keys.kDAnnotation] + '_' + vcfHeaders.kClinvarStarHeader ], headlist, yaml_cmds, case_sensitive=False)): fileout0.write("0\t" + line) damaging0 += 1 # tier 1 elif vcfUtils.is_functional( line, "stoploss stopgain splicing frameshift", functional_column_headers, headlist): fileout1.write("1\t" + line) damaging1 += 1 # tier 2 elif ((vcfUtils.is_functional(line, "nonsynonymous", functional_column_headers, headlist) and vcfUtils.is_conserved(line, headlist, yaml_cmds)) or vcfUtils.is_functional(line, "nonframeshift", functional_column_headers, headlist)): fileout2.write("2\t" + line) damaging2 += 1 # tier 3 elif vcfUtils.is_functional( line, "nonsynonymous", functional_column_headers, headlist) and vcfUtils.is_pathogenic( line, headlist, yaml_cmds): fileout3.write("3\t" + line) damaging3 += 1 # tier 4 elif vcfUtils.tolerance_pass( line, headlist, yaml_cmds) and vcfUtils.is_functional( line, "exonic splicing", functional_column_headers, headlist): fileout4.write("4\t" + line) damaging4 += 1 # else ignore variant output_log.write("Total variants queried: " + str(total) + "\n") output_log.write("Rare variants (allele freq < {freq}) queried: ".format( freq=str(freq)) + str(rarevars) + "\n") output_log.write("Rare variants in {num} target genes: ".format( num=str(len(genes)) if gene_file != None else '') + str(target_genes) + "\n") output_log.write( "Candidate variants, tier 0 (rare clinvar pathogenic or likely pathogenic variants with rating > 0 stars): " + str(damaging0) + "\n") output_log.write( "Candidate variants, tier 1 (rare LOF variants -- stoploss, stopgain, splicing, and frameshift): " + str(damaging1) + "\n") output_log.write( "Candidate variants, tier 2 (rare nonframeshift or (nonsynonymous and conserved) variants): " + str(damaging2) + "\n") output_log.write( "Candidate variants, tier 3 (rare nonsynonymous pathogenic variants): " + str(damaging3) + "\n") output_log.write( "Candidate variants, tier 4 (all other rare exonic/splicing variants with ExAC tolerance z-score (syn_z or mis_z or lof_z) > 2): " + str(damaging4) + "\n") filein.close() if (gene_file != None): g_file.close() fileoutrare.close() fileout0.close() fileout1.close() fileout2.close() fileout3.close() fileout4.close()
gto_list = linelist[offspring].split(":") if (int(gto_list[dp_num]) == 0): oimputedcounter+=1 gto_list = linelist[mother].split(":") if (int(gto_list[dp_num]) == 0): mimputedcounter+=1 gto_list = linelist[father].split(":") if (int(gto_list[dp_num]) == 0): fimputedcounter+=1 if ((("3" in alleles2) == 0) and (("4" in alleles2) == 0)): tempcode = int(inmap[alleles2]) n_confident+=1 if tempcode in [1, 2, 5, 6, 8, 11, 15, 18, 20, 21, 24, 25]: MIEcounter+=1 if ("#" in line) == 0 and vcfUtils.is_rare(line, freq, backpopindex) and mq >= mapQual and mq0 <= mapQual0: if ((("3" in alleles2) == 0) and (("4" in alleles2) == 0)): #simple de novo case if alleles2 == "0,0,1": deNovo.write(line) counterDN+=1 #rare homozygous case elif alleles2 == "1,1,2": rareHomozygous.write(line) counterRH+=1 #hemizygosity or gene conversion case elif alleles2 == "0,0,2" or alleles2 == "1,0,2" or alleles2 == "0,1,2" or alleles2 == "1,2,0" or alleles2 == "2,1,0":