Beispiel #1
0
def run():
    img_path = input('Input the path and image name:')
    img_ready = utils.load_image(img_path)

    fig = plt.figure(u"Top-5 预测结果")

    with tf.Session() as sess:
        images = tf.placeholder(tf.float32, [1, 224, 224, 3])
        vgg = vgg16.Vgg16()
        vgg.forward(images)
        probability = sess.run(vgg.prob, feed_dict={images: img_ready})
        top5 = np.argsort(probability[0])[-1:-6:-1]
        print("top5:", top5)

        values = []
        bar_label = []
        for n, i in enumerate(top5):
            print("n:", n)
            print("i:", i)
            values.append(probability[0][i])
            bar_label.append(labels[i])
            print(i, ":", labels[i], "----", utils.percent(probability[0][i]))

        ax = fig.add_subplot(111)
        ax.bar(range(len(values)), values, tick_label=bar_label, width=0.5, fc='g')
        ax.set_ylabel(u'probabilityit')
        ax.set_title(u'Top-5')
        for a, b in zip(range(len(values)), values):
            ax.text(a, b + 0.0005, utils.percent(b), ha='center', va='bottom', fontsize=7)
        plt.show()
Beispiel #2
0
def call_vgg_16(input_bgr):
    '''call for vgg_16 model

        args:
            input_bgr: bgr image [batch, height, width, 3] values scaled [-1, 1]
        return:
            f1, f2, f3, f4
    '''
    input_bgr_scaled = data_generator.Data_Generator.de_scale_img(input_bgr)
    input_bgr_224 = tf.image.resize_images(input_bgr_scaled, [224, 224])

    vgg_16_model = vgg_16.Vgg16(vgg16_npy_path=flags.FLAGS.vgg_model_dir)
    vgg_16_model.build(input_bgr_224)

    f1, f2, f3, f4 = vgg_16_model.conv1_2, vgg_16_model.conv2_2, vgg_16_model.conv3_3, vgg_16_model.conv4_3

    return f1, f2, f3, f4
Beispiel #3
0
def init_model(train=True):
    """
    Init model for both training and testing.
    :param train: indicate if current is in training
    :return: all stuffs that need for this model
    """
    # Create training summary folder if not exist
    create_folder("summary/train/images")

    # Create testing summary folder if not exist
    create_folder("summary/test/images")

    # Use gpu if exist
    with tf.device('/device:GPU:0'):
        # Init image data file path
        print("⏳ Init input file path...")
        if train:
            file_paths = init_file_path(training_dir)
        else:
            file_paths = init_file_path(testing_dir)

        # Init training flag and global step
        print("⏳ Init placeholder and variables...")
        is_training = tf.placeholder(tf.bool, name="is_training")
        global_step = tf.train.get_or_create_global_step()

        # Load vgg16 model
        print("🤖 Load vgg16 model...")
        vgg = vgg16.Vgg16()

        # Build residual encoder model
        print("🤖 Build residual encoder model...")
        residual_encoder = ResidualEncoder()

        # Get dataset iterator
        iterator = get_dataset_iterator(file_paths, batch_size, shuffle=True)

        # Get color image
        color_image_rgb = iterator.get_next(name="color_image_rgb")
        color_image_yuv = rgb_to_yuv(color_image_rgb, "color_image_yuv")

        # Get gray image
        gray_image_one_channel = tf.image.rgb_to_grayscale(color_image_rgb, name="gray_image_one_channel")
        gray_image_three_channels = tf.image.grayscale_to_rgb(gray_image_one_channel, name="gray_image_three_channels")
        gray_image_yuv = rgb_to_yuv(gray_image_three_channels, "gray_image_yuv")

        # Build vgg model
        with tf.name_scope("vgg16"):
            vgg.build(gray_image_three_channels)

        # Predict model
        predict = residual_encoder.build(input_data=gray_image_three_channels, vgg=vgg, is_training=is_training)
        predict_yuv = tf.concat(axis=3, values=[tf.slice(gray_image_yuv, [0, 0, 0, 0], [-1, -1, -1, 1], name="gray_image_y"), predict], name="predict_yuv")
        predict_rgb = yuv_to_rgb(predict_yuv, "predict_rgb")

        # Get loss
        loss = residual_encoder.get_loss(predict_val=predict, real_val=tf.slice(color_image_yuv, [0, 0, 0, 1], [-1, -1, -1, 2], name="color_image_uv"))

        # Prepare optimizer
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            optimizer = tf.train.AdamOptimizer().minimize(loss, global_step=global_step, name='optimizer')

        # Init tensorflow summaries
        print("⏳ Init tensorflow summaries...")
        tf.summary.histogram("loss", loss)
        tf.summary.image("gray_image", gray_image_three_channels, max_outputs=1)
        tf.summary.image("predict_image", predict_rgb, max_outputs=1)
        tf.summary.image("color_image", color_image_rgb, max_outputs=1)

    return is_training, global_step, optimizer, loss, predict_rgb, color_image_rgb, gray_image_three_channels, file_paths
    grads = optimizer.compute_gradients(loss, var_list=var_list)
    for grad, var in grads:
        utils.add_gradient_summary(grad, var)
    return optimizer.apply_gradients(grads)


with tf.name_scope("input"):

    x = tf.placeholder(tf.float32, [BATCH_SIZE, HEIGHT, WIDTH, 3], name='x_input')
    y = tf.placeholder(tf.float32, [BATCH_SIZE, HEIGHT, WIDTH,2], name='ground_truth')
    is_training = tf.placeholder(tf.bool, name="is_training")
    global_step = tf.train.get_or_create_global_step()

# Load vgg16 model
print("🤖 Load vgg16 model...")
vgg = vgg16.Vgg16()

# Build residual encoder model
print("🤖 Build residual encoder model...")
residual_decoder = ResidualDecoder()

with tf.name_scope("vgg16"):
    vgg.build(x)
logits = residual_decoder.build(input_data=x, vgg=vgg, is_training=is_training)


with tf.name_scope("loss"):
# Get loss
    loss = residual_decoder.get_loss(predict_val=logits, real_val=y)
    tf.summary.histogram("loss", loss)
Beispiel #5
0
# with tf.Session(
#         config=tf.ConfigProto(gpu_options=(tf.GPUOptions(per_process_gpu_memory_fraction=0.7)))) as sess:
#     images = tf.placeholder("float", [2, 224, 224, 3])
#     feed_dict = {images: batch}
#
#     vgg = vgg16.Vgg16()
#     with tf.name_scope("content_vgg"):
#         vgg.build(images)
#
#     prob = sess.run(vgg.prob, feed_dict=feed_dict)
#     print(prob)
#     utils.print_prob(prob[0], './synset.txt')
#     utils.print_prob(prob[1], './synset.txt')

with tf.device('/cpu:0'):
    with tf.Session() as sess:
        images = tf.placeholder("float", [2, 224, 224, 3])
        feed_dict = {images: batch}

        vgg = vgg16.Vgg16()  ##引用vgg16.py里面定义的Vgg16类
        with tf.name_scope("content_vgg"):
            vgg.build(images)

        prob = sess.run(
            vgg.prob, feed_dict=feed_dict
        )  ### 在build()函数里面,属于成员变量,self.prob = tf.nn.softmax(self.fc8, name="prob")
        print(prob)  ####打印的预测矩阵(2,1000)类似手写字识别: [1,0,0,0...]:表示0
        utils.print_prob(prob[0], './synset.txt')
        utils.print_prob(prob[1], './synset.txt')
Beispiel #6
0
def init_model(train=True):  # 初始化模型
    """
    初始化模型
    :param train: 指明是训练还是测试
    :return: 返回这个模型所有所需要的东西
    """
    create_folder("summary/train/images")

    create_folder("summary/test/images")

    # 使用GPU加速
    with tf.device('/device:GPU:0'):
        # 初始化图片数据路径
        print("⏳ Init input file path...")
        if train:
            file_paths = init_file_path(training_dir)  # 训练集的图片路径,返回的是所有图片的路径数组
        else:
            # testing = input("测试集的路径:")
            file_paths = init_file_path(testing_dir)  # 测试路径

        # Init training flag and global step
        print("⏳ Init placeholder and variables...")
        is_training = tf.placeholder(tf.bool, name="is_training")
        global_step = tf.train.get_or_create_global_step()

        # Load vgg16 model
        print("🤖 Load vgg16 model...")
        vgg = vgg16.Vgg16()

        # Build residual encoder model
        print("🤖 Build residual encoder model...")
        residual_encoder = ResidualEncoder()

        # Get dataset iterator
        iterator = get_dataset_iterator(file_paths, batch_size, shuffle=True)

        # Get color image
        color_image_rgb = iterator.get_next(
            name="color_image_rgb")  # 获取下一张彩色图片
        color_image_yuv = rgb_to_yuv(color_image_rgb,
                                     "color_image_yuv")  # 将获取的rgb图转换成yuv格式

        # Get gray image
        gray_image_one_channel = tf.image.rgb_to_grayscale(
            color_image_rgb, name="gray_image_one_channel")  # 获取灰度图片(单通道)
        # 由上一步得到的灰度图转换成rgb3通道格式
        gray_image_three_channels = tf.image.grayscale_to_rgb(
            gray_image_one_channel,
            name="gray_image_three_channels")  # 三通道的灰度图(rgb)
        gray_image_yuv = rgb_to_yuv(gray_image_three_channels,
                                    "gray_image_yuv")  # 灰度图(rgb)转换yuv格式的灰度图像

        # Build vgg model
        with tf.name_scope("vgg16"):
            vgg.build(
                gray_image_three_channels)  #建立vgg模型,将三通道的灰度图输入到VGG网络中预测一些基本信息

        # Predict model
        # 建立残差编码模型: input_data :给第一层输入的数据   vgg: vgg模型    is_training: 一个标志指示是否在训练

        predict = residual_encoder.build(input_data=gray_image_three_channels,
                                         vgg=vgg,
                                         is_training=is_training)  # 预测的u,v两个空间
        predict_yuv = tf.concat(axis=3,
                                values=[
                                    tf.slice(gray_image_yuv, [0, 0, 0, 0],
                                             [-1, -1, -1, 1],
                                             name="gray_image_y"), predict
                                ],
                                name="predict_yuv")  # 将y,u,v三个空间拼接
        predict_rgb = yuv_to_rgb(predict_yuv, "predict_rgb")
        # Get loss
        # 预测出来的uv两个通道与真实的uv两个通道的loss
        loss = residual_encoder.get_loss(
            predict_val=predict,
            real_val=tf.slice(color_image_yuv, [0, 0, 0, 1], [-1, -1, -1, 2],
                              name="color_image_uv"))

        # Prepare optimizer
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            # global_step记录的其实是train阶段每一步的索引,或者说是训练迭代的计数器,比如说在最后画loss和 accuracy的横坐标即是global_step
            lr = tf.train.exponential_decay(0.001, global_step, 1000, 0.96)
            optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(
                loss, global_step=global_step,
                name='optimizer')  #global_step在训练中是计数的作用,每训练一个batch就加1

        # Init tensorflow summaries
        print("⏳ Init tensorflow summaries...")
        tf.summary.histogram("loss", loss)
        tf.summary.image("gray_image",
                         gray_image_three_channels,
                         max_outputs=1)
        tf.summary.image("predict_image", predict_rgb, max_outputs=1)
        tf.summary.image("color_image", color_image_rgb, max_outputs=1)

    return is_training, global_step, optimizer, loss, predict_rgb, color_image_rgb, gray_image_three_channels, file_paths
Beispiel #7
0
def init_model(train=True):
    """
    Init model for both training and testing.
    :param train: indicate if current is in training
    :return: all stuffs that need for this model
    """
    # Create training summary folder if not exist
    create_folder("summary/train/images")

    # Create testing summary folder if not exist
    create_folder("summary/test/images")

    # Use gpu if exist
    with tf.device('/device:GPU:0'):
        # Init image data file path
        testdir = input("输入图片的路径:")

        #file_paths = init_file_path(testing_dir)

        # Init training flag and global step
        print("⏳ Init placeholder and variables...")
        is_training = tf.placeholder(tf.bool, name="is_training")
        global_step = tf.train.get_or_create_global_step()

        # Load vgg16 model
        print("🤖 Load vgg16 model...")
        vgg = vgg16.Vgg16()

        # Build residual encoder model
        print("🤖 Build residual encoder model...")
        residual_encoder = ResidualEncoder()

        # Get dataset iterator
        #iterator = get_dataset_iterator(file_paths, batch_size, shuffle=True)

        # Get color image
        #  color_image_rgb = iterator.get_next(name="color_image_rgb") # 获取下一张彩色图片
        color_image_rgb = read_image(testdir)
        color_image_yuv = rgb_to_yuv(color_image_rgb,
                                     "color_image_yuv")  # 将获取的rgb图转换成yuv格式

        # Get gray image
        gray_image_one_channel = tf.image.rgb_to_grayscale(
            color_image_rgb, name="gray_image_one_channel")  # 获取灰度图片
        # 由上一步得到的灰度图转换成rgb3通道格式
        gray_image_three_channels = tf.image.grayscale_to_rgb(
            gray_image_one_channel,
            name="gray_image_three_channels")  # 三通道的灰度图
        gray_image_yuv = rgb_to_yuv(gray_image_three_channels,
                                    "gray_image_yuv")  # 灰度图转换yuv格式的灰度图像

        # Build vgg model
        with tf.name_scope("vgg16"):
            vgg.build(gray_image_three_channels)  #建立vgg模型

        # Predict model
        # 建立残差编码模型: input_data :给第一层输入的数据   vgg: vgg模型    is_training: 一个标志指示是否在训练
        predict = residual_encoder.build(input_data=gray_image_three_channels,
                                         vgg=vgg,
                                         is_training=is_training)  # 预测的u,v两个空间
        predict_yuv = tf.concat(axis=3,
                                values=[
                                    tf.slice(gray_image_yuv, [0, 0, 0, 0],
                                             [-1, -1, -1, 1],
                                             name="gray_image_y"), predict
                                ],
                                name="predict_yuv")  # 将y,u,v三个空间拼接
        predict_rgb = yuv_to_rgb(predict_yuv, "predict_rgb")

        # Get loss
        # 预测出来的uv两个通道与真实的uv两个通道的loss
        loss = residual_encoder.get_loss(
            predict_val=predict,
            real_val=tf.slice(color_image_yuv, [0, 0, 0, 1], [-1, -1, -1, 2],
                              name="color_image_uv"))

        # Prepare optimizer
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            # global_step记录的其实是train阶段每一步的索引,或者说是训练迭代的计数器,比如说在最后画loss和 accuracy的横坐标即是global_step
            lr = tf.train.exponential_decay(0.001, global_step, 1000, 0.96)
            optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(
                loss, global_step=global_step,
                name='optimizer')  #global_step在训练中是计数的作用,每训练一个batch就加1

        # Init tensorflow summaries
        print("⏳ Init tensorflow summaries...")
        tf.summary.histogram("loss", loss)
        tf.summary.image("gray_image",
                         gray_image_three_channels,
                         max_outputs=1)
        tf.summary.image("predict_image", predict_rgb, max_outputs=1)
        tf.summary.image("color_image", color_image_rgb, max_outputs=1)

    return is_training, global_step, optimizer, loss, predict_rgb, color_image_rgb, gray_image_three_channels, testdir
Beispiel #8
0
def init_model(train=True):
    """
    Init model for both training and testing
    :param train: indicate if current is in training
    :return: all stuffs that need for this model
    """
    # Create training summary folder if not exist
    create_folder("summary/train/images")

    # Create testing summary folder if not exist
    create_folder("summary/test/images")

    # Init image data file path
    print "Init file path"
    if train:
        file_paths = init_file_path(train_dir)
    else:
        file_paths = init_file_path(test_dir)

    # Init placeholder and global step
    print "Init placeholder"
    is_training = tf.placeholder(tf.bool, name="training_flag")
    global_step = tf.Variable(0, name='global_step', trainable=False)
    uv = tf.placeholder(tf.uint8, name='uv')

    # Init vgg16 model
    print "Init vgg16 model"
    vgg = vgg16.Vgg16()

    # Init residual encoder model
    print "Init residual encoder model"
    residual_encoder = ResidualEncoder()

    # Color image
    color_image_rgb = input_pipeline(file_paths, batch_size, test=not train)
    color_image_yuv = rgb_to_yuv(color_image_rgb, "rgb2yuv_for_color_image")

    # Gray image
    gray_image = tf.image.rgb_to_grayscale(color_image_rgb, name="gray_image")
    gray_image_rgb = tf.image.grayscale_to_rgb(gray_image,
                                               name="gray_image_rgb")
    gray_image_yuv = rgb_to_yuv(gray_image_rgb, "rgb2yuv_for_gray_image")
    gray_image = tf.concat(concat_dim=3,
                           values=[gray_image, gray_image, gray_image],
                           name="gray_image_input")

    # Build vgg model
    with tf.name_scope("content_vgg"):
        vgg.build(gray_image)

    # Predict model
    predict = residual_encoder.build(input_data=gray_image,
                                     vgg=vgg,
                                     is_training=is_training)
    predict_yuv = tf.concat(concat_dim=3,
                            values=[
                                tf.slice(gray_image_yuv, [0, 0, 0, 0],
                                         [-1, -1, -1, 1],
                                         name="gray_image_y"), predict
                            ],
                            name="predict_yuv")
    predict_rgb = yuv_to_rgb(predict_yuv, "yuv2rgb_for_pred_image")

    # Cost
    cost = residual_encoder.get_cost(predict_val=predict,
                                     real_val=tf.slice(color_image_yuv,
                                                       [0, 0, 0, 1],
                                                       [-1, -1, -1, 2],
                                                       name="color_image_uv"))

    u_channel_cost = tf.slice(cost, [0, 0, 0, 0], [-1, -1, -1, 1],
                              name="u_channel_cost")
    v_channel_cost = tf.slice(cost, [0, 0, 0, 1], [-1, -1, -1, 1],
                              name="v_channel_cost")

    cost = tf.case(
        {
            tf.equal(uv, 1): lambda: u_channel_cost,
            tf.equal(uv, 2): lambda: v_channel_cost
        },
        default=lambda: (u_channel_cost + v_channel_cost) / 2,
        exclusive=True,
        name="cost")

    # Using different learning rate in different training steps
    # lr = tf.div(learning_rate, tf.cast(tf.pow(2, tf.div(global_step, 160000)), tf.float32), name="learning_rate")

    # Optimizer
    optimizer = tf.train.GradientDescentOptimizer(
        learning_rate=learning_rate).minimize(cost, global_step=global_step)

    # Summaries
    print "Init summaries"
    tf.histogram_summary("cost", tf.reduce_mean(cost))
    tf.image_summary("color_image_rgb", color_image_rgb, max_images=1)
    tf.image_summary("predict_rgb", predict_rgb, max_images=1)
    tf.image_summary("gray_image", gray_image_rgb, max_images=1)

    return is_training, global_step, uv, optimizer, cost, predict, predict_rgb, color_image_rgb, gray_image_rgb, file_paths
Beispiel #9
0
def main(classify=True):
    """
    Main entry point for program.
    """
    logger.debug(os.path.realpath(__file__))
    logger.debug("Function is going to classify: {}".format(classify))
    if classify:  # I dislike this
        from vgg import vgg16
        from keras.utils import get_file
        from keras.preprocessing.image import ImageDataGenerator
        from numpy import save

    # Generate file paths
    logger.info("Generating temp filepath for image...")
    # Temp folder
    chdir(TEMP_ROOT)
    rmtree(path.split(TEMP_DIRECTORY)[0], ignore_errors=True)
    makedirs(path.join(TEMP_ROOT, TEMP_DIRECTORY))
    # Output folder
    logger.info("Generating output filepath for storage...")
    if not path.exists(ARCHIVE_DIRECTORY):
        makedirs(ARCHIVE_DIRECTORY)
    logger.info("Done.")

    if pi_platform:
        logger.info("Running on Raspberry Pi Platform.")
        # Take image
        logger.info("Taking image with camera...")
        with picamera.PiCamera() as camera:
            # Get her up and running
            camera.start_preview()
            logger.debug("Zzzz. Camera warm-up.")
            sleep(2)  # Warm up time
            camera.resolution = (1024, 768)
            camera.vflip = True

            filename = strftime("%Y-%m-%d %H:%M:%S", gmtime())
            camera.capture(
                path.join(TEMP_ROOT, TEMP_DIRECTORY, filename + ".jpg"),
                'jpeg')
        logger.info("Done.")
    else:
        logger.info("Not running on Raspberry Pi Platform.")
        logger.info("Using dummy image.")
        filename = "doggo"  # Because I'm a professional like that.
        copy(path.join(EXECUTION_PATH, filename + ".jpg"),
             path.join(TEMP_ROOT, TEMP_DIRECTORY, filename + ".jpg"))
        logger.info("Done.")

    if classify:
        # Create VGG
        logging.info("Generating VGG model... patience please.")
        vgg = vgg16.Vgg16()
        vgg.compile()
        logging.info("Your patience is rewarded. Done.")

        # Classify image
        logging.info("Classifying the image...")
        gen = ImageDataGenerator()
        test = gen.flow_from_directory(
            TEMP_DIRECTORY.split("/")[0],
            target_size=(224, 224),
            batch_size=1,
            class_mode=None,
            shuffle=False,
        )
        predictions = vgg.model.predict_generator(generator=test,
                                                  val_samples=1)
        logging.info("Done. Most likely outcome was #{}".format(
            predictions.argmax()))

        # Load the classes
        imagenet_classes_location = get_file(
            "imagenet_class_index.json",
            "files.fast.ai/models/imagenet_class_index.json",
            cache_subdir='models')
        with open(imagenet_classes_location, 'r') as f:
            imagenet_classes = json.load(f)
        logging.info("Classname: {}".format(imagenet_classes[str(
            predictions.argmax())]))

        # Archive results and predictions
        logging.info("Archiving prediction results.")
        save(path.join(ARCHIVE_DIRECTORY, filename + ".npy"), predictions)

        with open(path.join(ARCHIVE_DIRECTORY, filename + " results.csv"),
                  'a') as f:
            f.write("index, class, probability\n")
            for i in range(1000):
                f.write("{},{},{}\n".format(str(i),
                                            imagenet_classes[str(i)][1],
                                            predictions[0][i]))

    # Archive
    logger.info("Archiving captured image...")
    copy(path.join(TEMP_ROOT, TEMP_DIRECTORY, filename + ".jpg"),
         path.join(ARCHIVE_DIRECTORY, filename))
    logger.info("Done.")