def call(self, inputs, states):
        norm_layer = ops.get_norm_layer(self.hparams.norm_layer)
        downsample_layer = ops.get_downsample_layer(
            self.hparams.downsample_layer)
        upsample_layer = ops.get_upsample_layer(self.hparams.upsample_layer)
        image_shape = inputs['images'].get_shape().as_list()
        batch_size, height, width, color_channels = image_shape

        time = states['time']
        with tf.control_dependencies([tf.assert_equal(time[1:], time[0])]):
            t = tf.to_int32(tf.identity(time[0]))

        if 'states' in inputs:
            state = tf.where(self.ground_truth[t], inputs['states'],
                             states['gen_state'])

        state_action = []
        state_action_z = []
        if 'actions' in inputs:
            state_action.append(inputs['actions'])
            state_action_z.append(inputs['actions'])
        if 'states' in inputs:
            state_action.append(state)
            # don't backpropagate the convnet through the state dynamics
            state_action_z.append(tf.stop_gradient(state))

        if 'zs' in inputs:
            if self.hparams.use_rnn_z:
                with tf.variable_scope('%s_z' % self.hparams.rnn):
                    rnn_z, rnn_z_state = self._rnn_func(
                        inputs['zs'], states['rnn_z_state'], self.hparams.nz)
                state_action_z.append(rnn_z)
            else:
                state_action_z.append(inputs['zs'])

        def concat(tensors, axis):
            if len(tensors) == 0:
                return tf.zeros([batch_size, 0])
            elif len(tensors) == 1:
                return tensors[0]
            else:
                return tf.concat(tensors, axis=axis)

        state_action = concat(state_action, axis=-1)
        state_action_z = concat(state_action_z, axis=-1)

        image_views = []
        first_image_views = []
        if 'pix_distribs' in inputs:
            pix_distrib_views = []
        for i in range(self.hparams.num_views):
            suffix = '%d' % i if i > 0 else ''
            image_view = tf.where(
                self.ground_truth[t], inputs['images' + suffix],
                states['gen_image' + suffix])  # schedule sampling (if any)
            image_views.append(image_view)
            first_image_views.append(self.inputs['images' + suffix][0])
            if 'pix_distribs' in inputs:
                pix_distrib_view = tf.where(self.ground_truth[t],
                                            inputs['pix_distribs' + suffix],
                                            states['gen_pix_distrib' + suffix])
                pix_distrib_views.append(pix_distrib_view)

        outputs = {}
        new_states = {}
        all_layers = []
        for i in range(self.hparams.num_views):
            suffix = '%d' % i if i > 0 else ''
            conv_rnn_states = states['conv_rnn_states' + suffix]
            layers = []
            new_conv_rnn_states = []
            for i, (out_channels,
                    use_conv_rnn) in enumerate(self.encoder_layer_specs):
                with tf.variable_scope('h%d' % i + suffix):
                    if i == 0:
                        # all image views and the first image corresponding to this view only
                        h = tf.concat(image_views + first_image_views, axis=-1)
                        kernel_size = (5, 5)
                    else:
                        h = layers[-1][-1]
                        kernel_size = (3, 3)
                    if self.hparams.where_add == 'all' or (
                            self.hparams.where_add == 'input' and i == 0):
                        h = tile_concat([h, state_action_z[:, None, None, :]],
                                        axis=-1)
                    h = downsample_layer(h,
                                         out_channels,
                                         kernel_size=kernel_size,
                                         strides=(2, 2))
                    h = norm_layer(h)
                    h = tf.nn.relu(h)
                if use_conv_rnn:
                    conv_rnn_state = conv_rnn_states[len(new_conv_rnn_states)]
                    with tf.variable_scope('%s_h%d' %
                                           (self.hparams.conv_rnn, i) +
                                           suffix):
                        if self.hparams.where_add == 'all':
                            conv_rnn_h = tile_concat(
                                [h, state_action_z[:, None, None, :]], axis=-1)
                        else:
                            conv_rnn_h = h
                        conv_rnn_h, conv_rnn_state = self._conv_rnn_func(
                            conv_rnn_h, conv_rnn_state, out_channels)
                    new_conv_rnn_states.append(conv_rnn_state)
                layers.append((h, conv_rnn_h) if use_conv_rnn else (h, ))

            num_encoder_layers = len(layers)
            for i, (out_channels,
                    use_conv_rnn) in enumerate(self.decoder_layer_specs):
                with tf.variable_scope('h%d' % len(layers) + suffix):
                    if i == 0:
                        h = layers[-1][-1]
                    else:
                        h = tf.concat([
                            layers[-1][-1],
                            layers[num_encoder_layers - i - 1][-1]
                        ],
                                      axis=-1)
                    if self.hparams.where_add == 'all' or (
                            self.hparams.where_add == 'middle' and i == 0):
                        h = tile_concat([h, state_action_z[:, None, None, :]],
                                        axis=-1)
                    h = upsample_layer(h,
                                       out_channels,
                                       kernel_size=(3, 3),
                                       strides=(2, 2))
                    h = norm_layer(h)
                    h = tf.nn.relu(h)
                if use_conv_rnn:
                    conv_rnn_state = conv_rnn_states[len(new_conv_rnn_states)]
                    with tf.variable_scope(
                            '%s_h%d' % (self.hparams.conv_rnn, len(layers)) +
                            suffix):
                        if self.hparams.where_add == 'all':
                            conv_rnn_h = tile_concat(
                                [h, state_action_z[:, None, None, :]], axis=-1)
                        else:
                            conv_rnn_h = h
                        conv_rnn_h, conv_rnn_state = self._conv_rnn_func(
                            conv_rnn_h, conv_rnn_state, out_channels)
                    new_conv_rnn_states.append(conv_rnn_state)
                layers.append((h, conv_rnn_h) if use_conv_rnn else (h, ))
            assert len(new_conv_rnn_states) == len(conv_rnn_states)

            new_states['conv_rnn_states' + suffix] = new_conv_rnn_states

            all_layers.append(layers)
            if self.hparams.shared_views:
                break

        for i in range(self.hparams.num_views):
            suffix = '%d' % i if i > 0 else ''
            if self.hparams.shared_views:
                layers, = all_layers
            else:
                layers = all_layers[i]

            image = image_views[i]
            last_images = states['last_images' + suffix][1:] + [image]
            if 'pix_distribs' in inputs:
                pix_distrib = pix_distrib_views[i]
                last_pix_distribs = states['last_pix_distribs' +
                                           suffix][1:] + [pix_distrib]

            if self.hparams.last_frames and self.hparams.num_transformed_images:
                if self.hparams.transformation == 'flow':
                    with tf.variable_scope('h%d_flow' % len(layers) + suffix):
                        h_flow = conv2d(layers[-1][-1],
                                        self.hparams.ngf,
                                        kernel_size=(3, 3),
                                        strides=(1, 1))
                        h_flow = norm_layer(h_flow)
                        h_flow = tf.nn.relu(h_flow)

                    with tf.variable_scope('flows' + suffix):
                        flows = conv2d(h_flow,
                                       2 * self.hparams.last_frames *
                                       self.hparams.num_transformed_images,
                                       kernel_size=(3, 3),
                                       strides=(1, 1))
                        flows = tf.reshape(flows, [
                            batch_size, height, width, 2,
                            self.hparams.last_frames *
                            self.hparams.num_transformed_images
                        ])
                else:
                    assert len(self.hparams.kernel_size) == 2
                    kernel_shape = list(self.hparams.kernel_size) + [
                        self.hparams.last_frames *
                        self.hparams.num_transformed_images
                    ]
                    if self.hparams.transformation == 'dna':
                        with tf.variable_scope('h%d_dna_kernel' % len(layers) +
                                               suffix):
                            h_dna_kernel = conv2d(layers[-1][-1],
                                                  self.hparams.ngf,
                                                  kernel_size=(3, 3),
                                                  strides=(1, 1))
                            h_dna_kernel = norm_layer(h_dna_kernel)
                            h_dna_kernel = tf.nn.relu(h_dna_kernel)

                        # Using largest hidden state for predicting untied conv kernels.
                        with tf.variable_scope('dna_kernels' + suffix):
                            kernels = conv2d(h_dna_kernel,
                                             np.prod(kernel_shape),
                                             kernel_size=(3, 3),
                                             strides=(1, 1))
                            kernels = tf.reshape(kernels,
                                                 [batch_size, height, width] +
                                                 kernel_shape)
                            kernels = kernels + identity_kernel(
                                self.hparams.kernel_size)[None, None,
                                                          None, :, :, None]
                        kernel_spatial_axes = [3, 4]
                    elif self.hparams.transformation == 'cdna':
                        with tf.variable_scope('cdna_kernels' + suffix):
                            smallest_layer = layers[num_encoder_layers - 1][-1]
                            kernels = dense(flatten(smallest_layer),
                                            np.prod(kernel_shape))
                            kernels = tf.reshape(kernels,
                                                 [batch_size] + kernel_shape)
                            kernels = kernels + identity_kernel(
                                self.hparams.kernel_size)[None, :, :, None]
                        kernel_spatial_axes = [1, 2]
                    else:
                        raise ValueError('Invalid transformation %s' %
                                         self.hparams.transformation)

                if self.hparams.transformation != 'flow':
                    with tf.name_scope('kernel_normalization' + suffix):
                        kernels = tf.nn.relu(kernels - RELU_SHIFT) + RELU_SHIFT
                        kernels /= tf.reduce_sum(kernels,
                                                 axis=kernel_spatial_axes,
                                                 keepdims=True)

            if self.hparams.generate_scratch_image:
                with tf.variable_scope('h%d_scratch' % len(layers) + suffix):
                    h_scratch = conv2d(layers[-1][-1],
                                       self.hparams.ngf,
                                       kernel_size=(3, 3),
                                       strides=(1, 1))
                    h_scratch = norm_layer(h_scratch)
                    h_scratch = tf.nn.relu(h_scratch)

                # Using largest hidden state for predicting a new image layer.
                # This allows the network to also generate one image from scratch,
                # which is useful when regions of the image become unoccluded.
                with tf.variable_scope('scratch_image' + suffix):
                    scratch_image = conv2d(h_scratch,
                                           color_channels,
                                           kernel_size=(3, 3),
                                           strides=(1, 1))
                    scratch_image = tf.nn.sigmoid(scratch_image)

            with tf.name_scope('transformed_images' + suffix):
                transformed_images = []
                if self.hparams.last_frames and self.hparams.num_transformed_images:
                    if self.hparams.transformation == 'flow':
                        transformed_images.extend(
                            apply_flows(last_images, flows))
                    else:
                        transformed_images.extend(
                            apply_kernels(last_images, kernels,
                                          self.hparams.dilation_rate))
                if self.hparams.prev_image_background:
                    transformed_images.append(image)
                if self.hparams.first_image_background and not self.hparams.context_images_background:
                    transformed_images.append(self.inputs['images' +
                                                          suffix][0])
                if self.hparams.context_images_background:
                    transformed_images.extend(
                        tf.unstack(
                            self.inputs['images' +
                                        suffix][:self.hparams.context_frames]))
                if self.hparams.generate_scratch_image:
                    transformed_images.append(scratch_image)

            if 'pix_distribs' in inputs:
                with tf.name_scope('transformed_pix_distribs' + suffix):
                    transformed_pix_distribs = []
                    if self.hparams.last_frames and self.hparams.num_transformed_images:
                        if self.hparams.transformation == 'flow':
                            transformed_pix_distribs.extend(
                                apply_flows(last_pix_distribs, flows))
                        else:
                            transformed_pix_distribs.extend(
                                apply_kernels(last_pix_distribs, kernels,
                                              self.hparams.dilation_rate))
                    if self.hparams.prev_image_background:
                        transformed_pix_distribs.append(pix_distrib)
                    if self.hparams.first_image_background and not self.hparams.context_images_background:
                        transformed_pix_distribs.append(
                            self.inputs['pix_distribs' + suffix][0])
                    if self.hparams.context_images_background:
                        transformed_pix_distribs.extend(
                            tf.unstack(self.inputs['pix_distribs' + suffix]
                                       [:self.hparams.context_frames]))
                    if self.hparams.generate_scratch_image:
                        transformed_pix_distribs.append(pix_distrib)

            with tf.name_scope('masks' + suffix):
                if len(transformed_images) > 1:
                    with tf.variable_scope('h%d_masks' % len(layers) + suffix):
                        h_masks = conv2d(layers[-1][-1],
                                         self.hparams.ngf,
                                         kernel_size=(3, 3),
                                         strides=(1, 1))
                        h_masks = norm_layer(h_masks)
                        h_masks = tf.nn.relu(h_masks)

                    with tf.variable_scope('masks' + suffix):
                        if self.hparams.dependent_mask:
                            h_masks = tf.concat([h_masks] + transformed_images,
                                                axis=-1)
                        masks = conv2d(h_masks,
                                       len(transformed_images),
                                       kernel_size=(3, 3),
                                       strides=(1, 1))
                        masks = tf.nn.softmax(masks)
                        masks = tf.split(masks,
                                         len(transformed_images),
                                         axis=-1)
                elif len(transformed_images) == 1:
                    masks = [tf.ones([batch_size, height, width, 1])]
                else:
                    raise ValueError(
                        "Either one of the following should be true: "
                        "last_frames and num_transformed_images, first_image_background, "
                        "prev_image_background, generate_scratch_image")

            with tf.name_scope('gen_images' + suffix):
                assert len(transformed_images) == len(masks)
                gen_image = tf.add_n([
                    transformed_image * mask for transformed_image, mask in
                    zip(transformed_images, masks)
                ])

            if 'pix_distribs' in inputs:
                with tf.name_scope('gen_pix_distribs' + suffix):
                    assert len(transformed_pix_distribs) == len(masks)
                    gen_pix_distrib = tf.add_n([
                        transformed_pix_distrib * mask
                        for transformed_pix_distrib, mask in zip(
                            transformed_pix_distribs, masks)
                    ])

                    if self.hparams.renormalize_pixdistrib:
                        gen_pix_distrib /= tf.reduce_sum(gen_pix_distrib,
                                                         axis=(1, 2),
                                                         keepdims=True)

            outputs['gen_images' + suffix] = gen_image
            outputs['transformed_images' + suffix] = tf.stack(
                transformed_images, axis=-1)
            outputs['masks' + suffix] = tf.stack(masks, axis=-1)
            if 'pix_distribs' in inputs:
                outputs['gen_pix_distribs' + suffix] = gen_pix_distrib
                outputs['transformed_pix_distribs' + suffix] = tf.stack(
                    transformed_pix_distribs, axis=-1)
            if self.hparams.transformation == 'flow':
                outputs['gen_flows' + suffix] = flows
                flows_transposed = tf.transpose(flows, [0, 1, 2, 4, 3])
                flows_rgb_transposed = tf_utils.flow_to_rgb(flows_transposed)
                flows_rgb = tf.transpose(flows_rgb_transposed, [0, 1, 2, 4, 3])
                outputs['gen_flows_rgb' + suffix] = flows_rgb

            new_states['gen_image' + suffix] = gen_image
            new_states['last_images' + suffix] = last_images
            if 'pix_distribs' in inputs:
                new_states['gen_pix_distrib' + suffix] = gen_pix_distrib
                new_states['last_pix_distribs' + suffix] = last_pix_distribs

        if 'states' in inputs:
            with tf.name_scope('gen_states'):
                with tf.variable_scope('state_pred'):
                    gen_state = dense(state_action,
                                      inputs['states'].shape[-1].value)

        if 'states' in inputs:
            outputs['gen_states'] = gen_state

        new_states['time'] = time + 1
        if 'zs' in inputs and self.hparams.use_rnn_z:
            new_states['rnn_z_state'] = rnn_z_state
        if 'states' in inputs:
            new_states['gen_state'] = gen_state
        return outputs, new_states
Beispiel #2
0
def create_generator(generator_inputs,
                     output_nc=3,
                     ngf=64,
                     norm_layer='instance',
                     downsample_layer='conv_pool2d',
                     upsample_layer='upsample_conv2d'):
    norm_layer = ops.get_norm_layer(norm_layer)
    downsample_layer = ops.get_downsample_layer(downsample_layer)
    upsample_layer = ops.get_upsample_layer(upsample_layer)

    layers = []
    inputs = generator_inputs

    scale_size = min(*inputs.shape.as_list()[1:3])
    if scale_size == 256:
        layer_specs = [
            (
                ngf, 2
            ),  # encoder_1: [batch, 256, 256, in_channels] => [batch, 128, 128, ngf]
            (
                ngf * 2, 2
            ),  # encoder_2: [batch, 128, 128, ngf] => [batch, 64, 64, ngf * 2]
            (
                ngf * 4, 2
            ),  # encoder_3: [batch, 64, 64, ngf * 2] => [batch, 32, 32, ngf * 4]
            (
                ngf * 8, 2
            ),  # encoder_4: [batch, 32, 32, ngf * 4] => [batch, 16, 16, ngf * 8]
            (
                ngf * 8, 2
            ),  # encoder_5: [batch, 16, 16, ngf * 8] => [batch, 8, 8, ngf * 8]
            (ngf * 8,
             2),  # encoder_6: [batch, 8, 8, ngf * 8] => [batch, 4, 4, ngf * 8]
            (ngf * 8,
             2),  # encoder_7: [batch, 4, 4, ngf * 8] => [batch, 2, 2, ngf * 8]
            (ngf * 8,
             2),  # encoder_8: [batch, 2, 2, ngf * 8] => [batch, 1, 1, ngf * 8]
        ]
    elif scale_size == 128:
        layer_specs = [
            (ngf, 2),
            (ngf * 2, 2),
            (ngf * 4, 2),
            (ngf * 8, 2),
            (ngf * 8, 2),
            (ngf * 8, 2),
            (ngf * 8, 2),
        ]
    elif scale_size == 64:
        layer_specs = [
            (ngf, 2),
            (ngf * 2, 2),
            (ngf * 4, 2),
            (ngf * 8, 2),
            (ngf * 8, 2),
            (ngf * 8, 2),
        ]
    else:
        raise NotImplementedError

    with tf.variable_scope("encoder_1"):
        out_channels, strides = layer_specs[0]
        if strides == 1:
            output = conv2d(inputs, out_channels, kernel_size=4)
        else:
            output = downsample_layer(inputs,
                                      out_channels,
                                      kernel_size=4,
                                      strides=strides)
        layers.append(output)

    for out_channels, strides in layer_specs[1:]:
        with tf.variable_scope("encoder_%d" % (len(layers) + 1)):
            rectified = lrelu(layers[-1], 0.2)
            # [batch, in_height, in_width, in_channels] => [batch, in_height/2, in_width/2, out_channels]
            if strides == 1:
                convolved = conv2d(rectified, out_channels, kernel_size=4)
            else:
                convolved = downsample_layer(rectified,
                                             out_channels,
                                             kernel_size=4,
                                             strides=strides)
            output = norm_layer(convolved)
            layers.append(output)

    if scale_size == 256:
        layer_specs = [
            (
                ngf * 8, 2, 0.5
            ),  # decoder_8: [batch, 1, 1, ngf * 8] => [batch, 2, 2, ngf * 8 * 2]
            (
                ngf * 8, 2, 0.5
            ),  # decoder_7: [batch, 2, 2, ngf * 8 * 2] => [batch, 4, 4, ngf * 8 * 2]
            (
                ngf * 8, 2, 0.5
            ),  # decoder_6: [batch, 4, 4, ngf * 8 * 2] => [batch, 8, 8, ngf * 8 * 2]
            (
                ngf * 8, 2, 0.0
            ),  # decoder_5: [batch, 8, 8, ngf * 8 * 2] => [batch, 16, 16, ngf * 8 * 2]
            (
                ngf * 4, 2, 0.0
            ),  # decoder_4: [batch, 16, 16, ngf * 8 * 2] => [batch, 32, 32, ngf * 4 * 2]
            (
                ngf * 2, 2, 0.0
            ),  # decoder_3: [batch, 32, 32, ngf * 4 * 2] => [batch, 64, 64, ngf * 2 * 2]
            (
                ngf, 2, 0.0
            ),  # decoder_2: [batch, 64, 64, ngf * 2 * 2] => [batch, 128, 128, ngf * 2]
            (
                output_nc, 2, 0.0
            ),  # decoder_1: [batch, 128, 128, ngf * 2] => [batch, 256, 256, generator_outputs_channels]
        ]
    elif scale_size == 128:
        layer_specs = [
            (ngf * 8, 2, 0.5),
            (ngf * 8, 2, 0.5),
            (ngf * 8, 2, 0.5),
            (ngf * 4, 2, 0.0),
            (ngf * 2, 2, 0.0),
            (ngf, 2, 0.0),
            (output_nc, 2, 0.0),
        ]
    elif scale_size == 64:
        layer_specs = [
            (ngf * 8, 2, 0.5),
            (ngf * 8, 2, 0.5),
            (ngf * 4, 2, 0.0),
            (ngf * 2, 2, 0.0),
            (ngf, 2, 0.0),
            (output_nc, 2, 0.0),
        ]
    else:
        raise NotImplementedError

    num_encoder_layers = len(layers)
    for decoder_layer, (out_channels, stride,
                        dropout) in enumerate(layer_specs[:-1]):
        skip_layer = num_encoder_layers - decoder_layer - 1
        with tf.variable_scope("decoder_%d" % (skip_layer + 1)):
            if decoder_layer == 0:
                # first decoder layer doesn't have skip connections
                # since it is directly connected to the skip_layer
                input = layers[-1]
            else:
                input = tf.concat([layers[-1], layers[skip_layer]], axis=3)

            rectified = tf.nn.relu(input)
            # [batch, in_height, in_width, in_channels] => [batch, in_height*2, in_width*2, out_channels]
            if stride == 1:
                output = conv2d(rectified, out_channels, kernel_size=4)
            else:
                output = upsample_layer(rectified,
                                        out_channels,
                                        kernel_size=4,
                                        strides=strides)
            output = norm_layer(output)

            if dropout > 0.0:
                output = tf.nn.dropout(output, keep_prob=1 - dropout)

            layers.append(output)

    with tf.variable_scope("decoder_1"):
        out_channels, stride, dropout = layer_specs[-1]
        assert dropout == 0.0  # no dropout at the last layer
        input = tf.concat([layers[-1], layers[0]], axis=3)
        rectified = tf.nn.relu(input)
        if stride == 1:
            output = conv2d(rectified, out_channels, kernel_size=4)
        else:
            output = upsample_layer(rectified,
                                    out_channels,
                                    kernel_size=4,
                                    strides=strides)
        output = tf.tanh(output)
        output = (output + 1) / 2
        layers.append(output)

    return layers[-1]