Beispiel #1
0
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--show", "--plot", action="store_true")
    args = vutil.common_argparse(parser)

    ####### test binary files
    f_bin = viscid.load_file(_viscid_root + "/../sample/ath_sample.*.bin")

    for i, grid in enumerate(f_bin.iter_times(":")):
        plt.subplot2grid((2, 2), (0, i))
        mpl.plot(grid["bx"])
        plt.subplot2grid((2, 2), (1, i))
        mpl.plot(grid["by"])
    if args.show:
        mpl.tighten()
        mpl.mplshow()
    plt.clf()

    ####### test ascii files
    f_tab = viscid.load_file(_viscid_root + "/../sample/ath_sample.*.tab")

    for i, grid in enumerate(f_tab.iter_times(":")):
        plt.subplot2grid((2, 2), (0, i))
        mpl.plot(grid["bx"])
        plt.subplot2grid((2, 2), (1, i))
        mpl.plot(grid["by"])
    if args.show:
        mpl.tighten()
        mpl.mplshow()
    plt.clf()
Beispiel #2
0
def main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--show", "--plot", action="store_true")
    args = vutil.common_argparse(parser)

    ####### test binary files
    f_bin = viscid.load_file(sample_dir + '/ath_sample.*.bin')

    for i, grid in enumerate(f_bin.iter_times(":")):
        plt.subplot2grid((2, 2), (0, i))
        mpl.plot(grid['bx'])
        plt.subplot2grid((2, 2), (1, i))
        mpl.plot(grid['by'])
    mpl.plt.suptitle("athena bin (binary) files")
    mpl.auto_adjust_subplots(subplot_params=dict(top=0.9))

    mpl.plt.savefig(next_plot_fname(__file__))
    if args.show:
        mpl.show()
    plt.clf()

    ####### test ascii files
    f_tab = viscid.load_file(sample_dir + '/ath_sample.*.tab')

    for i, grid in enumerate(f_tab.iter_times(":")):
        plt.subplot2grid((2, 2), (0, i))
        mpl.plot(grid['bx'])
        plt.subplot2grid((2, 2), (1, i))
        mpl.plot(grid['by'])
    mpl.plt.suptitle("athena tab (ascii) files")
    mpl.auto_adjust_subplots(subplot_params=dict(top=0.9))

    mpl.plt.savefig(next_plot_fname(__file__))
    if args.show:
        mpl.show()
    plt.clf()
Beispiel #3
0
def main():
    xl, xh, nx = -1.0, 1.0, 41
    yl, yh, ny = -1.5, 1.5, 41
    zl, zh, nz = -2.0, 2.0, 41
    x = np.linspace(xl, xh, nx)
    y = np.linspace(yl, yh, ny)
    z = np.linspace(zl, zh, nz)
    crds = coordinate.wrap_crds("nonuniform_cartesian",
                                [('z', z), ('y', y), ('x', x)])
    bx = field.empty(crds, name="$B_x$", center="Node")
    by = field.empty(crds, name="$B_y$", center="Node")
    bz = field.empty(crds, name="$B_z$", center="Node")
    fld = field.empty(crds, name="B", nr_comps=3, center="Node",
                      layout="interlaced")
    X, Y, Z = crds.get_crds(shaped=True)

    x01, y01, z01 = 0.5, 0.5, 0.5
    x02, y02, z02 = 0.5, 0.5, 0.5
    x03, y03, z03 = 0.5, 0.5, 0.5

    bx[:] = 0.0 + 1.0 * (X - x01) + 1.0 * (Y - y01) + 1.0 * (Z - z01) + \
              1.0 * (X - x01) * (Y - y01) + 1.0 * (Y - y01) * (Z - z01) + \
              1.0 * (X - x01) * (Y - y01) * (Z - z01)
    by[:] = 0.0 + 1.0 * (X - x02) - 1.0 * (Y - y02) + 1.0 * (Z - z02) + \
              1.0 * (X - x02) * (Y - y02) + 1.0 * (Y - y02) * (Z - z02) - \
              1.0 * (X - x02) * (Y - y02) * (Z - z02)
    bz[:] = 0.0 + 1.0 * (X - x03) + 1.0 * (Y - y03) - 1.0 * (Z - z03) + \
              1.0 * (X - x03) * (Y - y03) + 1.0 * (Y - y03) * (Z - z03) + \
              1.0 * (X - x03) * (Y - y03) * (Z - z03)
    fld[..., 0] = bx
    fld[..., 1] = by
    fld[..., 2] = bz

    fig = mlab.figure(size=(1150, 850),
                      bgcolor=(1.0, 1.0, 1.0),
                      fgcolor=(0.0, 0.0, 0.0))
    f1_src = mvi.add_field(bx)
    f2_src = mvi.add_field(by)
    f3_src = mvi.add_field(bz)
    mlab.pipeline.iso_surface(f1_src, contours=[0.0],
                              opacity=1.0, color=(1.0, 0.0, 0.0))
    mlab.pipeline.iso_surface(f2_src, contours=[0.0],
                              opacity=1.0, color=(0.0, 1.0, 0.0))
    mlab.pipeline.iso_surface(f3_src, contours=[0.0],
                              opacity=1.0, color=(0.0, 0.0, 1.0))
    mlab.axes()
    mlab.show()

    nullpt = cycalc.interp_trilin(fld, [(0.5, 0.5, 0.5)])
    print("f(0.5, 0.5, 0.5):", nullpt)

    ax1 = plt.subplot2grid((4, 3), (0, 0))
    all_roots = []
    positive_roots = []
    ix = iy = iz = 0

    for di, d in enumerate([0, -1]):
        #### XY face
        a1 = bx[iz + d, iy, ix]
        b1 = bx[iz + d, iy, ix - 1] - a1
        c1 = bx[iz + d, iy - 1, ix] - a1
        d1 = bx[iz + d, iy - 1, ix - 1] - c1 - b1 - a1

        a2 = by[iz + d, iy, ix]
        b2 = by[iz + d, iy, ix - 1] - a2
        c2 = by[iz + d, iy - 1, ix] - a2
        d2 = by[iz + d, iy - 1, ix - 1] - c2 - b2 - a2

        a3 = bz[iz + d, iy, ix]
        b3 = bz[iz + d, iy, ix - 1] - a3
        c3 = bz[iz + d, iy - 1, ix] - a3
        d3 = bz[iz + d, iy - 1, ix - 1] - c3 - b3 - a3

        roots1, roots2 = find_roots_face(a1, b1, c1, d1, a2, b2, c2, d2)

        # for rt1, rt2 in zip(roots1, roots2):
        #     print("=")
        #     print("fx", a1 + b1 * rt1 + c1 * rt2 + d1 * rt1 * rt2)
        #     print("fy", a2 + b2 * rt1 + c2 * rt2 + d2 * rt1 * rt2)
        #     print("=")

        # find f3 at the root points
        f3 = np.empty_like(roots1)
        markers = [None] * len(f3)
        for i, rt1, rt2 in zip(count(), roots1, roots2):
            f3[i] = a3 + b3 * rt1 + c3 * rt2 + d3 * rt1 * rt2
            all_roots.append((rt1, rt2, d))  # switch order here
            if f3[i] >= 0.0:
                markers[i] = 'k^'
                positive_roots.append((rt1, rt2, d))  # switch order here
            else:
                markers[i] = 'w^'

        # rescale the roots to the original domain
        roots1 = (xh - xl) * roots1 + xl
        roots2 = (yh - yl) * roots2 + yl

        xp = np.linspace(0.0, 1.0, nx)

        # plt.subplot(121)
        plt.subplot2grid((4, 3), (0 + 2 * di, 0), sharex=ax1, sharey=ax1)
        mpl.plot(fld['x'], "z={0}i".format(d),
                 plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(xl, xh, yl, yh))
        y1 = - (a1 + b1 * xp) / (c1 + d1 * xp)
        plt.plot(x, (yh - yl) * y1 + yl, 'k')
        for i, xrt, yrt in zip(count(), roots1, roots2):
            plt.plot(xrt, yrt, markers[i])

        # plt.subplot(122)
        plt.subplot2grid((4, 3), (1 + 2 * di, 0), sharex=ax1, sharey=ax1)
        mpl.plot(fld['y'], "z={0}i".format(d),
                 plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(xl, xh, yl, yh))
        y2 = - (a2 + b2 * xp) / (c2 + d2 * xp)
        plt.plot(x, (yh - yl) * y2 + yl, 'k')
        for xrt, yrt in zip(roots1, roots2):
            plt.plot(xrt, yrt, markers[i])

        #### YZ face
        a1 = bx[iz, iy, ix + d]
        b1 = bx[iz, iy - 1, ix + d] - a1
        c1 = bx[iz - 1, iy, ix + d] - a1
        d1 = bx[iz - 1, iy - 1, ix + d] - c1 - b1 - a1

        a2 = by[iz, iy, ix + d]
        b2 = by[iz, iy - 1, ix + d] - a2
        c2 = by[iz - 1, iy, ix + d] - a2
        d2 = by[iz - 1, iy - 1, ix + d] - c2 - b2 - a2

        a3 = bz[iz, iy, ix + d]
        b3 = bz[iz, iy - 1, ix + d] - a3
        c3 = bz[iz - 1, iy, ix + d] - a3
        d3 = bz[iz - 1, iy - 1, ix + d] - c3 - b3 - a3

        roots1, roots2 = find_roots_face(a1, b1, c1, d1, a2, b2, c2, d2)

        # for rt1, rt2 in zip(roots1, roots2):
        #     print("=")
        #     print("fx", a1 + b1 * rt1 + c1 * rt2 + d1 * rt1 * rt2)
        #     print("fy", a2 + b2 * rt1 + c2 * rt2 + d2 * rt1 * rt2)
        #     print("=")

        # find f3 at the root points
        f3 = np.empty_like(roots1)
        markers = [None] * len(f3)
        for i, rt1, rt2 in zip(count(), roots1, roots2):
            f3[i] = a3 + b3 * rt1 + c3 * rt2 + d3 * rt1 * rt2
            all_roots.append((d, rt1, rt2))  # switch order here
            if f3[i] >= 0.0:
                markers[i] = 'k^'
                positive_roots.append((d, rt1, rt2))  # switch order here
            else:
                markers[i] = 'w^'

        # rescale the roots to the original domain
        roots1 = (yh - yl) * roots1 + yl
        roots2 = (zh - zl) * roots2 + zl

        yp = np.linspace(0.0, 1.0, ny)

        # plt.subplot(121)
        plt.subplot2grid((4, 3), (0 + 2 * di, 1), sharex=ax1, sharey=ax1)
        mpl.plot(fld['x'], "x={0}i".format(d),
                 plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(yl, yh, zl, zh))
        z1 = - (a1 + b1 * yp) / (c1 + d1 * yp)
        plt.plot(y, (zh - zl) * z1 + zl, 'k')
        for i, yrt, zrt in zip(count(), roots1, roots2):
            plt.plot(yrt, zrt, markers[i])

        # plt.subplot(122)
        plt.subplot2grid((4, 3), (1 + 2 * di, 1), sharex=ax1, sharey=ax1)
        mpl.plot(fld['y'], "x={0}i".format(d),
                 plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(yl, yh, zl, zh))
        z1 = - (a2 + b2 * yp) / (c2 + d2 * yp)
        plt.plot(y, (zh - zl) * z1 + zl, 'k')
        for i, yrt, zrt in zip(count(), roots1, roots2):
            plt.plot(yrt, zrt, markers[i])

        #### ZX face
        a1 = bx[iz, iy + d, ix]
        b1 = bx[iz - 1, iy + d, ix] - a1
        c1 = bx[iz, iy + d, ix - 1] - a1
        d1 = bx[iz - 1, iy + d, ix - 1] - c1 - b1 - a1

        a2 = by[iz, iy + d, ix]
        b2 = by[iz - 1, iy + d, ix] - a2
        c2 = by[iz, iy + d, ix - 1] - a2
        d2 = by[iz - 1, iy + d, ix - 1] - c2 - b2 - a2

        a3 = bz[iz, iy + d, ix]
        b3 = bz[iz - 1, iy + d, ix] - a3
        c3 = bz[iz, iy + d, ix - 1] - a3
        d3 = bz[iz - 1, iy + d, ix - 1] - c3 - b3 - a3

        roots1, roots2 = find_roots_face(a1, b1, c1, d1, a2, b2, c2, d2)

        # for rt1, rt2 in zip(roots1, roots2):
        #     print("=")
        #     print("fx", a1 + b1 * rt1 + c1 * rt2 + d1 * rt1 * rt2)
        #     print("fy", a2 + b2 * rt1 + c2 * rt2 + d2 * rt1 * rt2)
        #     print("=")

        # find f3 at the root points
        f3 = np.empty_like(roots1)
        markers = [None] * len(f3)
        for i, rt1, rt2 in zip(count(), roots1, roots2):
            f3[i] = a3 + b3 * rt1 + c3 * rt2 + d3 * rt1 * rt2
            all_roots.append((rt2, d, rt1))  # switch order here
            if f3[i] >= 0.0:
                markers[i] = 'k^'
                positive_roots.append((rt2, d, rt1))  # switch order here
            else:
                markers[i] = 'w^'

        # rescale the roots to the original domain
        roots1 = (zh - zl) * roots1 + zl
        roots2 = (xh - xl) * roots2 + xl

        zp = np.linspace(0.0, 1.0, nz)

        # plt.subplot(121)
        plt.subplot2grid((4, 3), (0 + 2 * di, 2), sharex=ax1, sharey=ax1)
        mpl.plot(fld['x'], "y={0}i".format(d),
                 plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(xl, xh, zl, zh))
        x1 = - (a1 + b1 * zp) / (c1 + d1 * zp)
        plt.plot(z, (xh - xl) * x1 + xl, 'k')
        for i, zrt, xrt in zip(count(), roots1, roots2):
            plt.plot(xrt, zrt, markers[i])

        # plt.subplot(121)
        plt.subplot2grid((4, 3), (1 + 2 * di, 2), sharex=ax1, sharey=ax1)
        mpl.plot(fld['y'], "y={0}i".format(d),
                 plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(xl, xh, zl, zh))
        x1 = - (a2 + b2 * zp) / (c2 + d2 * zp)
        plt.plot(z, (xh - xl) * x1 + xl, 'k')
        for i, zrt, xrt in zip(count(), roots1, roots2):
            plt.plot(xrt, zrt, markers[i])

    print("all:", len(all_roots), "positive:", len(positive_roots))
    if len(all_roots) % 2 == 1:
        print("something is fishy, there are an odd number of root points "
              "on the surface of your cube, there is probably a degenerate "
              "line or surface of nulls")
    print("Null Point?", (len(positive_roots) % 2 == 1))

    plt.show()