Beispiel #1
0
def showSolution3D(S, start, goal):
    from vedo import Text3D, Cube, Line, Grid, merge, show

    pts, cubes, txts = [], [], []
    pts = [(x, -y) for y, x in S[0]]
    for y, line in enumerate(Z):
        for x, c in enumerate(line):
            if c: cubes.append(Cube([x, -y, 0]))

    path = Line(pts).lw(6).c('tomato')
    walls = merge(cubes).clean().flat().texture('wood1')

    sy, sx = S[1].shape
    gradient = np.flip(S[1], axis=0).ravel()
    grd = Grid(pos=((sx - 1) / 2, -(sy - 1) / 2, -0.49),
               sx=sx,
               sy=sy,
               resx=sx,
               resy=sy)
    grd.lw(0).wireframe(False).cmap('gist_earth_r', gradient, on='cells')
    grd.addScalarBar(title='Gradient', horizontal=True, c='k', nlabels=2)

    txts.append(__doc__)
    txts.append(Text3D('Start', pos=[start[1] - 1, -start[0] + 1.5, 1], c='k'))
    txts.append(Text3D('Goal!', pos=[goal[1] - 2, -goal[0] - 2.7, 1], c='k'))
    show(path, walls, grd, txts, axes=0, zoom=1.2)
Beispiel #2
0
import numpy as np
from vedo import settings, Line, show, interactive

settings.defaultFont = "Theemim"

# Generate random data
np.random.seed(1)
data = np.random.uniform(0, 1, (25, 100))
X = np.linspace(-1, 1, data.shape[-1])
G = 0.15 * np.exp(-4 * X**2) # use a  gaussian as a weight

# Generate line plots
lines = []
for i in range(len(data)):
    pts = np.c_[X, np.zeros_like(X)+i/10, G*data[i]]
    lines.append(Line(pts, lw=3))

# Set up the first frame
axes = dict(xtitle='\Deltat /\mus', ytitle="source", ztitle="")
plt = show(lines, __doc__, axes=axes, elevation=-30, interactive=False, bg='k8')

# vd = Video("anim_lines.mp4")
for i in range(50):
    data[:, 1:] = data[:, :-1]                      # Shift data to the right
    data[:, 0] = np.random.uniform(0, 1, len(data)) # Fill-in new values
    for i in range(len(data)):                      # Update data
        newpts = lines[i].points()
        newpts[:,2] = G * data[i]
        lines[i].points(newpts).cmap('gist_heat_r', newpts[:,2])
    plt.show()
    # vd.addFrame()
Beispiel #3
0
"""Use iminuit to find the minimum of a 3D scalar field"""
from vedo import show, Point, Line, printc
from iminuit import Minuit
# pip install iminuit  # https://github.com/scikit-hep/iminuit
import numpy as np


def fcn(x, y, z):
    f = (x - 4)**4 + (y - 3)**4 + (z - 2)**2
    if not vals or f < vals[-1]:
        path.append([x, y, z])
        vals.append(f)
    return f


paths = []
for x, y, z in np.random.rand(200, 3) * 3:
    path, vals = [], []
    m = Minuit(fcn, x=x, y=y, z=z)
    m.errordef = m.LEAST_SQUARES

    # m.simplex()  # run simplex optimiser
    m.migrad()  # run migrad optimiser

    line = Line(path).cmap('jet_r', vals).lw(2).alpha(0.25)
    paths.append(line)

printc('Last optimization output:', c='green7', invert=1)
printc(m, c='green7', italic=1)
show(paths, Point([4, 3, 2]), __doc__, axes=1)
Beispiel #4
0
def f(psi):
    # a smart numpy way to calculate the second derivative in x:
    nabla2psi[1 : N+1] = (psi[0:N] + psi[2 : N+2] - 2 * psi[1 : N+1]) / dx2
    return 1j * (nabla2psi - V*psi)  # this is the RH of Schroedinger equation!

def d_dt(psi):  # find Psi(t+dt)-Psi(t) /dt with 4th order Runge-Kutta method
    k1 = f(psi)
    k2 = f(psi + dt / 2 * k1)
    k3 = f(psi + dt / 2 * k2)
    k4 = f(psi + dt * k3)
    return (k1 + 2 * k2 + 2 * k3 + k4) / 6


plt = Plotter(interactive=False)
bck = plt.load(dataurl+"images/schrod.png").alpha(.3).scale(.0256).pos([0,-5,-.1])
barrier = Line(np.stack((x, V*15, np.zeros_like(x)), axis=1), c="black", lw=2)
box = bck.box().c('black')

lines = []
for i in range(0, Nsteps):
    for j in range(500):
        Psi += d_dt(Psi) * dt  # integrate for a while before showing things
    A = np.real(Psi * np.conj(Psi)) * 1.5  # psi squared, probability(x)
    coords = np.stack((x, A), axis=1)
    Aline = Line(coords, c="db", lw=3)
    plt.show(barrier, bck, Aline, box).remove(Aline)
    lines.append([Aline, A])   # store objects

# now show the same lines along z representing time
plt.actors= [] # clean up internal list of objects to show
plt.camera.Elevation(20)
Beispiel #5
0
printc("In the example shown:\n", repr(txt), c='y')
print()

printc('Font Summary', c='g', box='-')

for i, f in enumerate(fonts):
    printc('Font: ', f, c='g')

################################################################################## 3D
cam = dict(pos=(67.7, -3.94, 145),
           focalPoint=(29.3, -37.3, 1.55),
           viewup=(-0.0642, 0.976, -0.210),
           distance=152,
           clippingRange=(122, 194))

ln0 = Line([-1, 1.5], [52, 1.5], lw=0.1, c='grey')
ln1 = Line([-1, -2], [52, -2], lw=0.1, c='grey')
fn3d = [ln0, ln1]
gap = 0
txt = "Font Name\n"
for i, font in enumerate(fonts + ['VTK']):
    txt += font + ": abcdefghijklmnopqrtuvwxyz 1234567890"
    if font in [
            "Theemim", "Kanopus", "Normografo", "VictorMono", "Galax",
            "LogoType", "Comae"
    ]:
        txt += "\n         αβγδεζηθκλμνξπρστφχψω ΔΘΛΞΠΣΦΨΩ"
        gap -= 2
    if "Biysk" in font: txt += " v3do"
    if "VictorMono" == font or "Kanopus" == font or "LogoType" == font or "Comae" == font:
        txt += " БГДЖЗИЙКЛ"
Beispiel #6
0
"""Koch snowflake fractal"""
from vedo import sqrt, Line, show

levels = 7

def koch(level):
    # Compute Koch fractal contour points
    k = sqrt(3)/2
    if level:
        points = koch(level-1) + [(0, 0)]  # recursion!
        kpts = []
        for i in range(len(points)-1):
            p1, p2 = points[i], points[i+1]
            dx, dy = (p2[0]-p1[0])/3, (p2[1]-p1[1])/3
            pa = (p1[0] + dx  , p1[1] + dy  )
            pb = (p1[0] + dx*2, p1[1] + dy*2)
            z = complex(pb[0]-pa[0], pb[1]-pa[1]) * (0.5-k*1j)
            p3 = (pa[0]+z.real, pa[1]+z.imag)
            kpts += [p1, pa, p3, pb]
        return kpts
    else:
        return [(0, 0), (1, 0), (0.5, k)]

kochs = []
for i in range(levels):
    # Create a Line from the points and mesh the inside with minimum resolution
    kmsh = Line(koch(i)).tomesh(resMesh=1).lw(0).color(-i).z(-i/1000)
    kochs.append(kmsh)

show(kochs, __doc__+ f"\nlevels: {levels}\npoints: {kmsh.N()}", axes=10)
v = TestFunction(V)
a = dot(grad(w), grad(v)) * dx
L = p * v * dx

# Compute solution
w = Function(V)
solve(a == L, w, bc)

p = interpolate(p, V)

# Curve plot along x = 0 comparing p and w
import numpy as np
tol = 0.001  # avoid hitting points outside the domain
y = np.linspace(-1 + tol, 1 - tol, 101)
points = [(0, y_) for y_ in y]  # 2D points
w_line = np.array([w(point) for point in points])
p_line = np.array([p(point) for point in points])

#######################################################################
from vedo.dolfin import plot
from vedo import Line, Latex

pde = r'-T \nabla^{2} D=p, ~\Omega=\left\{(x, y) | x^{2}+y^{2} \leq R\right\}'
tex = Latex(pde, pos=(0, 1.1, .1), s=0.2, c='w')

wline = Line(y, w_line * 10, c='white', lw=4)
pline = Line(y, p_line / 4, c='lightgreen', lw=4)

plot(w, wline, tex, at=0, N=2, bg='bb', text='Deflection')
plot(p, pline, at=1, bg='bb', text='Load')
Beispiel #8
0
# time goes from 0 to 90 hours
pb = ProgressBar(0, 50, step=0.1, c=1)
for t in pb.range():
    msg = "[Nb,Ng,Nr,t] = "
    plt.actors = []  # clean up the list of actors

    for colony in colonies:

        newcells = []
        for cell in colony.cells:

            if cell.dieAt(t):
                continue
            if cell.divideAt(t):
                newc = cell.split()  # make daughter cell
                plt += Line(cell.pos, newc.pos, c="k", lw=3, alpha=0.5)
                newcells.append(newc)
            newcells.append(cell)
        colony.cells = newcells

        pts = [c.pos for c in newcells]  # draw all points at once
        plt += Points(pts, c=colony.color, r=5, alpha=0.80)  # nucleus
        plt += Points(pts, c=colony.color, r=15, alpha=0.05)  # halo
        msg += str(len(colony.cells)) + ","

    pb.print(msg + str(int(t)))
    plt.show(resetcam=0)
    if plt.escaped: exit(0)  # if ESC is hit during the loop

# draw the oriented ellipsoid that contains 50% of the cells
for colony in colonies:
Beispiel #9
0
                 )  # this is the RH of Schroedinger equation!


def d_dt(psi):  # find Psi(t+dt)-Psi(t) /dt with 4th order Runge-Kutta method
    k1 = f(psi)
    k2 = f(psi + dt / 2 * k1)
    k3 = f(psi + dt / 2 * k2)
    k4 = f(psi + dt * k3)
    return (k1 + 2 * k2 + 2 * k3 + k4) / 6


vp = Plotter(interactive=0, axes=2, size=(1000, 500))
vp.xtitle = ""
vp.ytitle = "|\Psi(x,t)|\^2"

bck = vp.load(datadir + "images/schrod.png").scale(0.015).pos([0, 0, -0.5])
barrier = Line(np.stack((x, V * 15), axis=1), c="dr", lw=3)

lines = []
for j in range(150):
    for i in range(500):
        Psi += d_dt(Psi) * dt  # integrate for a while

    A = np.real(Psi * np.conj(Psi)) * 1.5  # psi squared, probability(x)
    coords = np.stack((x, A, np.zeros_like(x)), axis=1)
    Aline = Tube(coords, c="db", r=0.08)
    vp.show(Aline, barrier, bck, zoom=2)
    lines.append(Aline)

interactive()
Beispiel #10
0
               sin(state[2]) * cosa + M2 * L2 * state[3] * state[3] * sina -
               (M1 + M2) * G * sin(state[0])) / den1
    dydx[2] = state[3]
    den2 = (L2 / L1) * den1
    dydx[3] = (-M2 * L2 * state[3] * state[3] * sina * cosa +
               (M1 + M2) * G * sin(state[0]) * cosa -
               (M1 + M2) * L1 * state[1] * state[1] * sina -
               (M1 + M2) * G * sin(state[2])) / den2
    return dydx


t = np.arange(0.0, 10.0, dt)
state = np.radians([th1, w1, th2, w2])
y = integrate.odeint(derivs, state, t)

P1 = np.dstack([L1 * sin(y[:, 0]), -L1 * cos(y[:, 0])]).squeeze()
P2 = P1 + np.dstack([L2 * sin(y[:, 2]), -L2 * cos(y[:, 2])]).squeeze()

ax = Axes(xrange=(-2, 2), yrange=(-2, 1), htitle=__doc__)
pb = ProgressBar(0, len(t), c="b")
for i in pb.range():
    j = max(i - 5, 0)
    k = max(i - 10, 0)
    l1 = Line([[0, 0], P1[i], P2[i]]).lw(7).c("blue2")
    l2 = Line([[0, 0], P1[j], P2[j]]).lw(6).c("blue2", 0.3)
    l3 = Line([[0, 0], P1[k], P2[k]]).lw(5).c("blue2", 0.1)
    pt = Points([P1[i], P2[i], P1[j], P2[j], P1[k], P2[k]],
                r=8).c("blue2", 0.2)
    show(l1, l2, l3, pt, ax, interactive=False, size=(900, 700), zoom=1.4)
    pb.print()
Beispiel #11
0
import numpy as np

# create 5 whisker bars with some random data
ws = []
for i in range(5):
    xval = i * 2  # position along x axis
    data = xval / 4 + np.random.randn(25)
    w = whisker(data, bc=i, s=0.5).x(xval)
    ws.append(w)
    # print(i, 'whisker:\n', w.info)

# build some theoretical expectation to be shown as a grey band
x = np.linspace(-1, 9, 100)
y = x / 5 + 0.2 * np.sin(x)
ye = y**2 / 5 + 0.1  # error on y
line = Line(np.c_[x, y])
band = Ribbon(np.c_[x, y - ye], np.c_[x, y + ye]).c('black', 0.1)

# build braces to inndicate stats significance and dosage
bra1 = Brace([0, 3], [2, 3], comment='*~*', s=0.7, style='[')
bra2 = Brace([4, -1], [8, -1], comment='dose > 3~\mug/kg', s=0.7)

# build custom axes
axes = Axes(
    xrange=[-1, 9],
    yrange=[-3, 5],
    htitle='\beta_c -expression: change in time',
    xtitle=' ',
    ytitle='Level of \beta_c  protein in \muM/l',
    xValuesAndLabels=[
        (0, 'Experiment^A\nat t=1h'),
Beispiel #12
0
"""Forward kinematics: hover the mouse to drag the chain"""
from vedo import Plotter, versor, Plane, Line

n = 15  # number of points
l = 3  # length of one segment


def move(evt):
    if not evt.actor:
        return
    coords = line.points()
    coords[0] = evt.picked3d
    for i in range(1, n):
        v = versor(coords[i] - coords[i - 1])
        coords[i] = coords[i - 1] + v * l
    line.points(coords)  # update positions
    nodes.points(coords)
    plt.render()


plt = Plotter()
plt.addCallback("mouse move", move)

surf = Plane(sx=60, sy=60)
line = Line([l * n / 2, 0], [-l * n / 2, 0], res=n, lw=12)
nodes = line.clone().c('red3').pointSize(15)

plt.show(surf, line, nodes, __doc__, zoom=1.3).close()
Beispiel #13
0
"""Share the same color and trasparency mapping across different volumes"""
from vedo import Volume, Line, show
import numpy as np

arr = np.zeros(shape=(50, 50, 50))
for i in range(50):
    for j in range(50):
        for k in range(50):
            arr[i, j, k] = j

vol1 = Volume(arr).mode(1).cmap('jet', alpha=[0, 1], vmin=0,
                                vmax=80).addScalarBar("vol1")
vol2 = Volume(arr + 30).mode(1).cmap('jet', alpha=[0, 1], vmin=0,
                                     vmax=80).addScalarBar("vol2")

# or equivalently, to set transparency:
# vol1.alpha([0,1], vmin=0, vmax=70)

# can also manually build a scalarbar object to span the whole range:
sb = Line([50, 0, 0],
          [50, 50, 0]).cmap('jet', [0, 70]).addScalarBar3D("vol2",
                                                           c='black').scalarbar

show([(vol1, __doc__), (vol2, sb)], N=2, axes=1)