Beispiel #1
0
def main():
    # parse the argument
    parser = argparse.ArgumentParser()
    parser.add_argument(
        'data_list',
        help='The path of data list file, which consists of one image path per line'
    )
    parser.add_argument(
        'model',
        help='The model for image classification',
        choices=[
            'alexnet', 'vgg13', 'vgg16', 'vgg19', 'resnet', 'googlenet',
            'inception-resnet-v2', 'inception_v4', 'xception'
        ])
    parser.add_argument(
        'params_path', help='The file which stores the parameters')
    args = parser.parse_args()

    # PaddlePaddle init
    paddle.init(use_gpu=True, trainer_count=1)

    image = paddle.layer.data(
        name="image", type=paddle.data_type.dense_vector(DATA_DIM))

    if args.model == 'alexnet':
        out = alexnet.alexnet(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg13':
        out = vgg.vgg13(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg16':
        out = vgg.vgg16(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg19':
        out = vgg.vgg19(image, class_dim=CLASS_DIM)
    elif args.model == 'resnet':
        out = resnet.resnet_imagenet(image, class_dim=CLASS_DIM)
    elif args.model == 'googlenet':
        out, _, _ = googlenet.googlenet(image, class_dim=CLASS_DIM)
    elif args.model == 'inception-resnet-v2':
        assert DATA_DIM == 3 * 331 * 331 or DATA_DIM == 3 * 299 * 299
        out = inception_resnet_v2.inception_resnet_v2(
            image, class_dim=CLASS_DIM, dropout_rate=0.5, data_dim=DATA_DIM)
    elif args.model == 'inception_v4':
        out = inception_v4.inception_v4(image, class_dim=CLASS_DIM)
    elif args.model == 'xception':
        out = xception.xception(image, class_dim=CLASS_DIM)

    # load parameters
    with gzip.open(args.params_path, 'r') as f:
        parameters = paddle.parameters.Parameters.from_tar(f)

    file_list = [line.strip() for line in open(args.data_list)]
    test_data = [(paddle.image.load_and_transform(image_file, 256, 224, False)
                  .flatten().astype('float32'), ) for image_file in file_list]
    probs = paddle.infer(
        output_layer=out, parameters=parameters, input=test_data)
    lab = np.argsort(-probs)
    for file_name, result in zip(file_list, lab):
        print "Label of %s is: %d" % (file_name, result[0])
Beispiel #2
0
    def init_net(self):

        net_args = {
            "pretrained": True,
            "n_input_channels": len(self.kwargs["static"]["imagery_bands"])
        }

        # https://pytorch.org/docs/stable/torchvision/models.html
        if self.kwargs["net"] == "resnet18":
            self.model = resnet.resnet18(**net_args)
        elif self.kwargs["net"] == "resnet34":
            self.model = resnet.resnet34(**net_args)
        elif self.kwargs["net"] == "resnet50":
            self.model = resnet.resnet50(**net_args)
        elif self.kwargs["net"] == "resnet101":
            self.model = resnet.resnet101(**net_args)
        elif self.kwargs["net"] == "resnet152":
            self.model = resnet.resnet152(**net_args)
        elif self.kwargs["net"] == "vgg11":
            self.model = vgg.vgg11(**net_args)
        elif self.kwargs["net"] == "vgg11_bn":
            self.model = vgg.vgg11_bn(**net_args)
        elif self.kwargs["net"] == "vgg13":
            self.model = vgg.vgg13(**net_args)
        elif self.kwargs["net"] == "vgg13_bn":
            self.model = vgg.vgg13_bn(**net_args)
        elif self.kwargs["net"] == "vgg16":
            self.model = vgg.vgg16(**net_args)
        elif self.kwargs["net"] == "vgg16_bn":
            self.model = vgg.vgg16_bn(**net_args)
        elif self.kwargs["net"] == "vgg19":
            self.model = vgg.vgg19(**net_args)
        elif self.kwargs["net"] == "vgg19_bn":
            self.model = vgg.vgg19_bn(**net_args)

        else:
            raise ValueError("Invalid network specified: {}".format(
                self.kwargs["net"]))

        #  run type: 1 = fine tune, 2 = fixed feature extractor
        #  - replace run type option with "# of layers to fine tune"
        if self.kwargs["run_type"] == 2:
            layer_count = len(list(self.model.parameters()))
            for layer, param in enumerate(self.model.parameters()):
                if layer <= layer_count - 5:
                    param.requires_grad = False

        # Parameters of newly constructed modules have requires_grad=True by default
        # get existing number for input features
        # set new number for output features to number of categories being classified
        # see: https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html
        if "resnet" in self.kwargs["net"]:
            num_ftrs = self.model.fc.in_features
            self.model.fc = nn.Linear(num_ftrs, self.ncats)
        elif "vgg" in self.kwargs["net"]:
            num_ftrs = self.model.classifier[6].in_features
            self.model.classifier[6] = nn.Linear(num_ftrs, self.ncats)
Beispiel #3
0
def load_model(args):
    if args.model == 'vgg11':
        model = vgg.vgg11().to(device)
    if args.model == 'vgg13':
        model = vgg.vgg13().to(device)
    if args.model == 'vgg16':
        model = vgg.vgg16().to(device)
    elif args.model == 'vgg19':
        model = vgg.vgg19().to(device)
    elif args.model == 'modified_vgg11':
        model = modified_vgg.vgg11().to(device)
    elif args.model == 'modified_vgg13':
        model = modified_vgg.vgg13().to(device)
    elif args.model == 'modified_vgg16':
        model = modified_vgg.vgg16().to(device)
    elif args.model == 'modified_vgg19':
        model = modified_vgg.vgg19().to(device)
    return model
Beispiel #4
0
    def NeptuneLog():
        neptune.log_metric('batch_size', batch_sizes)
        neptune.log_metric('learning_rate', learning_rate)
        neptune.log_text('pre-trained', str(pretrain_check))
        neptune.log_text('model', model_name)
        neptune.log_text('date_time', date_time)

    neptune.create_experiment(model_name)
    NeptuneLog()

    if model_name == 'vgg11':
        model = vgg.vgg11(pretrained=pretrain_check)
    elif model_name == 'vgg11_bn':
        model = vgg.vgg11_bn(pretrained=pretrain_check)
    elif model_name == 'vgg13':
        model = vgg.vgg13(pretrained=pretrain_check)
    elif model_name == 'vgg13_bn':
        model = vgg.vgg13_bn(pretrained=pretrain_check)
    elif model_name == 'vgg16':
        model = vgg.vgg16(pretrained=pretrain_check)
    elif model_name == 'vgg16_bn':
        model = vgg.vgg16_bn(pretrained=pretrain_check)
    elif model_name == 'vgg19':
        model = vgg.vgg19(pretrained=pretrain_check)
    elif model_name == 'vgg19_bn':
        model = vgg.vgg19_bn(pretrained=pretrain_check)
    model.eval()
    model = torch.nn.DataParallel(model).cuda()

    optimizer = optim.Adam(model.parameters(),
                           lr=learning_rate,
Beispiel #5
0
def main():
    # parse the argument
    parser = argparse.ArgumentParser()
    parser.add_argument(
        'model',
        help='The model for image classification',
        choices=['alexnet', 'vgg13', 'vgg16', 'vgg19', 'resnet', 'googlenet'])
    args = parser.parse_args()

    # PaddlePaddle init
    paddle.init(use_gpu=True, trainer_count=1)

    image = paddle.layer.data(
        name="image", type=paddle.data_type.dense_vector(DATA_DIM))
    lbl = paddle.layer.data(
        name="label", type=paddle.data_type.integer_value(CLASS_DIM))

    extra_layers = None
    learning_rate = 0.01
    if args.model == 'alexnet':
        out = alexnet.alexnet(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg13':
        out = vgg.vgg13(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg16':
        out = vgg.vgg16(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg19':
        out = vgg.vgg19(image, class_dim=CLASS_DIM)
    elif args.model == 'resnet':
        out = resnet.resnet_imagenet(image, class_dim=CLASS_DIM)
        learning_rate = 0.1
    elif args.model == 'googlenet':
        out, out1, out2 = googlenet.googlenet(image, class_dim=CLASS_DIM)
        loss1 = paddle.layer.cross_entropy_cost(
            input=out1, label=lbl, coeff=0.3)
        paddle.evaluator.classification_error(input=out1, label=lbl)
        loss2 = paddle.layer.cross_entropy_cost(
            input=out2, label=lbl, coeff=0.3)
        paddle.evaluator.classification_error(input=out2, label=lbl)
        extra_layers = [loss1, loss2]

    cost = paddle.layer.classification_cost(input=out, label=lbl)

    # Create parameters
    parameters = paddle.parameters.create(cost)

    # Create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0005 *
                                                         BATCH_SIZE),
        learning_rate=learning_rate / BATCH_SIZE,
        learning_rate_decay_a=0.1,
        learning_rate_decay_b=128000 * 35,
        learning_rate_schedule="discexp", )

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            flowers.train(),
            # To use other data, replace the above line with:
            # reader.train_reader('train.list'),
            buf_size=1000),
        batch_size=BATCH_SIZE)
    test_reader = paddle.batch(
        flowers.valid(),
        # To use other data, replace the above line with:
        # reader.test_reader('val.list'),
        batch_size=BATCH_SIZE)

    # End batch and end pass event handler
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 1 == 0:
                print "\nPass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
        if isinstance(event, paddle.event.EndPass):
            with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
                parameters.to_tar(f)

            result = trainer.test(reader=test_reader)
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

    # Create trainer
    trainer = paddle.trainer.SGD(
        cost=cost,
        parameters=parameters,
        update_equation=optimizer,
        extra_layers=extra_layers)

    trainer.train(
        reader=train_reader, num_passes=200, event_handler=event_handler)
Beispiel #6
0
def main():
    # parse the argument
    parser = argparse.ArgumentParser()
    parser.add_argument('-m',
                        '--model',
                        help='The model for image classification',
                        choices=[
                            'alexnet', 'vgg13', 'vgg16', 'vgg19', 'resnet',
                            'googlenet', 'inception-resnet-v2', 'inception_v4',
                            'xception'
                        ])
    parser.add_argument(
        '-r',
        '--retrain_file',
        type=str,
        default='',
        help="The model file to retrain, none is for train from scratch")
    args = parser.parse_args()

    # PaddlePaddle init
    paddle.init(use_gpu=True, trainer_count=1)

    image = paddle.layer.data(name="image",
                              type=paddle.data_type.dense_vector(DATA_DIM))
    lbl = paddle.layer.data(name="label",
                            type=paddle.data_type.integer_value(CLASS_DIM))

    extra_layers = None
    learning_rate = 0.0001
    if args.model == 'alexnet':
        out = alexnet.alexnet(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg13':
        out = vgg.vgg13(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg16':
        out = vgg.vgg16(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg19':
        out = vgg.vgg19(image, class_dim=CLASS_DIM)
    elif args.model == 'resnet':
        conv, pool, out = resnet.resnet_imagenet(image, class_dim=CLASS_DIM)
        learning_rate = 0.1
    elif args.model == 'googlenet':
        out, out1, out2 = googlenet.googlenet(image, class_dim=CLASS_DIM)
        loss1 = paddle.layer.cross_entropy_cost(input=out1,
                                                label=lbl,
                                                coeff=0.3)
        paddle.evaluator.classification_error(input=out1, label=lbl)
        loss2 = paddle.layer.cross_entropy_cost(input=out2,
                                                label=lbl,
                                                coeff=0.3)
        paddle.evaluator.classification_error(input=out2, label=lbl)
        extra_layers = [loss1, loss2]
    elif args.model == 'inception-resnet-v2':
        assert DATA_DIM == 3 * 331 * 331 or DATA_DIM == 3 * 299 * 299
        out = inception_resnet_v2.inception_resnet_v2(image,
                                                      class_dim=CLASS_DIM,
                                                      dropout_rate=0.5,
                                                      data_dim=DATA_DIM)
    elif args.model == 'inception_v4':
        conv, pool, out = inception_v4.inception_v4(image, class_dim=CLASS_DIM)
    elif args.model == 'xception':
        out = xception.xception(image, class_dim=CLASS_DIM)

    cost = paddle.layer.classification_cost(input=out, label=lbl)

    # Create parameters
    parameters = paddle.parameters.create(cost)
    for k, v in parameters.__param_conf__.items():
        print(" config key {0}\t\t\tval{1}".format(k, v))
    print("-" * 50)
    #print(parameters.__param_conf__[0])

    if args.retrain_file is not None and '' != args.retrain_file:
        print("restore parameters from {0}".format(args.retrain_file))
        exclude_params = [
            param for param in parameters.names()
            if param.startswith('___fc_layer_0__')
        ]
        parameters.init_from_tar(gzip.open(args.retrain_file), exclude_params)

    # Create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0005 *
                                                         BATCH_SIZE),
        learning_rate=learning_rate / BATCH_SIZE,
        learning_rate_decay_a=0.1,
        learning_rate_decay_b=128000 * 35,
        learning_rate_schedule="discexp",
    )

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            # flowers.train(),
            # To use other data, replace the above line with:
            reader.train_reader('valid_train0.lst'),
            buf_size=2048),
        batch_size=BATCH_SIZE)
    test_reader = paddle.batch(
        # flowers.valid(),
        # To use other data, replace the above line with:
        reader.test_reader('valid_val.lst'),
        batch_size=BATCH_SIZE)

    # Create trainer
    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=optimizer,
                                 extra_layers=extra_layers)

    # End batch and end pass event handler
    def event_handler(event):
        global step
        global start
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 10 == 0:
                print "\nPass %d, Batch %d, Cost %f, %s, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics,
                    time.time() - start)
                start = time.time()
                loss_scalar.add_record(step, event.cost)
                acc_scalar.add_record(
                    step, 1 - event.metrics['classification_error_evaluator'])
                start = time.time()
                step += 1
            if event.batch_id % 100 == 0:
                with gzip.open('params_pass_%d.tar.gz' % event.pass_id,
                               'w') as f:
                    trainer.save_parameter_to_tar(f)

        if isinstance(event, paddle.event.EndPass):
            with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
                trainer.save_parameter_to_tar(f)
            result = trainer.test(reader=test_reader)
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

    trainer.train(reader=train_reader,
                  num_passes=200,
                  event_handler=event_handler)
def get_model(args):
    network = args.network

    if network == 'vgg11':
        model = vgg.vgg11(num_classes=args.class_num)
    elif network == 'vgg13':
        model = vgg.vgg13(num_classes=args.class_num)
    elif network == 'vgg16':
        model = vgg.vgg16(num_classes=args.class_num)
    elif network == 'vgg19':
        model = vgg.vgg19(num_classes=args.class_num)
    elif network == 'vgg11_bn':
        model = vgg.vgg11_bn(num_classes=args.class_num)
    elif network == 'vgg13_bn':
        model = vgg.vgg13_bn(num_classes=args.class_num)
    elif network == 'vgg16_bn':
        model = vgg.vgg16_bn(num_classes=args.class_num)
    elif network == 'vgg19_bn':
        model = vgg.vgg19_bn(num_classes=args.class_num)
    elif network == 'resnet18':
        model = models.resnet18(num_classes=args.class_num)
        model.conv1 = torch.nn.Conv2d(in_channels=1,
                                      out_channels=model.conv1.out_channels,
                                      kernel_size=model.conv1.kernel_size,
                                      stride=model.conv1.stride,
                                      padding=model.conv1.padding,
                                      bias=model.conv1.bias)
    elif network == 'resnet34':
        model = models.resnet34(num_classes=args.class_num)
        model.conv1 = torch.nn.Conv2d(in_channels=1,
                                      out_channels=model.conv1.out_channels,
                                      kernel_size=model.conv1.kernel_size,
                                      stride=model.conv1.stride,
                                      padding=model.conv1.padding,
                                      bias=model.conv1.bias)
    elif network == 'resnet50':
        model = models.resnet50(num_classes=args.class_num)
        model.conv1 = torch.nn.Conv2d(in_channels=1,
                                      out_channels=model.conv1.out_channels,
                                      kernel_size=model.conv1.kernel_size,
                                      stride=model.conv1.stride,
                                      padding=model.conv1.padding,
                                      bias=model.conv1.bias)
    elif network == 'resnet101':
        model = models.resnet101(num_classes=args.class_num)
        model.conv1 = torch.nn.Conv2d(in_channels=1,
                                      out_channels=model.conv1.out_channels,
                                      kernel_size=model.conv1.kernel_size,
                                      stride=model.conv1.stride,
                                      padding=model.conv1.padding,
                                      bias=model.conv1.bias)
    elif network == 'resnet152':
        model = models.resnet152(num_classes=args.class_num)
        model.conv1 = torch.nn.Conv2d(in_channels=1,
                                      out_channels=model.conv1.out_channels,
                                      kernel_size=model.conv1.kernel_size,
                                      stride=model.conv1.stride,
                                      padding=model.conv1.padding,
                                      bias=model.conv1.bias)
    elif network == 'densenet121':
        model = densenet.densenet121(num_classes=args.class_num)
    elif network == 'densenet169':
        model = densenet.densenet169(num_classes=args.class_num)
    elif network == 'densenet161':
        model = densenet.densenet161(num_classes=args.class_num)
    elif network == 'densenet201':
        model = densenet.densenet201(num_classes=args.class_num)

    return model
Beispiel #8
0
def main():
    # parse the argument
    parser = argparse.ArgumentParser()
    parser.add_argument(
        'model',
        help='The model for image classification',
        choices=['alexnet', 'vgg13', 'vgg16', 'vgg19', 'resnet', 'googlenet'])
    args = parser.parse_args()

    # PaddlePaddle init
    paddle.init(use_gpu=True, trainer_count=7)

    image = paddle.layer.data(
        name="image", type=paddle.data_type.dense_vector(DATA_DIM))
    lbl = paddle.layer.data(
        name="label", type=paddle.data_type.integer_value(CLASS_DIM))

    extra_layers = None
    learning_rate = 0.01
    if args.model == 'alexnet':
        out = alexnet.alexnet(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg13':
        out = vgg.vgg13(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg16':
        out = vgg.vgg16(image, class_dim=CLASS_DIM)
    elif args.model == 'vgg19':
        out = vgg.vgg19(image, class_dim=CLASS_DIM)
    elif args.model == 'resnet':
        out = resnet.resnet_imagenet(image, class_dim=CLASS_DIM)
        learning_rate = 0.1
    elif args.model == 'googlenet':
        out, out1, out2 = googlenet.googlenet(image, class_dim=CLASS_DIM)
        loss1 = paddle.layer.cross_entropy_cost(
            input=out1, label=lbl, coeff=0.3)
        paddle.evaluator.classification_error(input=out1, label=lbl)
        loss2 = paddle.layer.cross_entropy_cost(
            input=out2, label=lbl, coeff=0.3)
        paddle.evaluator.classification_error(input=out2, label=lbl)
        extra_layers = [loss1, loss2]

    cost = paddle.layer.classification_cost(input=out, label=lbl)

    # Create parameters
    parameters = paddle.parameters.create(cost)

    # Create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0005 *
                                                         BATCH_SIZE),
        learning_rate=learning_rate / BATCH_SIZE,
        learning_rate_decay_a=0.1,
        learning_rate_decay_b=128000 * 35,
        learning_rate_schedule="discexp", )

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            flowers.train(),
            # To use other data, replace the above line with:
            # reader.train_reader('train.list'),
            buf_size=1000),
        batch_size=BATCH_SIZE)
    test_reader = paddle.batch(
        flowers.valid(),
        # To use other data, replace the above line with:
        # reader.test_reader('val.list'),
        batch_size=BATCH_SIZE)

    # Create trainer
    trainer = paddle.trainer.SGD(
        cost=cost,
        parameters=parameters,
        update_equation=optimizer,
        extra_layers=extra_layers)

    # End batch and end pass event handler
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 1 == 0:
                print "\nPass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
        if isinstance(event, paddle.event.EndPass):
            with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
                trainer.save_parameter_to_tar(f)

            result = trainer.test(reader=test_reader)
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

    trainer.train(
        reader=train_reader, num_passes=200, event_handler=event_handler)