Beispiel #1
0
path_to_file2 = download_file(file2, astype='example_data')

# Define a brain object :
b_obj = BrainObj('inflated', hemisphere='both', translucent=False,
                 cblabel='Parcellates example', cbtxtsz=4.)

"""Parcellize the left hemisphere using the Destrieux Atlas. By default, no
parcellates are selected
"""
b_obj.parcellize(path_to_file1, hemisphere='left')

"""If you want to get the list of all predefined parcellates, use the
`get_parcellates` method which returns a pandas DataFrame with the index, the
name and the color associated to each parcellates
"""
df = b_obj.get_parcellates(path_to_file2)
# print(df)

"""Select only some parcellates. Note that this parcellization is using an
other atlas (Desikan-Killiany atlas)
"""
select = ['insula', 'paracentral', 'precentral', 'precuneus', 'frontalpole',
          'temporalpole', 'fusiform', 'cuneus', 'inferiorparietal',
          'inferiortemporal', 'precentral', 'superiorfrontal',
          'superiortemporal']

"""Instead of using predefined colors inside the annot file, we use some data
"""
data = np.arange(len(select))
b_obj.parcellize(path_to_file2, hemisphere='right', select=select, data=data,
                 cmap='Spectral_r')
Beispiel #2
0
def vis_brainSurface_by_padj(padj_parcellates,
                             gci_parcellates,
                             tt,
                             ptype='significant',
                             cmap='jet',
                             use_log=False,
                             use_1_p=False,
                             use_p=True):
    # '''visualize the brain surface based on the FDR-adjusted GCI values or FDR-adjusted p values'''

    # Define the default camera state used for each subplot
    CAM_STATE = dict(
        azimuth=0,  # azimuth angle
        elevation=90,  # elevation angle
        scale_factor=180  # distance to the camera
    )
    S_KW = dict(camera_state=CAM_STATE)
    # Create the scene
    CBAR_STATE = dict(cbtxtsz=12,
                      txtsz=13.,
                      width=.5,
                      cbtxtsh=2.,
                      rect=(1., -2., 1., 4.))
    sc = SceneObj(bgcolor='black', size=(1300, 1000))
    # n_sources = all_coord.shape[0]  #sig_roi_coord.shape[0]
    # data = np.random.rand(n_sources)

    # 1. significant regions
    b_obj_1 = BrainObj('white', translucent=False)

    # parcellize brain based on desikan atlas
    path_to_file1 = download_file('lh.aparc.annot', astype='example_data')
    path_to_file2 = download_file('rh.aparc.annot', astype='example_data')

    #  dataframe type varaible inlcuding index, label, color for each brain region in DKT atlas
    lh_df = b_obj_1.get_parcellates(path_to_file1)
    rh_df = b_obj_1.get_parcellates(path_to_file2)

    # lh_df.to_excel('output/lh.aparc.xlsx')

    def select_rois(df, row=1, col=1):
        select_val = list(np.array(df.iloc[row:, col]))
        select_val.pop(3)
        return select_val

    select_roi1 = select_rois(lh_df)
    select_roi2 = select_rois(rh_df)

    #  get log FDR-adjusted p values (optional)
    # log_p_parce, l_p, s_p = get_log_pval(padj_parcellates, basis=2)

    l_p = np.max(gci_parcellates)
    s_p = np.min(gci_parcellates)
    #         print('-----#####',l_p,s_p)

    if ptype == 'significant' or ptype == 'unsignificant':

        def get_hemisphere_rois(lh_padj,
                                lh_gci,
                                lh_rois,
                                select='significant',
                                cal_log=True):
            if select == 'significant':
                lh_sig_ind = np.where(np.array(lh_padj) <= 0.05)[0]
            else:
                lh_sig_ind = np.where(np.array(lh_padj) > 0.05)[0]

            lh_sig_rois = [lh_rois[i] for i in lh_sig_ind]

            if cal_log:
                log_p, _, _ = get_log_pval(lh_padj,
                                           basis=2)  # calculate "log2(padj)"
                lh_sig_padj = list(np.array(log_p)[lh_sig_ind])
            else:
                # lh_sig_padj = list(np.array(lh_padj)[lh_sig_ind])
                lh_sig_gci = list(np.array(lh_gci)[lh_sig_ind])

            # max_p= np.max(np.array(lh_sig_padj))
            # min_p= np.min(np.array(lh_sig_padj))
            # return lh_sig_rois,lh_sig_padj,max_p,min_p

            max_gci = np.max(np.array(lh_sig_gci))
            min_gci = np.min(np.array(lh_sig_gci))

            return lh_sig_rois, lh_sig_gci, max_gci, min_gci

        # (1). set (log-padj) as values for color mapping

        # select_regions_L,lh_padj,_,_ = get_hemisphere_rois(padj_parcellates[:34], gci_parcellates[:34], select_roi1, select = ptype, cal_log=use_log)
        # select_regions_R,rh_padj,_,_ = get_hemisphere_rois(padj_parcellates[34:], gci_parcellates[34:], select_roi2, select = ptype, cal_log=use_log)

        # clab = 'Log FDR-adjusted p value'
        # b_obj_1.parcellize(path_to_file1, select= select_regions_L,data=lh_padj,cmap=cmap,clim=[s_p,l_p])
        # b_obj_1.parcellize(path_to_file2, select= select_regions_R,data=rh_padj,cmap=cmap,clim=[s_p,l_p])
        # cb_1 = ColorbarObj(b_obj_1, clim= [s_p,l_p], cblabel=clab, border=False, **CBAR_STATE)

        # plot GCI value-4/23/2020

        select_regions_L, lh_gci, _, _ = get_hemisphere_rois(
            padj_parcellates[:34],
            gci_parcellates[:34],
            select_roi1,
            select=ptype,
            cal_log=use_log)
        select_regions_R, rh_gci, _, _ = get_hemisphere_rois(
            padj_parcellates[34:],
            gci_parcellates[34:],
            select_roi2,
            select=ptype,
            cal_log=use_log)

        clab = 'GCI value'
        b_obj_1.parcellize(path_to_file1, select=select_regions_L,
                           data=lh_gci)  #clim=[s_p,l_p]
        b_obj_1.parcellize(path_to_file2,
                           select=select_regions_R,
                           data=rh_gci,
                           cmap=cmap)  #, clim=[s_p,l_p])
        cb_1 = ColorbarObj(b_obj_1,
                           clim=[1.76, 1.80],
                           cblabel=clab,
                           border=False,
                           **CBAR_STATE)

    elif ptype == 'together':
        select_regions_L = select_roi1
        select_regions_R = select_roi2
        if use_log:
            # (1). set (log-padj) as values for color mapping
            clab = 'Log FDR-adjusted p value'
            lh_padj = log_p_parce[:34]
            rh_padj = log_p_parce[34:]
            b_obj_1.parcellize(path_to_file1,
                               select=select_regions_L,
                               data=lh_padj,
                               cmap=cmap,
                               clim=[s_p, l_p])
            b_obj_1.parcellize(path_to_file2,
                               select=select_regions_R,
                               data=rh_padj,
                               cmap=cmap,
                               clim=[s_p, l_p])
            cb_1 = ColorbarObj(b_obj_1,
                               clim=[s_p, l_p],
                               cblabel=clab,
                               border=False,
                               **CBAR_STATE)
        if use_1_p:

            # (2). set (1-padj) as values for color mapping
            clab = tt  #'1-FDR-adjusted p value'
            # clab = '1-FDR-adjusted p value'
            padj_0 = [1 - i for i in padj_parcellates]
            b_obj_1.parcellize(path_to_file1,
                               select=select_regions_L,
                               data=padj_0[:34],
                               cmap=cmap)
            b_obj_1.parcellize(path_to_file2,
                               select=select_regions_R,
                               data=padj_0[34:],
                               cmap=cmap)
            cb_1 = ColorbarObj(b_obj_1,
                               cblabel=clab,
                               border=False,
                               **CBAR_STATE)  #Log FDR-adjusted p value

        if use_p:
            # (2). set (1-padj) as values for color mapping
            print('--------use p-------')
            clab = tt  #'1-FDR-adjusted p value'
            mx = np.array(gci_parcellates).max()
            mi = np.array(gci_parcellates).min()
            b_obj_1.parcellize(path_to_file1,
                               select=select_regions_L,
                               data=gci_parcellates[:34],
                               cmap=cmap,
                               clim=[mi, mx])
            b_obj_1.parcellize(path_to_file2,
                               select=select_regions_R,
                               data=gci_parcellates[34:],
                               cmap=cmap,
                               clim=[mi, mx])
            cb_1 = ColorbarObj(b_obj_1,
                               cblabel=clab,
                               border=False,
                               **CBAR_STATE)  #Log FDR-adjusted p value

    b_obj_1.animate(iterations=10, step=30, interval=1.2)
    sc.add_to_subplot(b_obj_1, row=0, col=0, rotate='front')
    sc.add_to_subplot(cb_1, row=0, col=1, width_max=90)
    # sc.record_animation('output/%s_pvalue_projection.gif'%ptype, n_pic=10)
    # sc.record_animation('output/pmci_degree.gif', n_pic=8)

    sc.preview()
Beispiel #3
0
# Define a brain object :
b_obj = BrainObj('inflated',
                 hemisphere='both',
                 translucent=False,
                 cblabel='Parcellates example',
                 cbtxtsz=4.)
"""Parcellize the left hemisphere using the Destrieux Atlas. By default, no
parcellates are selected
"""
b_obj.parcellize(path_to_file1, hemisphere='left')
"""If you want to get the list of all predefined parcellates, use the
`get_parcellates` method which returns a pandas DataFrame with the index, the
name and the color associated to each parcellates
"""
df = b_obj.get_parcellates(path_to_file2)
# print(df)
"""Select only some parcellates. Note that this parcellization is using an
other atlas (Desikan-Killiany atlas)
"""
select = [
    'insula', 'paracentral', 'precentral', 'precuneus', 'frontalpole',
    'temporalpole', 'fusiform', 'cuneus', 'inferiorparietal',
    'inferiortemporal', 'precentral', 'superiorfrontal', 'superiortemporal'
]
"""Instead of using predefined colors inside the annot file, we use some data
"""
data = np.arange(len(select))
b_obj.parcellize(path_to_file2,
                 hemisphere='right',
                 select=select,
Beispiel #4
0
def create_brain_obj(l_file,
                     r_file,
                     activated_areas,
                     brain_name,
                     hemisphere='both',
                     cmap='copper',
                     vmin=0.,
                     vmax=0.01):
    """Create BrainObj, add areas, and return object

    Input:
    --------
    l_file: str
    r_file: str
    brain_areas: pd.DataFrame
        dataframe of selected areas, shape ['index', 'values']
    brain_name: str
        parameter for the BrainObj, in ('white', 'inflated')
    hemisphere: str
        parameter for the BrainObj, in ('both', 'left', 'right)
    cmap: str
        maplotlib colomap to use. For pvalues, 'copper' should be used; for estimates, 'coolwarm'.
    clim: tuple
        colorbar limits. For pvalues, (0,pmax) should be used; for estimates, a symetrical interval.
    
    Output:
    --------
    b_obj: visbrain.objects.BrainObj
    """
    b_obj = BrainObj(brain_name, translucent=False, hemisphere=hemisphere)
    annot_data = b_obj.get_parcellates(l_file)

    # errors if missing labels - removing labels not in annot_data
    annot_select = pd.merge(annot_data.reset_index()[['index', 'Labels']],
                            activated_areas,
                            on=['index'],
                            validate="one_to_one")
    annot_select['is_left'] = annot_select['Labels'].apply(
        lambda x: x[-1] == 'L')

    if annot_select[annot_select.is_left].shape[0] > 0:
        b_obj.parcellize(
            l_file,
            hemisphere='left',
            select=annot_select[annot_select.is_left]['Labels'].tolist(),
            data=annot_select[annot_select.is_left]['values'].tolist(),
            cmap=cmap,
            vmin=vmin,
            vmax=vmax,
            clim=(vmin, vmax))
    if annot_select[~annot_select.is_left].shape[0] > 0:
        b_obj.parcellize(
            r_file,
            hemisphere='right',
            select=annot_select[~annot_select.is_left]['Labels'].tolist(),
            data=annot_select[~annot_select.is_left]['values'].tolist(),
            cmap=cmap,
            vmin=vmin,
            vmax=vmax,
            clim=(vmin, vmax))
    return b_obj